<u>TUTORIAL</u>

"Computational Mechanics"

to the lecture

"Numerical Methods in Continuum Mechanics 1"

Tutorial 09 Friday, May 30, 2008 (Time : $8^{30} - 9^{15}$ Room : SR T 1010)

4.3 Uzawa Algorithm and Schur Complement

32^{*} Consider the mixed variational problem: Find $(u, \lambda) \in X \times \Lambda$ such that

$$\begin{aligned} a(u,v) + b(v,\lambda) &= \langle F, v \rangle \quad \forall v \in X \,, \\ b(u,\mu) &= \langle G, \mu \rangle \quad \forall \mu \in \Lambda \,, \end{aligned}$$

where $F \in X^*$ and $G \in \Lambda^*$ are given. Let $A : X \to X^*$ and $B : X \to \Lambda^*$ be the related operators to $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$, and let the assumptions of Theorem 2.4 (*Brezzi*) be satisfied. Show that the bilinearform

$$l(\xi,\eta) := \langle L\xi, \eta \rangle$$

with

$$L := \begin{pmatrix} A & B^* \\ B & 0 \end{pmatrix}, \ \xi := \begin{pmatrix} u \\ \lambda \end{pmatrix}, \ \eta := \begin{pmatrix} v \\ \mu \end{pmatrix}, \text{ and } \|\xi\|_{X \times \Lambda} = \left(\|u\|_X^2 + \|\lambda\|_\Lambda^2\right)^{1/2}$$

satisfies the assumptions of Theorem 1.5 (*Babuska-Aziz*), if $a(\cdot, \cdot)$ is elliptic on the whole space X, i. e., if there exists $\alpha_1 > 0$ such that $a(v, v) \ge \alpha_1 ||v||_X^2$ for all $v \in X$. *Hint:* The LBB-condition

$$\exists \mu_1 > 0 \ \forall \xi = (u, \lambda) \in X \times \Lambda : \ \sup_{\eta} \frac{l(\xi, \eta)}{\|\eta\|} \ge \mu_1 \|\xi\|$$

can be shown by choosing $\eta = (v, \mu)$ such that $\mu = -2\lambda$, and v = u + w where $w \in X$ is the solution of the adjoint problem $a(y, w) = b(y, \lambda)$ for all $y \in X$.

33* Consider the assumptions and definitions in Example 28 and replace $M = (-1, 1) \times (-1, 1)$ by $M_h = (-h, h) \times (-h, h)$, where $h \in (0, 1]$. Show, that there exists a constant c > 0 independent of h ($c \neq c(h)$) such that

$$||v_h||_{H^1(M_h)} \le c ||v||_{H^1(M_h)} \quad \forall v \in C^1(\overline{M}_h) \; \forall h \in (0,1] \; .$$

Hint: Use $||v_h|| \le ||v_h - v|| + ||v||$ and (after a proper transformation of variables) the estimate of Example 30.

- 34 Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times n}$, and $C \in \mathbb{R}^{m \times m}$ such, that $A = A^T$, A > 0, $C = C^T$, $C \ge 0$, and Rank $B = \min\{m, n\}$. Show, that
 - 1. the matrix $\begin{pmatrix} A & B^T \\ B & -C \end{pmatrix}$ is symmetric but indefinite,
 - 2. the Schur complement matrix $S = BA^{-1}B^T + C$ is symmetric and positive definite ("SPD"),
 - 3. if C > 0, then the matrix $\begin{pmatrix} A & B^T \\ -B & C \end{pmatrix}$ is positive definite.
- 35 Write down the Uzawa–CG Algorithm, i.e., the CG Algorithm for the system

Given $\underline{f} \in \mathbb{R}^n$ and $\underline{g} \in \mathbb{R}^m$. Find $\underline{\lambda} \in \mathbb{R}^m$: $(BA^{-1}B^T + C)\underline{\lambda} = BA^{-1}\underline{f} - \underline{g}$.