Numerical Methods in Continuum Mechanics 1 | last update: 2021-10-03 |
[ Lecture ] [ Tutorial ] [ Exercises ] [ Transparencies ] [ Lecture Notes ] [ Additional Literature ] [ Software ] [ Links ] [ General ] [ Home ]

(CourseId 327.005, 2 hours per week, Semester 6)
Lecturer: O.Univ.-Prof. Dr. Ulrich Langer
Time and room:
Wed, Mar 5, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 1 |
Wed, Mar 12, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 2 |
Easter Break | ||
Wed, Apr 2, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 3 |
Wed, Apr 9, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 4 |
Wed, Apr 16, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 5 |
Wed, Apr 23, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 6 |
Wed, Apr 30, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 7 |
Wed, May 7, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 8 |
Wed, May 14, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 9 |
Wed, May 21, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 10 |
Wed, May 28, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 11 |
Wed, Jun 4, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 12 |
Wed, Jun 11, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 13 |
Wed, Jun 18, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 14 |
Wed, Jun 25, 2008 | 08:30 - 10:00 Room: T 111 | Lecture 15 |
Lecturer: O.Univ.-Prof. Dr. Ulrich Langer

(CourseId 327.006, 1 hour per week, Semester 6)
Tutorials held by: DI Peter Gruber
Time and room:
Fri, Mar 7, 2008 | 08:30 - 09:15 Room: T 1010 | Introduction |
Fri, Mar 14, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 1 |
Easter Break | ||
Fri, Apr 4, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 2 |
Fri, Apr 11, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 3 |
Fri, Apr 18, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 4 |
Fri, Apr 25, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 5 |
Fri, May 2, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 6 |
Fri, May 9, 2008 | cancelled! | |
Fri, May 16, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 7 |
Fri, May 16, 2008 | 09:15 - 10:00 Room: T 1010 | Tutorial 8 |
Fri, May 30, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 9 |
Fri, Jun 6, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 10 |
Fri, Jun 13, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 11 |
Fri, Jun 20, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 12 |
Fri, Jun 27, 2008 | 08:30 - 09:15 Room: T 1010 | Tutorial 13 |

Tutorial 1 | Mar 14, 2008 | |
Tutorial 2 | Apr 4, 2008 | |
Tutorial 3 | Apr 11, 2008 | |
Tutorial 4 | Apr 18, 2008 | |
Tutorial 5 | Apr 25, 2008 | |
Tutorial 6 | May 2, 2008 | |
Tutorial 7 | May 16, 2008 | |
Tutorial 8 | May 16, 2008 | |
Tutorial 9 | May 30, 2008 | |
Tutorial 10 | June 6, 2008 | |
Tutorial 11 | June 13, 2008 | |
Tutorial 12 | June 20, 2008 | |
Tutorial 13 | June 27, 2008 |

Transparency 1: b/w | 1.1.1 Primal VF I |
Transparency 2: b/w | 1.1.1 Primal VF II |
Transparency 2a: colour | Example 1.3: I |
Transparency 2b: colour | Example 1.3: II |
Transparency 2c: colour | Theorem 1.4 |
Transparency 3: b/w | Corollaries 1.6/1.7 |
Transparency 4: b/w | 1.2.1 Nonlin. VP |
Transparency 5: colour | 1.2.2 VI 1 |
Transparency 6: colour | 1.2.2 VI 2 |
Transparency 7: colour | 1.2.2 VI 3 |
Transparency 7a: colour | Proof: Existence |
Transparency 7b: colour | Proof: Uniqueness+Nonexp. |
Transparency 8: b/w | Remark 2.1 |
Transparency 8a: colour | Exercises 2.3 and 2.5 |
Transparency 8b: colour | Lemma 2.8 |
Transparency 8c: colour | Proof |
Transparency 8d: colour | Theorem 2.9 |
Transparency 9: colour | 2.2 Sym. Case I |
Transparency 10: colour | 2.2 Sym. Case II |
Transparency 11: colour | 2.2 Sym. Case III |
Transparency 12: b/w | 2.2 Sym. Case IV |
Transparency 13: b/w | 2.2 Sym. Case V |
Transparency 14: colour | 2.2 Sym. Case VI |
Transparency 15: colour | 2.3 MVP(+) I |
Transparency 16: b/w | 2.3 MVP(+) II |
Transparency 17: b/w | 2.3 MVP(+) III |
Transparency 18: colour | 2.3 MVP(+) IV |
Transparency 19: colour | 2.4 Exercises |
Transparency 20: colour | 2.4.2 Arrow-Hurwicz |
Transparency 21: b/w | 2.4.3 Theorem 2.21 |
Transparency 22: b/w | 2.4.3 Proof I |
Transparency 23: colour | 2.4.3 Proof II |
Transparency 24: colour | 2.4.3 Proof III |
Transparency 25: colour | 2.4.3 Example 2.22 |
Transparency 26: colour | 2.4.3 Preconditioner |
Transparency 27: colour | 2.4.3 Excerises 2.24/25 |
Transparency 28: colour | 3.1. Basic equations |
Transparency 29: colour | 3.2.1 Derivation PVF |
Transparency 30: colour | 3.2.1 PVF=MP |
Transparency 31: colour | 3.2.1 Ass. L&M |
Transparency 32: b/w | 3.2.1 RBM |
Transparency 33: b/w | 3.2.1 1st KORN |
Transparency 34: b/w | 3.2.1 KORN's ineq. |
Transparency 35: b/w | 3.2.1 2nd KORN |
Transparency 36: b/w | 3.2.1 L&M |
Transparency 37: b/w | 3.2.1 Exercise 3.8 |
Transparency 38: colour | 3.2.1 FEM |
Transparency 39: colour | 3.2.2 HRP I 1 |
Transparency 40: b/w | 3.2.2 HRP I 2 |
Transparency 41: b/w | 3.2.2 HRP I 3 |
Transparency 42: colour | 3.2.2 HRP I 4 |
Transparency 43: colour | 3.2.2 HRP II MFEM |
Transparency 44a: b/w | Punkt 3.2.3. I |
Transparency 44b: b/w | Punkt 3.2.3. II |
Transparency 44c: b/w | Punkt 3.2.3. III |
Transparency 44d: b/w | Punkt 3.2.3. IV |
Transparency 44e: b/w | Punkt 3.2.3. V |
Transparency 45: colour | FE-Discr. |
Transparency 46: colour | FE-System |

- Langer U.: Numerische Festkörpermechanik (Computational Mechanics), JKU, Linz 1997. pdf-File
- Zulehner W.: Lecture Notes for the Course Numerical Methods for Continuum Mechanics 1, JKU, Linz 2006. pdf-File

- Braess D.: Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer Lehrbuch, Berlin, Heidelberg 1997, see also Braess' homepage
- Braess D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge, 1997, 2001, 2007. (= english version of [1])
- Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, Vol. 15, Springer-Verlag, New York 1991.



- Linear Algebra and Analytic Geometry 1 and 2
- Analysis 1 - 3 (particularly Analysis 3)
- Knowledge of Computer Science and Programming
- Numerical Analysis
- Partial Differential Equations and Integral Equations
- Modelling
- Numerical Methods for Partial Differential Equations
- Special Topics in Computational Mathematics
- Special Seminars in Computational Mathematics
Get knowledge of analysis tools and of numerical methods for mechanical problems
Contents:- Introduction
- Analysis and numerics of mixed boundary value problems
- Modelling, analysis and numerics of linear elasticity problems
- Structural mechanics
- The tutorial to this lecture treats numerical methods for the solution of mechanical problems and has 1 hour per week
- Introduction to the Tutorials: Friday, March 7, 2008, 08:30 - 09:15, Room T 1010
Lecture: oral
Tutorial:
The mark of the tutorial consists of the
assessment of the individual exercises and the presentations on the blackboard.