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Chapter 1

Models

1.1 Kinematics

Let © C R? be an open, bounded and connected set with Lipschitz-continuous boundary
' = 09). The set 2 is called the reference configuration and describes, e.g., the initial state

or the undeformed state of a continuum (body).
A configuration (or deformation) is a sufficiently smooth, orientation preserving and

injective mapping
b Q — R3.

This mapping describes, e.g., the state of the continuum at some later time or the state of
a deformed continuum. The set ¢(2) consists of all points (or particles) = of the form

z = ¢(X)

with X € Q. X are called the material (or Lagrangian) coordinates, x are called the spatial
(or Eulerian) coordinates of a particle.

The matrix
061 o\ 001 (0 Dby
LX) R0 ()
0 0 0
P(X) = Vo(X) = | 2200 2(0) F22(X)
0y ) D01 ) Dy
Te ) FE00 )

is called the deformation gradient. Preserving the orientation corresponds to the condition
J(X)=det Vop(X) >0 forall X € Q.
The displacement U: ) — R3, introduced by
UX)=x—X with z=¢(X)

1



2 CHAPTER 1. MODELS

measures the deviation from the reference configuration. With

r=¢(X) and z+ Az =¢(X +AX)

we have:
Ax = p(X + AX) — o(X) = Vo(X)AX + o(AX),
SO
[Az]7, = AXTVO(X) ' Vo(X)AX +o(][AX]7,)
— AXTC()AX +o|AX]2)
with

C(X) = F(X)"F(X) = Vo(X)"Vo(X).

The symmetric tensor C(X) is called the (right) Cauchy-Green deformation tensor. It
describes the local change in distances by the deformation. It can be shown that there is
no change in distances, i.e.:

C(X)=1 forall X € Q,
if and only if the configuration is a rigid body configuration, i.e.:
¢(X) = QX +a,

where @ is an orthogonal matrix with det@Q = 1 (describing a rotation) and a € R?
(describing a translation).
The deviation of C(X) from the ideal case I is measured be the symmetric tensor

E(X) = S(C(X) - 1),

1
2
the so called Green-St.Venant strain tensor. Then, of course, we have:
1
1AzllZ, = IAX]7, = 5 AXTEX)AX + o [AX]7,).
E(X) can be expressed directly by the displacement U(X):

E[U](X) = - (VUX)" + VU(X) + VU(X)'VU(X)),

N | —

or, component-wise:

B[U)(X) = 3 (g)i X0+ gy 0+ 25 <X>§—fg;<x>> .

Observe the nonlinear relation between E and U.
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The displacement can also be introduced in FEulerian coordinates by
u(z) =z — X with z=¢(X), ie. X = ¢ (z).

Then
AX = (Vo(X)) 'Ar + o(Ar) with X = ¢~ !(x)

and, consequently,
IAXZ, = Az c(z) Az + of || Azll7,)

with
c(z) =b(z)™ with b(z) =F(X)F(X) = Vaé(X)Ve(X)T.
Then
el ~ 1AXIE, = 5 Ad"e(r)Ax + o |Ae],)
with
o) = 5(I — cfx)

Finally, it easily follows that

(Vu(2)" + Vu(z) — Vu(z) Vu(z)) .

DO | —

elu(z) =

b(z) is called the Finger deformation tensor or the left Cauchy-Green deformation tensor,
e(x) is called the Almansi-Hamel strain tensor or the Euler strain tensor.
The motion of a continuum (or body) is described by a curve

t'—>¢t.

Interpretation: The position z of a point (particle) at time ¢, whose position at time 0 was
X, is given by
r=¢(X) = o(X,1).

Then the material (or Lagrangian) velocity of this particle as a function of X and ¢ is
given by

Vi(X) = V(X,t) = %(X, ),
and the material (or Lagrangian) acceleration is given by
0%¢

Observe the following linear relation between velocity and acceleration:

A(X,t) = %—‘;(X,t).



4 CHAPTER 1. MODELS

In the Eulerian approach the motion of a particle is described by the spatial velocity
(field) v(x,t), where v(x,t) is the velocity of that particle, which passes through x at time
t, so

v(z) = v(z,t) =V(X,t) = ?(X, t) with x = ¢(X, ).
For the spatial acceleration a(z,t) of that particle we obtain:
D*¢ .
ay(x) = a(z,t) = A(X,t) = e —(X,t) with z = ¢(X,1).

We have for x = ¢(X, t):
a(z,t) = %[U(W(, t),1)] = %(m, t) + Z iz, t)g—;(x, t).

Notation: The differential operator v - grad = v - V, given by

d
0
(v grad)f = (0 V) = D uig-
i=1 !

is called the convective derivative and the differential operator d/dt, given by

df f—g—l—(v grad) f,

is called the total or material derivative.

With these notations the spatial acceleration can be written in the following form:

alz,t) = le:(x t) = Z:(:c,t)jL(v(x,t)~grad)v(m,t):%(m,t)—i—(v(x,t)-V)v(m,t).

Observe that this is a nonlinear relation between velocity and acceleration in the Eulerian
approach.

For a given velocity (field) v(z,t) one obtains the trajectories ¢(X,t) of the individual
particles as solution of the initial value problem:

¢ B
LX) = w(o(X,0),0) "
(X,0) = X.

1.2 Balance Laws

Let w C €. The set wy, given by
w = {6(X,1) | X e w}, (1.2)

describes the position of those particles at time ¢, which were in w at time ¢t = 0.
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1.2.1 Transport Theorem

Let F' be a given function of z and ¢t. The Transport Theorem describes the rate change
of the quantity

F(t) :/ F(z,t) dz. (1.3)
Namely: t

Theorem 1.1 (Transport-Theorem). Let ty € (T1,13), let w C Q be a bounded domain
with Wy C €2, and let v and F be continuously differentiable. Then F is well-defined and
continuously differentiable in an interval (t1,ts) C (11, T2) withty € (t1,t2) by the equations
(1.1), (1.2) and (1.8), and we have:

Cilit:(t) = /M {%—I;(a:,t) +div(Fv)(a:,t)} de = /Wt [%(x,t) + F div(v)(z,t)| dx.

Notation: The following notation was used in the Transport Theorem: divG = V - G,
given by
ox;

3
divG =V -G=>_
=1

for a continuously differentiable vector-valued function G, is called the divergence of G.

Remark: With the help of Gauss’ Theorem it follows immediately that

dF oF
dt(t) /Wt T alchr/8 v-nds

Wi

Here n = n(x) denotes the outer normal unit vector at a point x on the boundary of w;.

1.2.2 Conservation of Mass

Let p(x,t) denote the mass density of a body at the position x and time ¢. The principle
of conservation of mass states that no mass will be generated or destroyed, i. e.:

p 5 p(x,t) de = 0.

Under appropriate smoothness conditions the Transport Theorem implies:

/Wt {%(%U +div(pv)(gj’t)] dr = 0

for all ¢ and all bounded domains w with w C €2. This results in the following differential
equation, the so-called equation of continuity: either in conservative form:

p | . N
N + div(pv) =0, (1.4)
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or, equivalently, in the convective form:

d
d—§+pdivv:0.

In the special case p = constant (incompressible fluid) the equation of continuity is given
by
dive = 0. (1.5)

We have (by the substitution rule)

/ p(x,t) dx:/p(¢(X,t))J(X,t) dX.

Hence, the conservation of mass in Lagrangian coordinates reads:

d

E (p(gb(X, t)’ t)‘](X7 t)) =0,

Therefore,

ol 1) = J(j( M) with e =6(X.1) and po(X) = p(X.0)

1.2.3 Balance of Momentum and Angular Momentum

The total (linear) momentum of all particles in w; is given by

/wt plx, t)v(x,t) du.

Newton’s second law states that the rate of change of the (linear) momentum is equal to
the applied forces F'(wy), hence

- plx, t)v(x,t) de = F(w). (1.6)

The forces acting on the body can be split into applied body forces Fy (w;) and applied
surface forces Fg(wy):
F(wt) = FV(CUt) + Fs(wt).

If the body forces can be described by a specific force density (force per unit mass) f(x,t),
then we obtain the representation

Fy(wy) :/ p(x,t)f(x,t) du.

An example of such a force is the force of gravity with f = (0,0, —g)7.
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-,

The internal surface forces can be described by a vector t(z,t,n) (force per unit area),
the so-called Cauchy stress vector:

Fs(wy) :/a t(z,t,n(z)) ds.

Summarizing, we obtain the following balance law for the momentum:

% plx, t)v(x,t) de :/ plx,t)f(x,t) dx +/a t(x, t,n(x)) ds.

Wt

The total angular momentum of all particles in w; is given by

/ x X p(x,t)v(x,t) de.

Newton’s second law states that the rate of change of the angular momentum is equal to
the applied torque, so

wi

d
p th X p(z,t)v(x,t) de = /wtx x p(x,t)f(x,t) d:L’—l—/a

These two equations are also called equations of motion, in the steady state case, also the
equilibrium conditions.

Under reasonable assumptions it can be shown that the stress vector f(x,t,n) =
(ti(x,t,n)) can be represented by the so-called Cauchy stress tensor o = (oy;) in the

following form:
x t, n ZUJZ T, t

Using Gauss’ Theorem and the Transport Theorem one obtains for sufficiently smooth
functions the following differential equation (in conservative form):

0 0o ;
—(pvi) + div(pviv) 2 (1.7)
ot Z ax]

from the balance of momentum, or in convective form
8 + d E f (1.8)
v - gradv; = i :
8 ;TP g 6 +p

by using the equation of continuity,
It can be shown that the balance of angular momentum is satisfied if and only if o is
symmetric:
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Therefore, the balance of momentum in convective form can also be written in the following

form:
ov

Yot

. 8Jij
dive = —_— .
X 8xj
J i=1,2,3
,L 1<

So far, the equations of motion have been derived in Eulerian coordinates.
By transforming the integrals one easily obtains the equations of motion in Lagrangian
coordinates. We have:

+ p(v-grad)v =dive + pf

with

/ oz, )o(x, 1) do = / po(X)V(X, 1) dX
/ plx,t)f(x,t) de = /po(X)F(X,t) dX
/ o(xz,t)n(z,t) ds = / P(X,t)N(X) dS

with the specific force density F'(X,t) in Lagrangian coordinates:
F(X,t) = f(z,t) for x = ¢(X, 1),
the unit normal vector N(X) in Lagrangian coordinates:
VO(X, ) TN(X) = [Vo(X, ) TN(X)ley nla, 1) for @ = 6(X, 1),

and
P(X,t) = J(X,t)o(z,t)Vo(X,t)"" for z = ¢(X,1),

the so-called first Piola Kirchhoff stress tensor.

Remark: The last transformation rule is based on Nanson’s formula:

/ oz, t)n(z,t) ds = / o(z,t) J(X,t) Vo(X, 1) T N(X) dS.
Owt ow

Then one obtains from the balance of momentum the following differential equation in
Lagrangian coordinates:

po(X)ZL (X 1) = div (X, 1) = po(X)F(X. 1)

The balance of angular momentum is satisfied if and only if

S(X,t)T = S(X,t)
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with
S(X,t) = Vo(X, 1) 'P(X,t) = J(X,t) Vo(X,t) Loz, 1) Vo(X, t)’T for z = ¢(X, 1),

the so-called second Piola Kirchhoff stress tensor.
The corresponding transformation of the tensors S +— o, given by

o(x,t) = ﬁw(x, HS(X, ) Vo(X, )T for z = ¢(X, 1)

is called the Piola transformation.

Remark: Other balance laws like the balance of energy will not be discussed here.

1.3 Constitutive Laws

The equations of motion do not yet completely describe the configuration of a body. Equa-
tions for the stress in form of a constitutive laws are necessary.
Two important special cases will be considered here:

1.3.1 Elastic Materials

A material is called elastic if there is a constitutive law of the form
S(X) = S(X,E(X)).

For the important sub-class of hyperelastic materials the constitutive law can be rep-
resented by an energy functional:

N ov
S(Xa E) = a_E(Xv E)7

where U(X, E) is the so-called stored energy function.
A material is called linearly elastic if

1
V(X E) = B Z Cijkl(X)EijEkh

ijkl

where the so-called elastic coeflicients (or elasticity coefficients) Cj;x(X) (which form the
so-called elasticity tensor) have the following properties:

Cijna(X) = Crij(X)

and
Ciji(X) = Cji(X) = Cjup(X).
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From these conditions it follows that only 21 coefficients can be chosen independently from
each other. For the corresponding constitutive law we obtain the linear relations:

Sz'j = Z Cz‘jkl(X)Ek:l; (19)
kl

which is called Hooke’s law.

An important special case of linearly elastic materials are the St.Venant-Kirchhoff ma-
terials (homogenous, isotropic, and linearly elastic materials), for which the constitutive
law has the form

S = X trace(E) I + 2p E.

The parameters A and p are called Lamé coefficients. They are related to Young’s modulus
(or modulus of elasticity) £ and Poisson’s ratio v by

E:u(S)\—i-Z,u)’ L A
A p 2 + )
and, vice versa
Ev E
)\ - ILL —

(1+v)(1-2v) 2(1+v)

It can be shown by arguments from physics that:

1
0<V<§andE>0.

These conditions are equivalent to
A>0and p > 0.

For St.Venant-Kirchhoff materials the stored energy function takes the form

U(E) = % (trace(E))? 4 p trace(E?),

SO
Cijkl =\ 51‘]‘ Opr + H (5zk: 5jl + 0y 5jk‘)

1.3.2 Newtonian Fluids

Starting point is the following ansatz for the Cauchy stress tensor
o=—-pl+T,

where p(z,t) denotes the pressure in the fluid at the position = and time ¢ and 7 depends
on the first spatial derivative of the velocity field v(z,t).
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For a parallel flow (in x; direction) Newton postulated the linear relation

dUl

T21 :Md—@

for the shear stress 75;. The coefficient p is called the dynamic viscosity of the fluid.
Under reasonable assumptions it can be shown that this implies the following form for

T=Adive I 4+ 2pue(v)

with
. 1 (%i 8v]~
e(v) = (e(v)y), &)y = 3 (613 + 8%) :

Observe that dive = tracee(v) and the formal similarity to the constitutive law for St.
Venant-Kirchhoff materials.

Arguments from physics show that
. 2
>0 and /L:)\—l—g,uZO.

The coefficient i is called bulk viscosity. In the following we will assume that it = 0, hence
A = —2u/3. Therefore

2
o=—(p+ ?M divo) I +2ue(v).

For p = constant, u = constant and with the help of (1.5) (dive = 0) the expressions
for the internal surface force can be further simplified:

dive = —grad p + pu Aw,

where A denotes the Laplacian operator:

1.4 Boundary Value and Initial-Boundary Value
Problems

For a complete description we need boundary conditions and for time-dependent problems
initial conditions.
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1.4.1 Elastostatics and Elastodynamics

Usually Lagrangian coordinates are used in elasticity.
In typical applications the surface force is prescribed on some part I'y of the boundary
[' = 00 of Q, given by its surface force density Ty (x). This results in the boundary

condition
(VpS)N =Ty forallzely, t>0.

For the remaining part I'p of the boundary we assume that the deformation is known.
This leads to the boundary condition
¢=¢p forall X el'p, t>0.

As initial conditions usually the initial configuration and the initial velocity are pre-
scribed:
99

o=d, 5 =V fort=0

Hence we obtain the following initial-boundary value problem of elastodynamics:

2

o .
pow—dlv(V¢S) =po I in Q, t>0,
S =S(E) in Q, t >0,

1
E:§N#V¢—D in Q, t>0,

¢ =¢p onTp, t>0,
(VoS)N =Ty onIy, t >0,
¢:¢0’ %:% an,tZO

The corresponding time-independent problem leads to the following boundary value
problem of elastostatics:

—div(V¢S) = po F in Q,
S = S(E) in €,

1 T )
E:§(V¢ Vo —1I) inQ,

(b:(bD on FD;
(VQS S) N = TN on FN-
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1.4.2 Linear(ized) Elasticity

For small displacements it is justified

e not to distinguish between the Eulerian and the Lagrangian description (in the sequel
we will use the Eulerian description), and

e to replace the strain tensor by the linearized strain tensor ¢, given by
1 an Guz
Then Hooke’s law (1.9) can be written in the form

Oij = E Oijkl €kl
Kl

or, in short,

o="Ce.
We obtain the following initial-boundary value problem of linear(ized) elastodynamics:
82
poa—tg—diVO':pof inQ,t>O,
c=C¢ in Q, t>0,

1
€= E(VuTjLVu) in Q, t>0,

U= Up onl'p, t >0,
on=ty onI'y, t>0,
0
u = uo, 6_;6:% in ), t =0,
and the following boundary value problem of linear(ized) elastostatics:
—dive =pg f in €2,
c=Ce¢ in €2,

1
€= §(VUT + Vu) in ),

U= Up on I'p,

on=1ty on I'y.
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For St. Venant-Kirchhoff materials we obtain, in particular,
o= \trace(e) [ +2pue
and from constitutive law and the linearized strain-displacement relations it follows that:

—dive = —2pdive(u) — A graddivu
= —pAu— A+ p) graddivu.

The corresponding second order differential equations for the displacement u are called
Lamé (or Cauchy-Navier) equations.

1.4.3 The Navier-Stokes Equations

Usually Eulerian coordinates are used in fluid mechanics. The unknown functions are, e.g.,
the velocity v(x,t) and the pressure p(z,t).
In typical applications the surface force is prescribed on some part I'y of the boundary
[' = 9Q of Q, given by its surface force density ty(z). This results in the boundary
condition
on=ty forallzely, t>0.

For the remaining part I'p of the boundary we assume that the velocity is known. This
leads to the boundary condition

v=wp forallxzelp, t>0.
As initial condition usually the initial velocity is prescribed:
v=uvy fort=0.

For the case p = constant and pu = constant one obtains the equations of motion in
conservative form

%(pvi) + div(pvv) = _gﬂi + pAv; + pfi, (1.10)
or in convective form
v
pa—l—p(%grad)v:—gradp—l—,uAv—i—pf (1.11)
or, after dividing by p:
v 1
E—k(v-grad)v: ——gradp + vAv + f (1.12)
p

with v = u/p, the kinematic viscosity. The equations (1.10) or (1.11) or (1.12) are called
the Navier-Stokes equations.
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In summary, one obtains the following initial-boundary value problem of fluid mechan-
ics:

1
%—i—(u-grad)v—l/Av—i-—gradp:f in Q, ¢>0,
p

dive=0 in€Q, t>0,

v=wvp onlp, t>0,

on=ty only, t>0,
v=1vy in€ t=0,

and, for the steady state case, the corresponding boundary value problem:

1
(v-grad)v —vAu+ —gradp=f in Q,
p
divv=0 in Q,
=wvp onI'p,
cn=ty only.
Dimensional analysis:

Starting from reference values L*, t*, U* and p* for the length, the time, the velocity and
the pressure new variables are introduced by

T; t V; D
? L* 7 t* > U+ » P p*

By transformation of variables one obtains:

pU* Ov} n
tx ot L

N

* N *k *

p(U*)? S Qi _ pop | wU

=yl L*ox,  (L*)
j:l J ?

or, after multiplication by L*/(p(U*)?)
N *

Lx 0v) , Ol p*  op 1
U+ ot/ 1Y =

= Av' !
/U] QZ, IO(U*)Q ax; pL*U* /07' + f

j=1
with f/ = L*/(U*)? - f. With the setting t* = L*/U*, p* = p(U*)? and

_pLrUT LU

Re ,
i v




16 CHAPTER 1. MODELS

the so-called Reynolds number, one obtains

ov; N ov; dp 1
> +Zvjx—j =~ " e Av; + f. (1.13)

Jj=1

For Re <« 1 the viscosity of the flow dominates, for Re > 1 the flow is dominantly
convective. For Re — oo one formally obtains the so-called Euler equations:

ov

e + (v - grad)v + gradp = f.

If the transformed equations are multiplied by (L*)?/(uU*), one obtains

(L"‘)2 v} N pL*U* ZU/ ov;  pL*op’

: = 1-Av;
ut* ot ] T CuU* Oz ’+ +f

=1
with f' = p(L*)2f/(pU*). With the setting t* = (p(U*)?)/u, p* = (uU*)/L* it follows that

N

ov; ov; op
L = A 1.14
Y —l—Re;vj . axz—i— v + f. (1.14)

In this formulation one obtains for Re = 0 the so-called Stokes equations:

6t — Av +gradp = f. (1.15)



Chapter 2

Variational Problems

For simplicity we consider only linear boundary value problems:

2.1 Pure Displacement Problem in Linear(ized) Elas-
ticity

Let v = (vy, v, v3)T be a trial function from some suitable space V with v = 0 on I'p. The
equilibrium conditions are multiplied component-wise by this trial function, are integrated

over §) and are added. Then:

—/Qdiva(u)-vd:r:/ﬂf-vd:v.

From the product rule we obtain:
(divo(u)?) - v = div(ov) — o : grad v’

the symmetry of ¢ implies:
o gradv’ =0 :e(v),

where the following notations are used:
3 3
f’U: E fﬂ)i, g.¢&= E O-ijgij-
i=1 ij=1

Hence

/Qa(u):s(v) d:v—/gdiv(av) da::/Qf-v dz.

From Gaufy’ theorem we obtain

/ div(ov) dx = /UU -n ds.
0 r

17
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From the symmetry of ¢ and the boundary conditions for u and v it follows:

/av-nds:/an-vds:/ an-vds:/ ty - v ds.
r r INY Iy

Therefore, we obtain the following variational problem:
FindueV,={veV:v=uponlp} such that
a(u,v) = (F,v) (2.1)

forallv e Vo ={veV:v=0onTp} with
a(u,v) = / o(u):e(v) de = / Ce(u) : e(v) dx
Q Q
and

<F,U>—/f~vdx+/ tn - v ds.
Q Tn

If o0 and ¢ are interpreted as 9-dimensional vectors
_ T
o = (011,022,033,012,021,023,032,0317013) )

T
g = (511a522,6337612752175237532)5317513)7

then C' becomes a 9-by-9 matrix and it follows:
a(u,v) = / o(u)-e(v) doe = / Ce(u)-e(v) de.
Q Q

In the following it is assumed that C' is symmetric and positive definite. Then it follows
that the bilinear form a is symmetric

a(u,v) = a(v,u) foralu, veV

and non-negative
a(v,v) >0 foralvelV.

For the special case of St.Venant-Kirchhoff materials we have:

a(u,v) = /Q [/\ ng(u) ngk(v) + 2 Z gij(w)e;j(v)| do

ij=1

= /Q[)\ divudive 4+ 2ue(u): e(v)] du.
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This corresponds to the setting

A2 A A

A A+ 2u A

A A A+ 2u

2p
C = 24
24
24
24

C has exactly 2 different eigenvalues:
Amin(C) =24, Apax(C) =3 X+ 2 p.

So, in this case, C' is symmetric and positive definite.
From the symmetry and the positivity of the bilinear form a it easily follows that the
variational problem (2.1) is equivalent to the following optimization problem:

Find v € V such that
J(u) = inf J(v)

veVy
with .
J(v) = Qa(v,v) — (F,v).

A natural choice for the space V is the Sobolev space H' (2, R?). Observe that H'(€, R?)
is a Hilbert space. ||v||; denotes the norm in H'(2,R?), |v|; the semi-norm, built from the
first derivatives, and ||v||o the L%norm .

Furthermore, we assume that there is a function g € V such that g = up on I'p. Then
the problem can be homogenized. Therefore, in the following, we consider, without loss of
generality, only the homogeneous problem V; = Vy = Hj 5(Q,R?) with

H&,D(Q,Rg) ={ve H'(Q,R* :v=0o0nTp}.

The theorem of Lax-Milgram guarantees the existence and uniqueness of a solution
to (2.1):

Theorem 2.1 (Lax-Milgram). Let Vi be a real Hilbert space and assume that
1. FeVy.
2. a: Vo x Vo — R is a bilinear form, which is
(a) bounded on Vy, i.e.: there is a constant py > 0 with
la(u,v)| < po||lullv [|V]lve,  for all u,v € Vg,

and
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(b) coercive on Vy, i.e.: there is a constant py > 0 with
la(v,v)| = p |[vlly,  for allv € Vi,
Then the variational problem: find u € Vy such that
a(u,v) = (F,v) for all v € Vj,

has a unique solution and we have
1
Jullv, < EHFHVO*-

For
feL*(QR% and tye€ L*(T'y,R?)

the standard assumptions can be verified:

1. F'is linear: trivial. From the Cauchy inequality it follows:

[(E o) < [ fllo.e lvllo + llExllory lollory-

From
[v]oe < [lv[le and  |lvllory < c(l'y) (o]l

the boundedness of F' follows.
2. a is bilinear: trivial.

(a) a is bounded:

/ |Ce(u v)| dx

< Amax(C)/Hfi(v)l\ez le()le, d

Aauas| (/ le(u)IlZ, dx> v (/ﬂ )2, dx) 1/2.
: <32+32>r§%[<32>2+ 5]
Z/sw 2 dp < - Z/ [(22) (g?ﬂ .

1]1 z]l

hence

/Q le(w)|2, da

This implies:

=5 (!vﬁ +off) = [oli < vl

|a(u, V)] < Amax(C) [ul1 [0]1 < Amax (C) [|ull1 [|v]]1-
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(b) a is coercive:

a(v,v) = /QCS("U) ce(v) dx > Apin(C) / e(v): e(v) dz.

Q

Next we need Korn’s inequality:

For the case I'p = I' (first boundary value problem) the proof of Korn’s inequality is
simple. Here we have
Vo = Hy (9, R?).

Lemma 2.1 (First Korn Inequality). Let Q C R® be open. Then
1
/Qs(v): e(v) de > = 5 [v]f  for allv € Vo = H(Q,R?).

Proof. The set C5°(Q) is dense in HJ(f2). Therefore, it suffices to show the inequality for

all v € Cg° (9, R?):
1 ov; 8% 81}1
2/% v) €5 (v T a2 / Q% ) ;;/% oz, °

2,7=1
ov; Ov; Ov;
/ <8x]) Z/ Oz Ox; du
ov; Ov
_ oLt L i OUj
_ﬂmw;/%%m

Using integration by parts twice it follows:

3 3
dv; v, ov; 81)] oy
Z /Q Oz O, dx Z / Bz, Oz, dr = /Q(dlvv) dz >0
ij=1 J i,j=1 J

This completes the proof. O

|| M“ I M“

1
2

This easily implies the coercivity of the first boundary value problem:

o0r0)2 h(©) [ 0 00 o> 225> el

where cp denotes the constant from Friedrichs’ inequality:

Ivll3,

[vllo < cr |vls,
from which it immediately follows that:
lllf < (1 + c)loli

For proving the coercivity of the second boundary value problem (I'y = I') and the
mixed boundary value problem (I'p # () and T'y # () the second Korn inequality is needed:
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Lemma 2.2 (Second Korn Inequality). Let Q C R? be open and bounded with a Lipschitz-
continuous boundary. Then there is a constant cx = cx(Q2) > 0 such that

/6(1}): e(v) dx + ||v||3 > & |lv||?  for all v € H*(Q,RY).
Q

The proof of the second Korn inequality is similar to the proof of the so-called inf-sup
condition of the divergence operator, discussed later. For d = 2 the statements are even
equivalent.

A proof of the second Korn inequality can be found, e.g., in [4], [10].

In order to conclude coercivity from the second Korn inequality, we first need the kernel
of e(v):

Lemma 2.3. Let Q C R3 be open and connected. Then:
e(v)=0<=v(r)=axz+b

with some constant vectors a,b € R3.

Proof. Assume &(v) = 0. Then we have (in H~(Q)):

62 v —ig(v)+i€ <U)—i ..
O0x;0x; b ox; ik 0z, i oxy,

Therefore, v is a linear function:

v(x) = Az + b,

where A is a real 3-by-3 matrix. Hence

1
e(v) =3 (A+A7)
and
0 —as a9
) =0c=A=-AT = A= a3 0 —a
— Q9 aq 0
Since
Ar=a x x

with a = (a1, as, az)”, the proof is completed. The reverse direction is trivial. O

Now the coercivity can be shown for the mixed and the second boundary value problem:

Corollary 2.1. Let Q C R3 be a open, bounded and connected domain with Lipschitz-
continuous boundary I' = 0. Then:
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1. If T'p C I with measy(I'p) # 0, then there ezists a constant cx = cx(2) > 0 such
that

/5(1)): e(v) dx > cz( |U|%
Q
for all Vo = Hj (9, R?).

2. If T'p =, then there exists a constant cx = cx(Q) > 0 with
/E(U)Z e(v) dv > ¢ v)?
Q

forall Vo= H(Q) ={veV =H(QR?] Jqv dz =0, [,curlv dz=0}.

Proof. Assume that the inequality does not hold. Then there is a sequence (v,,) in V; with

/€(Un)2 e(vy) dr — 0 and |u,|; =1
Q

From Friedrichs’ inequality or Poincaré’s inequality it follows that there is a constant ¢ > 0
with

|lvnllh < clvp|y = ¢ forallm € N.

Hence (v,,) is a bounded sequence in H'(Q, R?).

The embedding H'(Q,R3) — L?(Q,R?) is compact. Therefore, there exists a sub-
sequence (v,,) which converges in L?(Q, R?).

The second Korn inequality implies

& llow — o2 < / (W — ) (O — Vn) AT+ s — vt 2
< 2/ e(vn): e(vp) dx + 2/ (V) 1 €(Vp) dx + ||op — vm/||(2) — 0
Q Q

for n’,m' — oo.
So (v,r) converges in H'(Q,R?) towards some element vy. Then, however:

e(vg) = nliinoog(vn/) =0

and, therefore, vy = 0 because of definition of Vj and Lemma 2.3 in contradiction to

’UO’I = llm |Un/|1 = 1.
n —oo

In summary, we have
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Corollary 2.2. Under the assumptions of Lemma 2.1 and Corollary 2.1 the bilinear form
a 1s coercive on Vy with
a(v,v) > |vf}

where
MH1 = )\m'm<C) C%(.
So all assumptions of the theorem of Lax-Milgram are satisfied and we have:

Theorem 2.2. Under the appropriate assumptions the formulated boundary value problems
in linear(ized) elasticity are well-posed.

Remark: In the case of pure Neumann boundary conditions the so-called compatibility

conditions
/fda:—i—/tNds:O and /xxfdx—l—/xxtNds:O,
Q r Q r

are necessary and sufficient that a solution of the variational problem in Vj is also a solution
of the variational problem in V' = H'(Q, R?). The solution in V is unique up to an arbitrary
element from the kernel of £(v).

For estimating the discretization error or the condition number of the stiffness matrix for
finite element methods the ratio uo /41 (the condition number of the problem) is of essential
importance. Using |v|; as the norm in Vj, which is equivalent to |[v||; by Friedrichs’ or
Poincaré’s inequality, we obtain the following estimate for this condition number

Amax(C) 1 1
M2 Amax(C) = = k(C)
M1 )‘min<0) Cx Cx
where £(C') = Aax(C)/Amin(C) denotes the condition number of C' .

For certain values of the data (2, I'p, I'y, C, f and g) the condition number p5/pq can
become very large, e.g.:

1. Almost incompressible materials: For v — 1/2 we have:

C3A+2p 1+vw

w(C) 2n 1-2v

— OQ.

This is called material locking.

2. Long cantilever (Kragbalken):

In this case the constant in Korn’s inequality is very large:

2
_1 |U|1 L L
Cxo = sup > 1—|—2(—> :O(— — 00
B ew lle)llo H H
for H < L. (Choose v(z,y,z) = (2zy, —x2,0)" € Vj.) This phenomenon is called
geometry locking.
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2.2 Mixed Variational Problems in Continuum Me-
chanics

2.2.1 Incompressible and Almost Incompressible Materials

We consider only the case of a St.Venant-Kirchhoff material. The (primal) variational
problem reads:

Find u € V, such that

/[)\ divudiveo 4+ 2 pe(u): e(v)] dx:/f'vdx—i-/ ty-vds
Q Q r

N

for all v € Vj,.

For A — oo, i.e.: v = A\/(2(A+ p)) — 1/2 the problem becomes very ill-conditioned.
The basic idea is to derive a so-called mixed variational formulation by introducing a new
variable

p=Adivu.

2u/€(u):£(v) dm+/pdivvdx:/f~vda:+/ tn v ds
0 0 0 e

for all v € V; and
1
/qdivudm——/pqu:()
Q AJa

for all ¢ € L*(2). So the following mixed variational problem results:

Then

Find u € V, and p € L*(Q2), such that

a(u,v) +b(v,p) = (F,v) forallv eV,
b(u,q) —t*c(p,q) = 0 for all ¢ € L*(Q)

with
a(u,v) =2u/€(U) re(v) dr, b(v,p) = /pdivv dr, c(p,q) Z/pq dx
Q Q Q

and
1

<F,v>:/f~vdx+/ ty-vds, tP==.
Q I'n )\

For the limit case ¢t = 0 the following variational problem is obtained:

Find u € V,, and p € L*(Q), such that

a(u,v) +b(v,p) = (F,v)  forallvel,
b(u, q) =0 for all ¢ € L*(Q)

for describing incompressible materials.
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2.2.2 The Stokes Problem in Fluid Mechanics

Consider the steady state Stokes problem in some domain €2
—vAu+gradp = f inQ,
divu = 0 in Q,

where, instead of the original notation v from now on the velocity is denoted by u and, for
simplicity we set p = 1.
Here we will consider only the boundary condition:

u=up, xel.

Let v be a trial function with v = 0 on I'. By multiplying the balance law of momentum
by v and integrating over {2 we obtain:

—V/Au~vdx—|—/gradp-vda:-/fwd:z:.
Q ) Q

By integration by parts it follows:

/Au-v dr = %-v ds—/gradu:gradv dx:—/gradu:gradv dx
Q a0 On Q Q

and

/gradp-vdx:/ pv~nds—/p divvdx:—/p divo dx.
Q o0 Q Q

Therefore, we obtain the following weak form of the balance law of momentum:

V/gradu:gradvdw—/p divvdx:/f-vdx.
Q Q Q

The weak form of the law of continuity is obtained by multiplying with an arbitrary trial
function ¢ € L*(Q) and integrating over Q:

/q divu dx = 0.
Q

In summary the weak or variational form of the Stokes equation reads:

Find u € V, and p € L*(Q2), such that
a(u,v) + b(v,p) = (F,v) for all v € Vj,
b(u, q) 0 for all ¢ € L*(Q)

with
a(u,v) :V/gradu:gradv dr, bv,q) = —/q divo dx,
Q Q
<F,v>:F(v):/f-vdm
Q

and the spaces

V=H'(QRY, Vo=Hy(QLR?, V,={veV:v=uponl}h
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2.2.3 The Hellinger-Reissner Formulation for Linear Elasticity

Starting point is the following classical formulation : Find the displacement u and the
stress o, such that:

Clo—eu) =0 inQ,

dive = —f in(,
u = up onl'p,
on = ty onIy.

Let 7 be a mapping from €2 to S = Rg’yxn?;, the space of symmetric 3-by-3 matrices. By

multiplying the first equation component-wise by the trial function 7, integrating over (2

and adding, we obtain:
/C’la:Td:c—/T:es(u) dx = 0.
Q Q

Let v be a trial function mapping from €2 to R? with v = 0 on I'p. By multiplying the
second equation component-wise by v, integrating over ), and adding, we obtain (after
integration by parts):

_/Qg;g(p)dx:—/ﬂf-vdx—/r tn - ds.

Therefore, the following mixed variational problem results:

Find o € L*(Q,S) and u € V,, € H'(Q2,R?) (see the primal variational problem) such that

a(o,7) +b(t,u) = 0 for all 7 € L*(2,S),
b(o,v) = (G,v) forallvel
with
a(o,7) = / Clo:7dx, b(r,u)=— / 7:e(u) dr
Q Q
and

<G,v>:-/Qf-vd;c—/F Iy v da.

The norm ||.|| 2 (or, in short |.[|¢) in the space L*(€2,S) is given by

3
HTH%?(Q,S) = Z HTng

1,j=1

Another variational formulation is obtained by using integration by parts for the second
term in the first equation:

/TZ€(U) da::/T:graduda::/Tn-uds—/diVT-uda:
Q Q r Q
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Then we obtain for trial functions 7 mapping from €2 to S with 7n =0 on I'y:

/0_1017d$+/diVT'udJ}=/ T™n-up ds.
Q Q I'p

Without using integration by parts the second equation reads for arbitrary trial functions

v mapping  to R3:
/divo-vdx:—/f-vdx.
Q Q

Then the following mixed variational problem results:

Find o € V, and u € Q = L*(2,R?), such that

a(o,7) +b(r,u) = (F,7) forall T € Vj,
b(o,v) = (G,v) forallve

with
a(UaT):/O_IO'ZTdI, b(T,u):/diVT~udx
Q Q

and

<F,T):/ Tn-up ds, (G,U):—/f-vdx
To Q
and the spaces
V = H(div,Q,S) = {r = (1;;) € L*(Q,S) : divr € L*(Q,R*)},
Vo = Hyn(div,Q2,S), Vy={r€V :"tn=gonI'y"}.
with

Hon(div,Q,S) = {reV :7tn=0onTy"}
= {reV :(rn,v)=0forallve Hj,Q R}

The norm ||.|| g(aiv,0,5) in the space V' is given by
171 aiv.25) = 17116 + 1| div 7[5,

It can be shown that V' is a Hilbert space and the trace 7n is well-defined in V.
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Remark:

1. Observe that for the second variant of the Hellinger-Reissner formulation the bound-
ary condition
u=up onlp

is a natural boundary condition, while
cn=ty only

is an essential boundary condition. For the original primal variational formulation
and the first form of the mixed variational formulation the situation is the opposite.

2. In applications it is often more important to obtain accurate information on stresses
than on the displacement. The second variant of the Hellinger-Reissner formulation
helps in this direction.

3. For the case of pure Dirichlet boundary conditions (I'y = (}) one chooses the space
Vo = {7 € H(div,,S) | /traceT dr =0}
Q

for the second variant of the Hellinger-Reissner formulation to ensure uniqueness of
the solution.

2.3 The Theorems of Brezzi and Babuska-Aziz

All mixed variational problems considered so far have the following form (after homoge-
nization):

Find v € V and p € ) such that

a(u,v) +b(v,p) = (F,v)y forallvelV,

b(u,q) — t*c(p,q) = (G,q) forallgeqQ,
where V' and () are suitable Hilbert spaces, a : VxV — R, b : V x @ — R and
c: @ x Q — R are bounded bilinear forms, F: V — R and G : () — R are bounded

linear functionals, and ¢ is a real parameter with ¢ > 0.
In the special case t = 0 we obtain the problem

Find uw € V and p € @) such that

a(u,v) +b(v,p) = (F,v) forallveV,
b(u, q) = (G,q) forall ¢ € Q.
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Remark: Let V* and QQ* be the dual spaces of V and (). The operators A : V — V*,
B:V—Q"B":QQ — V* and C: Q — @Q* are defined by

(Au,v) = a(u,v), (Bv,q) =b(v,q), (B*q,v)=0b(v,q), (Cp,q) = c(p,q).

The operator B* is called the adjoint (operator) of B.
Then we obtain the following representation of the mixed variational problem as oper-
ator equations:

Au+ B'v = F,
Bu—t*Cp = G.

Remark: The mixed variational problem can also be formulated as a non-mixed varia-
tional problem on V' x Q:

Find (u,p) € V x @, such that
B((u,p), (v,q)) = (F,v) + (G, q) forall (v,q) €V xQ

with
B((u,p), (v.q)) = a(u,v) + b(v, p) + b(u, q) — t* ¢(p, q).

Observe that B cannot be coercive for non-negative bilinear forms c:

B((0,q), (0,9)) = —t* c(q,9) < 0.

Therefore, the theorem of Lax-Milgram is not applicable.

Remark: If, in addition, a and ¢ are symmetric and non-negative bilinear forms, then the
mixed variational problem can be formulated as a saddle point problem:

Find (u,p) € V x @, such that
L(u,q) < L(u,p) < L(v,p)

with
2

£(0.0) = 3a(0,0) + b(v.0) ~ Sela.0) — (Fr) — (Gra).

Remark: If C is invertible, then one obtains the following equivalent unconstrained opti-
mization problem for ¢ > 0:

Find u € V, such that
Ji(u) = inf Ji(v)

veV
with

Ji(v) = %a(v, v) — (F,v) + 2%2<Bv — G, 07 YBv - Q)).
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This can be interpreted as a penalty method for solving the constrained optimization
problem:

Find u € V, such that
J(u) = inf J(v)

veVy
with )
J(”) - 5“(7}7”) - <F7 U>

and
Vo ={veV|bv,q) =(G,q) for all ¢ € Q}.

The next theorem is of central importance:

Theorem 2.3 (Closed Range Theorem). Let X and Y be real Hilbert spaces, A: X —
Y™ be a linear continuous operator and A*: Y — X* be the adjoint operator, given by
(A*y,x) = (Az,y). Then the following statements are equivalent:

1. Im A is closed;

2. Im A* is closed;

3. Im A = (Ker A*)°;

4. Im A* = (Ker A)°.

The following notations were used: W° C Z* denotes the polar of the sub-space W C Z:
We={leZ|(l,w) =0 for all w e W}.

An immediate consequence of this theorem is:

Corollary 2.3. Let X and Y be real Hilbert spaces, A: X — Y™ be a linear and contin-
uous operator, a: X x Y — R be the corresponding bilinear form, and A*: Y — X* be
the adjoint operator, given by (A*y,x) = a(x,y) = (Ax,y). Then the following statements
are equivalent:

1. There is a constant py > 0 with

a(z,y)

inf sup ————"— > >0. (2:2)
0#z€EX 0tycy ||5L‘||X ||y||Y

2. A: X — (Ker A*)° is an isomorphism, and there is a constant py > 0 with

| Az]

vy > ||zl|x  for all x € X. (2.3)
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3. A*: (Ker A*)t — X* is an isomorphism, and there is a constant yy > 0 with

Ayl x+ > llylly  for ally € (Ker A7), (2.4)
3.7 There is a constant p; > 0 such that, for each x* € X*, there exists a y € Y with

* * 1 *
Ay=2" and |lylly < — [lz"]x-.
M1

3.7 A*: Y — X* is surjective.

Proof.

(1) = (2): From (2.2) = (2.3) it follows that A is injective and that Im A is closed:

Let (Ax,)nen be a convergent sequence in Im A, i.e. Az, — y*, then it follows because
of (2.2) = (2.3), that the sequence (x,,),en also converges in Y: z, — z and Az, — Ax
since A is continuous. Hence y* = Az € Im A.

Then it follows from the Closed Range Theorem that Im A = (Ker 4*)°. So, A: x —
(Ker A*)° is bijective and continuous. The inverse mapping is continuous because of (2.2)
= (2.3).

(2) = (1): trivial

(2) <= (3): The equivalence of the isomorphism of A and A* directly follows from the
Closed Range Theorem. It remains to show the equivalence of the inequalities:

Assume (2.3) and let y € (Ker A*)t. Then (y,.)y € (Ker.A*)°. Therefore, a z € X
exists with Ax = (y,.)y because of (2) and it follows:

a(z,y)  lwly Iy, )x|llx- | Az ||y~
X+ > == = lylly = lylly > [lylly-
||5L“||X ||37||X ||$||X ||$||X

A"y

Assume (2.4) and let x € X, then (z,.)x € X*. Therefore, a y € (Ker A*)* exists with
A*y = (x,.)x and it follows:

A"y x-
1ylly

Sy ek _ G )x]
Y*

oyl vy lylly

X*

| Az]

lx = lzllx = g [ ]lx-

(3) = (3'): For y choose the unique solution of A*y = z* in (Ker A*)*.

(3') = (3): (3’) implies that A* is surjective. It remains to show that (2.4) is satisfied:
Let y € (Ker A*)* and set z* = A*y. From (3) it follows that there exists a § € Y with
A*y = z* and

I3l < = " llx- = - [ AglLx-
H1 H1
Since § — y € Ker A* and y € (Ker A*)*, we have ||y|ly < ||7]lv.
(3) = (3"): trivial
(3") = (3): By the Open Mapping Theorem it follows that the inverse of a bijective
mapping is continuous, which implies the existence of p;. ]
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Now the theorem of Babuska and Aziz can be easily shown:

Theorem 2.4 (Babuska and Aziz). Let X and Y be real Hilbert spaces, A: X — Y™ be
a linear and continuous operator with corresponding bilinear form a: X XY — R, given

by a(z,y) = (Ax,y). Then A is an isomorphism if and only if the following conditions are
satisfied:

1. There exists a constant ps > 0 with
a(z,y)| < p2 llzllx lylly  forallz € X, y €Y,

1.e.:
| Az|

v < pellzl|x  forall z € X.

2. There exists a constant py > 0 with

a(z,y)

inf  sup ——=— >
otnex ooy Tellxlivly = ™

1.€6.:
| Az|

vy« > 1 ||zl|x  forallz € X.

3. For each y € Y with y # 0 there exists a x € X with

a(z,y) # 0,
.e.:
Ker A* = {0}.
Proof. The statement immediately follows from Corollary 2.3. O

Remark: From the theorem of Babuska-Aziz the theorem of Lax and Milgram follows:
Let X =Y =V, then the coercivity of a implies the second condition:

a(u,v) _ a(u,u)

sup >
vev [vllv [ullv

The third condition also follows from the coercivity: For v # 0 choose u = v. Then:
a(u,v) = a(v,v) = w [|v]|y, > 0.

For mixed variational problems existence and uniqueness of a solution follow from the
theorem of Brezzi:

Theorem 2.5 (Brezzi). Let V and Q be real Hilbert spaces, F € V*, G € Q*, a: VXV —
R andb: Vx@Q — R be bilinear forms. Assume that there exist constants oy, ag, 8y, B2 > 0
with
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1. la(u,v)| < as|lu|lv||v|lv for all u,v € V,

2. 1b(v, @)l < Be|lvllvlgliq for allv eV, g€ @,
3. a(v,v) > aq||v||? for allve W =KerB={v eV :bv,q) =0 for all ¢ € Q},

b(v, q)

. inf  sup ———— > () > 0.
0£4€Q ozvev |[V|lv |lgllQ

Then the variational problem
Findu eV and p € Q, such that

a(u,v) +b(v,p) = (F,v)  foralveV
b(u, q) = (G,q) forallqe@

has a unique solution and we have:

1 1 CYQ)
U < —||F||lyvs+ =114+ —) ||G|lo
lule < 1P+ 5 (1+22) el
1 (6%) (6] Qg
plo < _(1+_) F *+_<1+_) Cle
12l 3, o ) 1l 7 o, ) 1Glle

Proof. Condition (4) corresponds to the condition (1) in Corollary 2.3 for
X=0Q, Y=V, A=B"
Because of Corollary 2.3 (3) there is a unique ug € W+ with
Buy =G

and we have

1
luollv < -G lle-
Let w € W be the unique solution of the variational problem
a(w,v) = (F,v) — a(ug,v), forallve W.

From the theorem of Lax-Milgram it follows
1
lwlly < 2= (Fllv- + azlfuollv)

Finally, from Corollary 2.3 (2) it follows that there exists a unique solution p € @ of the

equation
B'p=F — Au

with v = w + wyg, since

(F—Au,w)y =0 forallweW, so F—AuecW°,
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and we obtain

1
Ipllo < E (|F v+ + aal|ullv) -

Then v € V and p € @ solve the mixed variational problem and the following estimates
hold:

1
lellv = uollv + llwllv < fluollv + 2= ([Fllv- + azlluollv)

1 1 CYQ)
< |Fllv-+ 5 (1+22) 160
S1Fly-+ 5 (14 2) 16l
and
1
ple < 5 (1Flv- + aslully)
A
1 (6%} Oéz( a2>
< —(14+—=||Fllv:+—= 1+ — ) ||G|lo*-
(1 2) 1 + 53 (14 2) I6le

[

Remark: If, in addition, a is a symmetric bilinear form, then it can be shown that the
variational problem

Find u € V, such that

a(u,v) +b(v,p) = (F,v) forallveV
b(u, q) = (G,q) forallqe@

is equivalent to the optimization problem:

Find v € V, such that
J(u) = inf J(v)

veVy
with X
‘](U) = 5@(1),’0) B <F7 U>

and
Vy,={veV|b,q) =(G,q) for all ¢ € Q}.
2.3.1 Incompressible and Almost Incompressible Materials

First we consider the variational problem for incompressible materials. For simplicity only
the homogenous case up = 0 is discussed:

Find v € V and p € L*(Q), such that

a(u,v) +b(v,p) = (F,v) forallveV,
b(u,q) = 0 for all ¢ € L*(Q),



36 CHAPTER 2. VARIATIONAL PROBLEMS

with
a(u,v) =2u /5(u) ce(v) dx, blv,q) = / q divv dx
Q Q
and
(F,v) :/f-vdx+/ ty - v ds.
Q Ty
and

V= I}T&D(Q, R3)  for non-trivial T'p
H(Q) forI'y =T

First we consider only the case of pure Dirichlet boundary conditions (I'p = T'):
It is obvious that p is not uniquely determined: Since

b(v,l):/divvd$:/v-nd3:0
0 r

(u,p + ¢) is also a solution for each constant ¢ € R, if (u,p) is a solution. In order to
guarantee uniqueness, an additional scaling condition is introduced:

/pd:c:().
Q

Find u € V = H}(Q,R?) and p € Q = L%(Q), such that

this leads to the variational problem:

a(u,v) +b(v,p) = (F,v) foralvelV,
b(u, q) =0 for all ¢ € Q

with
Ly(Q) = {q € L*(Q) : /Qq dx = 0}.

The two variational problems are equivalent in the following sense: Each solution of
this variational problem is also a solution of the original variational problem, and each
solution (u,p) of the original variational problem induces a solution (u,p") with

, 1
p(x) =px) - @/ﬂp(’y) dy.

From the first Korn inequality it follows that a is coercive on V' and, therefore, also
coercive on Ker B C V.

It remains to prove the inf-sup condition.

Let p € L*(Q2). The gradient of p can be introduced as the linear functional
gradp: H}(Q,R?) — R, given by

(grad p,v) = —(p,divv)g = — / pdivo dx.
Q
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It is easy to see that gradp € [HL(Q,RY)]* = H-Y(Q,R?). If p is interpreted as linear
functional (p,.)o, then p € [H}(Q)]* = H~(Q). The norms of p in H*(Q) and grad p in
H=Y(Q) and H~*(Q,RY) are given by

d —(p, di
= sup P2 adpll = sup  gAdpv) (p, divv)o
Il p gradp D D

0£geHL(Q) lqll: 0#veHE (Q,R3) [v]l1 veHE(Q,R3) V][4
Then we have the following important inequality:

Lemma 2.4 (Necas). Let Q C R? be a bounded and open set with Lipschitz-continuous
boundary. Then there exists a constant cy > 0, such that

Ipllo < en (llpll-1 + [l grad pll-1)  for all p € L*(92). (2.5)
Proof. See [9], under stronger assumptions also [4]. O
Then it follows:

Theorem 2.6. Let Q C R? be a bounded, connected and open subset with Lipschitz-
continuous boundary. Then there exists a constant ¢ > 0, such that

Ipllo < cllgradp||_-1  for allp € LS(Q). (2.6)

Proof. The embedding i: H}(Q2) — L?(Q) is compact. Therefore, the (adjoint) embed-
ding i*: L*(Q) — H~1() is also compact.

Assume the inequality (2.6) is not valid. There there exists a sequence (py.) in L3(Q)
with ||pxllo = 1 and ||grad pg|]|-1 — 0. Because of the compact embedding of L?(f2) in
H~'(Q) there exists a convergent sub-sequence (p},) in H~1(2). From (2.5) it follows that
(p},) is a Cauchy-sequence in L?(2) and, therefore, pj, — p in L*(Q) with p € L3(Q).

We have: grad p = limy_.., grad p}, = 0. Hence, p is constant, since p € LZ(Q) it follows
p =0, in contradiction to ||p|lo = ||pk|lo = 1. O

Therefore, the inf-sup condition holds:

(p,divo)g —(p,divo)g
sup ———— = sup ———

> Lipllo for all p € Z2(9).
ey (vl verprsy vl c
Remark: If Corollary 2.3 is applied to the case
X=Q=L}Q), Y=V=H(QR"), A=B"=—grad: L}(Q) — H '(Q,R?
then the adjoint operator is the divergence:

A* = B =div: Hy(Q,R?) — L3(Q).

Condition (3”), which is equivalent to the inf-sup condition, then reads: div: Hj(Q,R?) —
L3(R2) is surjective, i.e.: for each ¢ € L3(Q) there is a v € H}(Q, R?) with dive = q.
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The inf-sup condition can be shown in a similar way

1. for the spaces V = Hj p(Q2,R?) and Q = L*(2) in the case of non-trivial sets I'p and
FN and

2. for the spaces V = H(Q) and Q = L?(Q) in the case of pure Neumann boundary
conditions (I'y =T').

Summary:

The inf-sup condition is equivalent to the surjectivity of the operator B = div. Surjectivity
of div is guaranteed for the following settings:

1. div : HJ(Q,R?*) — L2(). This covers the case I'p = I' (pure Dirichlet boundary
conditions);

2. div : Hjp(Q,R?) — L*(Q) if both I'p and I'y are non-trivial (mixed boundary
conditions);

3. div : H(Q) — L2(Q). This covers the case Iy = I' (pure Neumann boundary
conditions).

The mixed variational problem for almost incompressible materials is equivalent to the
pure displacement problem. Therefore, existence and uniqueness follow from the theorem
of Lax-Milgram. However, for the condition number one obtains

1
(&
H1 Ck

Y

which approaches to infinity for v — 1/2. The question now is whether v-independent
estimates are possible.

By the theorem of Brezzi the operator IC; : V x Q — (V x Q)*, given by

<Ict(u7p)7 (U, Q)> = Bt<<u>p)7 (U, Q)) = a(uv U) + b(l},p) + b(u, q) - t2c<p, Q>7

is an isomorphism for ¢ = 0. Under the assumption that ¢: @ x ) — R is bounded, i.e.:
there is a constant 5 such that

le(p; @)l < 2 lipllellalle  forall A pe @,

it immediately follows that IC; as a small perturbation of the isomorphism /C, remains an
isomorphism for sufficiently small parameters t.

Under slightly stronger conditions one can show the following slightly stronger result
as an extension of the theorem of Brezzi:
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Theorem 2.7. Let V, Q) be real Hilbert spaces, F € V*, G € Q*, a: V xV — R,
b:VxQ—Randc: Q xQ — R be bilinear forms. Assume that there exist constants

aq, ag, B, B2, v2 > 0 with
1. |a(u,v)| < asllu|lv||v|lv for all u,v €V,
2. [b(v,9)| < Ballvllvllglle for allv eV, ¢ €@,
3. (a) a(v,v) >0 for allveV,
(b) a(v,v) > aq|jv||} for allv € W = Ker B,
b(v, q)

. inf  sup ———— > () > 0.
0#49€Q 0£veV [v]lv HQHQ

5. (a) c(q,q) >0 for allq € Q.
(b) c(p,q) = c(g,p) for allp.q € Q.
(¢c) le(p,a)|l <2 lpllellallq for allp,q € Q.

Then the linear operator IC;: V' x Q@ — (V x Q)*, given by

<Kt(uap)7 (U7 q)) = Bt((“aP)? (Uv Q))7

with the bilinear form

Bi((u,p), (v.q)) = a(u,v) + b(v, p) + b(u, q) — t*c(p, q)
s an isomorphism and we have

_ 1
1Cel| < vy ICTHI < —
151

uniformly for all t € [0, 1].
Proof. The upper bound easily follows from the boundedness of the bilinear forms:

sup CL(U, U) + b(’U,p) + b(ua Q) —t? C(p7 Q>

< vy || (u, ) || x50
(v,9)EVXQ ||(U7Q)||V><Q )

with
vy = (a3 + 205 +13)"*.
For t = 0 it follows from the theorem of Brezzi, that there exists a constant p; > 0
such that

a U,'U) +b(’l),p +b U,q
Sup : ALCEH) > i |(u, p)llvxq
(v,9)EVXQ ||(U7Q)||V><Q

with

10, D<o = l0IV + llalle-
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Now we have:
1/2 1/2

2lelpq)| < tlepg)| < [elp,p) e(q.0)]"* <2 [Eew )] llalo

1/2

v [Eep,p)]” |

IN

(v, @)[|lvxo-
Hence one obtains:
sup A t) (v p) +b(u,q) — t2e(p, q)
(0.0)EVXQ (v, 9)[lvxe
On the other side it follows (set (v, q) = (u, —p)):
sup A 0) +0(v,p) +b(u,q) — t2c(p, q)
(0,9)EVXQ (v, @)lvxq
a(u,u) + b(u,p) + b(u, —p) — t2c(p, —p) _ a(u,u) + t*c(p, p) - t2c(p, p)
1(u, =p)|lvxe [(w,p)llvxe  — [l(u,p)llvxe

So, in summary, we have:

a(u,v) +b(v, p) 4+ b(u, q) — t*c(p, p)

1/2
> [(w,p)lvso — 12 [P e(pp)] .

sup
(0.0)EV XQ (v, @)llvxq
2 12 t2c(p, p)
2> max | fi ||(Uap)||XxQ — 72 [t c(p,p)] ,m .
) X
Since , "
s (a2 ) =
min max ( 1 & — Yy, — | = —
y=>0 T x
with
9
T —"YY=—,
x
l.e.:

it follows that

2
2 2
maX(ulx—vzy7y;>2<—%+ 7742+u1> T

“up a(u,v) +b(v,p) + b(u, p) — t*c(p, 1)
(v,u)EVXQ ||(U7 H’)HVXQ

This implies:

> 1 ||(u, p)llvxq-

with

2 2
2
gp) gb 211
n=|-—+\/2+m| = :
( 2 4 ) (72+\/7§+4u1>

From the symmetry of B;((u,p), (v, 1)) the third condition of the theorem of Babuska-
Aziz is satisfied. O]
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2.3.2 The Stokes Problem in Fluid Mechanics

The analysis is completely analogous to the case of incompressible materials.

2.3.3 The Hellinger-Reissner Formulation

The first variational formulation for the case of a non-trivial boundary part I'p with up = 0
has the following form:

Find 0 € V = L*(,S) and u € Q = Hj p(Q,R?), such that

a(o,7) +b(t,u) = 0 for all T €V,
b(o,v) = (G,v) forallveq@
with
a(o,7) = / Clo:7rdx, b(r,u)=— / 7:e(u) dr
Q 0
and

<G,v>:—/Qf-vala:—/F ty - v ds.

Obviously G is linear and bounded.
a and b are bilinear and we have:

1. a is bounded:

_ _ 1
la(o, 7)] = (C7"0, 7)ol < Amax(C™llollo [I7l0 = )||0||0\|T||o~

/\min(O
2. b is bounded:
(o, v)| = |(a,€(v))o] < lloflolle@)]lo < llallo ]

3. a is coercive on Ker B, since a is coercive even on V':

1
)\max(o)

I7115-

a(1,7) = (C7'7, 7)o > Auin(C™H)(7, 7)o =

4. b satisfies the inf-sup condition: Under the assumptions of Corollary 2.1 it follows:

ap M0 o (@) | (). 6)
T€L2(,S) 17 [lo T€L2(Q,S) 17 1lo () lo

>  — Jle(w)llo = e ol
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The second variational formulation for the case of a non-trivial boundary part I'y with
tny = 0 has the following form:

Find 0 € V = Hy y(div,Q,S) and v € Q = L*(Q, R?), such that
a(o,7) +b(r,u) = (F,7) foralteV,
b(o,v) = (G,v) forallve@
with
a(o,T) = / Clo:rdr, b(r,u)= / divr - u dx
0
and

Q
<F,T>:/F Tn-up ds, <G,v):—/ﬂf-vdx.

Obviously the functionals ' and G are linear and bounded.
a and b are bilinear and we have:

1. a is bounded:

i i N

3. a is coercive on Ker B:

Ker B = {7¢€ Hyn(div,Q,S)|(divr,v)e = 0 for all v € L*(Q,R?)}
= {7 € Hyn(div,,S)| divT = 0}.

Hence

1 1
a(t,T) >

- A—(O)”T”g = A—(C)HTIIE@V,M) for all 7 € Ker B.

4. b satisfies the inf-sup condition: One has to show that div: Hp y(div,,S) —
L*(Q,R3) is surjective: Let v € L*(Q, R?) be given. There exists a7 € Hy y(div, 2, S)
with div T = v. For this we choose the ansatz 7 = £(u) with

(e(u),e(w))o = —(v,w)y for all w € Hy (2, R?).

From the discussion of the primal variational formulation the existence of such a u
and, consequently, the existence of 7 is guaranteed and the following estimates hold:

Cr
le@)llg < llvllo fullo < cx [|vllo [uly < o [[ollo lle(w)llo,
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hence cp
I17llo = —l[vllo
K

and, therefore,

C2
IBaas < (14 £ ) 1ol
K

This finally implies

(divT,v)o CK
sup > ——|[vllo-
TeVh ||7'HH(div,Q,S) \VCp + Cx

For far the analysis was based on the coercivity in L*(€2,S)

a(t,7) >

1
= m ||7'||g for all 7 € LQ(Q,S)

for the bilinear form

a(o,T) = / Clo:7dv=(C"to,1).
Q

For St.Venant-Kirchhoff materials in the almost incompressible case it follows that
v — 1/2 and 1/Apax(C) — 0, while the norm of @ is bounded uniformly in v. This
implies that the estimate of the condition number of the problem approaches infinity in
this case.

By a refined analysis of the Hellinger-Reissner formulation one can actually show v-
independent estimates.

Actually, by the theorem of Brezzi the L?(, S)-coercivity is needed only on the sub-
space

Z = {7e€L*QS)|(r,e(v))o =0 for all v € Hj ,(Q,R?)}
= {7 € Hyn(div,,S)| divr = 0}

We have

Lemma 2.5. There exists a constant ¢ > 0 independent of v with
/ Clrirdr>cl|r|3 foralreZ
Q

Proof. We have:

B 1—-2v 1+4+v
oc = {152

A1 = (1—2v)/E is a simple eigenvalue of C~! with eigenvector oy = I and Ay = (1+v)/E
is an eigenvalue of C~! with multiplicity 8.
An arbitrary element 7 € Z can be written in the following way:

1 1
T=7+7p withn = 3 trace(t) I and 7p =7 — 3 trace(r) I.
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Since (7p, )o = 0, it follows that:
(C7'7,7)0 = Mi(71, 7)o + Xa(7D, TD)o-

From the inf-sup condition for div it follows that there exists an element v € H (2, R?)
such that
dive = trace(r) with |[|v||; < ¢ || trace(7)||o.

Then

1 1 1
(11,71)0 = g(trace(T),trace(T))o = g(div v, trace(T))o = g(s(v),trace(r) Do
= (e(v),m)o=(e(0), T —7p)o = (v,divT)g — (e(v), D)o = —(e(v), D)o,
This implies the following estimates:
I3 < lle@)llo lmnllo < lloll Imollo < e [l trace(r)llo I7nllo = V3ex lI7illo 7o llo,

hence
Im1llo < V3ei|Impllo

and, therefore,
17115 = I72llg + lI7pll5 < (1 + 3D ll5-

This implies:

2 s b
T
1432?10 = B +33)

(C7'7, 7)o > Na(7D, D)o > I7113.



Chapter 3

Finite Element Methods

3.1 FEM for the Primal Variational Problem

The pure displacement problem in elastostatics leads (after homogenization) to a (primal)
variational problem of the following form:

Find u € V, such that
a(u,v) = (F,v)y forallveV

with V' C H'(,R3).

We use Galerkin’s principle for discretization: An appropriate finite-dimensional sub-
space Vj, C V is chosen and an approximate solution u, € V}, is computed as the solution
of the (finite-dimensional) variational problem:

a(up,vy) = (F,vy) for all v, € V.

The standard assumptions of the theorem of Lax-Milgram for the continuous problem have
been shown, therefore, the standard assumptions of the theorem of Lax-Milgram are also
satisfied for the discrete problem. Hence there exists a unique solution of the discrete
problem and the solution depends continuously on the data.

Under the standard assumptions of the theorem of Lax-Milgram Cea’s lemma gives the
following estimate for the discretization error:

hu = wnlly < 52 int fju = wsllv.
M1 vhEVR
So the discretization error can be estimates by the approximation error. The spaces V}, are
to be chosen such that the functions in V' can be accurately approximated by functions in
V.. The finite element method is based on a subdivision of the domain  C R? in polyhedra
(e.g.: tetrahedra, hexahedra, ...). The functions in V}, are typically piecewise polynomial
functions with respect to this subdivision. In order to obtain conforming function spaces,
ie. V, CV C HY(Q,R?), the functions have to be continuous.
A few examples of C%-elements (continuous elements):

45
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1. The P;-element on a tetrahedral subdivision: For each component of the displacement
continuous and piecewise linear elements are used.

2. The Q;-element on a hexahedral subdivision: For each component of the displacement
on the unit cube (the reference element) trilinear elements (i.e. linear with respect
to each coordinate) are used. By a trilinear transformation from the unit cube to
an arbitrary hexahedron the so-called isoparametric trilinear element on hexahedral
subdivisions results.

3. Higher order elements on tetrahedral subdivisions ( Py-elements, continuous and piece-
wise polynomial of degree < k) or on hexahedral subdivisions (Qy-elements, piecewise
polynomial of degree < k in each coordinate of the unit cube, transformation to ar-
bitrary hexahedra).

Under appropriate assumptions the approximation error of Pj- and QJx-elements can be
estimated by:

ot Jlu—wnlly < B o

All these finite element functions are uniquely defined by their values at some nodes,
which allow the construction of a so-called nodal basis for Vj,: For each node z; a unique
basis function ; is defined by prescribing the value 1 at this node, and 0 in all other nodes.
Then each function u, € Vj, can be represented in the form

up(z) = Z uj p; ().

For the vector u;, of the coefficients a linear system of equations results from the discrete
variational problem:

The so-called stiffness matrix K} is symmetric and positive definite as a consequence of
the properties of the bilinear form a.

The condition number of the stiffness matrix K}, is a measure of the degree of difficulty
for solving the linear system. Typically we have

w(Ky) = P2 0(h2),
M1

where h denotes the mesh size of the subdivision (e.g.: the length of the longest edge of a
tetrahedral or hexahedral subdivision).

Efficient methods for solving the linear systems are multilevel or multigrid methods.
These methods can be accelerated by Krylov subspace methods (e.g. the CG method).

This short review shows the importance of the condition number 15 /117 of the variational
problem the discretization error as well as for the solution methods of the linear system.

In the case of almost incompressible materials the condition number ps/uy diverges to
oo. This leads to a large discretization error and to growing difficulties for solving the
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linear systems. The actually computed displacements u are too small, in general (locking).
A remedy of this problems is provided by FE methods which are based on the mixed
variational formulation.

3.2 Mixed Finite Element Methods

An approximate solution of the mixed variational problem

a(u,v) + b(v,p) = (F,v) forallveV
b(u, q) = (G,q) forallqge@

is obtained by chosen appropriate finite-dimensional subspaces
Vi CV, QnCQ.

By Galerkin’s principle the approximate solutions u, € Vj, and p, € Qy, solve the discrete
variational problem

a(up,vn) + b(vp, pr) = (F,vp) for all v, € V,,

P
b(“m%) = <G7Qh> for all g, € Q. ()

Let {p;} be a basis for V,, and {t¢} a basis for Q). Then these approximate solutions
can be represented in the following form:

un =) Uy 95 pn= ) Pk Uk
j k

From the discrete variational problem a linear system of equations is obtained:

(£ D)
By 0 by, 9y
with

A = (alpj,»i),
By = (b(wj, ¥x),
Up, = (uj)v b, = (pk)a ih: (<F790i>>> g9, = (<G7wk>>

The analysis of the discrete problem (F;) is done analogously to the problem (P).
We have the following generalization of Cea’s lemma:

Theorem 3.1. Assume the notations and assumptions of the theorem of Brezzi (2.5). Let

Vi, CV, Qn C Q be finite-dimensional subspaces. Assume that there exist constants ay, £y
with
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3" a(vp,vp) > aq||vall? for all v, € Wy, = Ker By, = {v, € Vi: b(vn,qn) = 0 for all
an € Qn},

b ~
47 inf sup M251>0.

0£an€Qn 020, eV, ||0nllv I anllQ

Then the problem (Py) has a unique solution (up,pn) € Vi, X Qp and:

Q ) By .
v < (1492) (142 inf lu—villy + 2 inf lp— g,
ﬂ Q1 qrEQR

o 1 v EVY
9 ﬂ Qg
_ < 14+ = 1+= )= inf |lu—w
Hp thQ = ( a1> ( 1) B thVhH h”V
[0
+ [1 + @ (1 + N—Q)} inf ||p— aqnllo-
1 a1 ah€Qn

Proof. The existence and uniqueness of u, € Vj, and p, € @), follows from the theorem of

Brezzi. We have
a(u,w) +b(w,p) = (F,w) forallweV,
b(u, ) = (G,r) forallre Q.

and

a(up, wy) + b(wp, pp) (F,wp) for all wy, € Vj,
b(uh, Th) = <G,T‘h> for all ry, € Qh-

By subtracting one obtains

a(up —u,wp) + b(wp,pp —p) = 0 for all wy, € Vj,
b(up — u,rp) = 0 forall r, € Q.

Hence, we have for arbitrary v, € V}, and ¢, € Qp,

a(up — vp,wp) + b(wp, pr —qn) = alu — vy, wy) + b(wy, p — qn)  for all wy, € Vi,
b(up — vp, 1) = b(u—vp,mh) for all r, € Q.

From the theorem of Brezzi it follows that

1, ~ 1 (6%) ~
o=l < 1Pl + 5 (14 52) 1l

1 (67%) ~ (6%) (6] ~
— < = (1+=||Fllyvx +=[1+ =) ||G|lo*
alla < 3 (1052 1Pl + 2 (142 16l
with _ ~

(F,wp) = a(u —vp,wp) + b(wp,p —qn) and (G, r4) = b(u — vg, 14).
Now we have:

IF|lv: < azlu—wpllv + B2 llp — anlle and  [|Gllgs < Ballu — vallv-
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With
lu = unlly <llu—=willv + llun — vl and [[p = prlle < [lp — anlle + [Ipn — anlle
the statement easily follows. ]

Observe that Ker B, ¢ Ker B, in general. Therefore, the coercivity of a on Ker B does
not necessarily imply the coercivity of a on Ker By,.

Similarly, the continuous inf-sup condition does not necessarily imply the discrete inf-
sup condition.

So the assumptions (3') and (4") must be explicitly verified for the chosen subspaces V,
and Qp,.

If these assumptions (3’) and (4') hold with constants which are independent of h, then
the discretization error approaches 0 for A — 0 if the approximation error does so.

A very helpful tool for showing the discrete inf-sup condition

b -
inf sup M > (1 >0, (3.1)

0#£a,€Qh ov,ey, |[Vnllv [[anllq
is the following lemma:
Lemma 3.1. Assume there exists a linear operator 11,: V. — V}, with
1. b(ITpv, qn) = b(v, qn) for all g, € Qp, and allv € V and
2. |[Mpollv < cllvllv for allv e V.

Then the inf-sup condition for b and the spaces V' and Q with a constant 31 > 0 implies
the discrete inf-sup condition for b and the spaces Vi, and Qp with a constant 51 = (1 /c.

Proof. We have:

b(v, qn) b(HhU7Qh)<c <1 b(vn, qn)

B llanllo < sup

ozvev |[Vlv T ozeev [[Hpvllv ozonevi onllv

By dividing by ¢ the statement follows. ]

The operator II;, is called a Fortin operator.

3.3 Mixed FEM for the Stokes Problem

For simplicity only the case I'p = I' (pure Dirichlet boundary conditions) with up = 0 is
considered.

The bilinear form a is coercive on V = H}(Q,R?), therefore, a is also coercive on
Ker B, C V with the same h-independent constant a; = ;.
_ The discrete inf-sup condition for the bilinear form b with an h-independent constant
£1 > 0 has to be investigated explicitly.
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3.3.1 The :-F, Element

Let Q = (=1,1) x (=1,1), n € N and h = 1/(2n). The nodes (z;,y;) with z; = i h and
y; = j h define a subdivision

T ={Ti;| i,j=—2n,...,2n — 1}

of Q with the squares T} ; = (2, Tix1) X (Y5, Yj+1)-
The following spaces are introduced:

Co(LR?) = {v e OO, R?)] v=0onT}

and

P, = {w(x,y) = Z cij 'y},

0<i+j<k
Qr = {w(r,y)= Z Cij z'y’}.

0<i,j<k

Then the spaces V}, and @)}, are defined by:
Vi, = {v e Co(%, RQ)‘ vlr € Qi for all T € T;}

and
Qn = Qh N L%(Q) with Qh = {q S L2(Q)‘ Q|T € Py forall T € 771}

Obviously we have
Vi CV =Hy(QR*) and Qn,C Q= L(Q).
These spaces satisfy the following approximation properties:
1. For u € H}(Q,R?) and p € L3(2) we have:

fim inf Jlu—vyfi=0 and lim inf {lp—gullo=0

2. Under the stronger assumption u € Hg (2, R?) N H*(Q,R?) and p € LE(Q) N H(Q)
we have: There is a constant C' with

inf |lu—w < Chlu and inf — <Ch )
nf Ju—wly < Chllle and  inf o= allo < C ol
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Discussion of the inf-sup condition:
The functions ¢; ; € {v € Co(Q ‘ v|r € @ for all T € 7, } are given by the conditions

Pij (1) = 5(@]’)7(1@:1)'

The following basis functions for V}, are used:

©ij <(1)> and @ ; ((1)) withi,7=—-2n+1,...,2n — 1.

Then the following representation for an arbitrary function v, € V}, follows:
2n—1 U
n= Y o (Ufz) |
ij=—2n-+1 b
The following basis functions for Qp are used:
| 1for (z,y) € Tij,
5w = 0 o (o) £ 11

Then the following representation for an arbitrary function g, € Qy, follows:
2n—1
Z Qit15+1 Vi
i,j=—2n

With these representations one obtains:
2n—1 2n—1

—/qhdivvhdac = Z / qn divoy, doe = — Z Qi1 gt / vy M ds
Q@ 1,j=—2n i,j=—2n T 5
2n—1
1
= Z Qiy 1l { (Uir1je1 + Ui1) + §(Uz‘,j+1 + Vit1,11)
7]__2n

1
—(Uijp1 + i) — =(vi; + Ui+1,j):| h.

2 2
Since
2n—1 2n—1
§ Qit15+1 Wij = E : Qit15+1 Wiy
i, j=—2n i,j=—2n+1
2n—1 2n—2 2n—1 2n—1
E Qit i+l Wit1y = § E , Qi1+l Wit1j = E : qi—1+1 Wiy
i,j=—2n i=—2n j=—2n+1 i,j=—2n+1
2n—1 2n—1 2n—2 2n—1
§ Qitd5+1 Wij+1 = E § , Qit-1,5+1 Wij+1 = § Qit-1,5-1 Wiy
i,j=—2n i=—2n+1j=—2n 1,j=—2n+1
2n—1 2n—2 2n—1
E Qi+l Wit1 41 = E : Qi+1,5+1 Witlj+1 = E qi-1 -1 Wij

i,j=—2n ,j=—2n i,j=—2n+1
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it follows that

2n—1

—/ g divon de=h" > [ui; (Vig)ij + vij (Vaq)i]
Q i,j=—2n+1
with
1
Via)ij = 5 [%%g—% T irljrl — Gty ~ qi—%u“r%} )
1
(Vea)is = 55 [qif%w% Flivdgry ~ di-14-3 — %,jf%} -

From this representation it is easy to see that the function

2n—1
Bh= Y Hapigir i
ij=—2n
with
_ (_1\ttI
Pird g+t = (=1)
satisfies:

b(vh,,uh) = — / 125 diVUh dxr =0 for all Vp € Vh.
Q

That means that p;, € Ker Bf. Since, additionally,

/MhZO,
Q

it follows that uy, € @), and the inf-sup is not satisfied.

Remark: The function puy, is called a “spurious pressure mode”, in this particular case it
is also called a “checkerboard mode” (“checkerboard instability”).

A first attempt to stabilize the Q)1-F, element is to consider only those functions g, € @y,
which are orthogonal to pup:

Qn="{am € Qh‘ /QQth dx = 0}.

Since the constant functions and the multiples of yy, are the only functions in Ker B}, there
exists a constant (3; ;, with

b -
inf sup M > Bin > 0.

0#qn€Q}, 0V, EV, thHl HQhHO

However, it can be shown that

gl,h = O(h).
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Hence there is no lower bound Bl > 0 which is independent of h.
In order to stabilize the Q)1-F, element, the space ), must be further reduced: By
constructing one macro-element from 4 neighboring elements of the original subdivision 7,

M;; = (29i, T2iv2) X (Y25, Y2j42), 4 J=—n,n—1,
a second subdivision is obtained:

Mh - {ML]

iyj=-n,...,n—1}

We introduce the following space:
Qan ={q € L(Q)(Q)} qla € By for all M € M, }.

Now we have

Theorem 3.2. For the spaces V}, and Qs the discrete inf-sup condition is satisfied with a
constant independent of h.

Sketch of the proof: Let v € H} (2, R?). By Lemma 3.1 a v, € Vj, must be constructed
such that

/ qn div(v, —v) de =0 for all g, € Qap.
Q

This is equivalent to
0:/ div(v, — v) dx:/ (v, —v)-nds forall M € M,,.
M oM

Let M € M) be an arbitrary macro-element with vertices x, 9, 3, x4 and midpoint
x5 and the edges S1, 59, 53, S4.
From the analysis from above it suffices for v, to satisfy the condition

/vhds:/vds fori=1,2,3,4.
S; S;

3

Usually a function in V}, is defined by its values at the nodes. Here we fix v, by the
following conditions:

1. For the four vertices and the midpoint of the macro we prescribe the value of vy:

1

v dx for z; € €,
on(wi) = |A /Ai
0 for x; € T,

where A; is the union of all elements T} of the original subdivision whose closure T';
contain x; as a vertex.
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2. Instead of prescribing the value of v;, in the midpoints of the edges, we require

/vh ds:/vds.
S; S;

It is easy to check that v, is well-defined and continuous and vanishes on the boundary
I' = 092, therefore vy, € V},, and that the mapping v +— vy, is linear.
By a so-called scaling argument one shows the existence of an h-independent constant

C with
[vnllr < Cllv]l1-

Remark:

1. Although the discrete inf-sup condition is not satisfied for the original spaces V}
and @y, the convergence u, — u can be shown. However, p, does not, in general,
converge to p.

2. The results can easily be carried over to more general quadrilateral subdivisions by
using the isoparametric bilinear element.

3.3.2 The P;-F, Element

The corresponding element on triangular subdivisions is the P;-F, element. In this case,
we have, in general
Ker By, = {0},

since

dim Qh > dim V},.
Proof. Obviously we have:
dim Vh = 2Nl, dim Qh = Ne,

where N; denotes the number of nodes in €2 and N, denotes the number of triangles of the
subdivision. For a general triangular subdivision we have:

N.=2N;,+ N, — 2> 2Nl,
where N, denotes the number of nodes in I'. O

The P;-F, element can be stabilized analogously to the stabilization of the Q1-F, el-
ement: Let 7, be a triangular subdivision of € and let 7/, be that refined triangular
subdivision which is obtained by uniform refinement: Each triangle T" € 7}, is subdivided
into four congruent sub-triangles.
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The spaces
Vi = {v € Co(Q, RQ)’ vlp € Py for all T € Ty o}

and
Qn = {g € L3(Q)| alr € Py for all T € T3}

satisfy the discrete inf-sup condition with an h-independent constant. The proof is done
by constructing a Fortin operator analogously to the case of the Q;-F, element.

The stabilized ()1-F, element and the stabilized P;-F, element are suitable finite el-
ements for the mixed variational problem for incompressible and almost incompressible
materials.

In the following we discuss in more details the application of this element for almost
incompressible materials:

The first equation reads

Q;L/ e(up) : e(vp) dx —i—/ph divoy, dx = (F,vp).
Q 0

1
— dx [ divwy, dz,
] /Tph / '

Since py, is piecewise constant, it follows
/ph divuy, doe = Z /ph divyy, dox = Z
Q TeT, /T TET,

where |T'| denotes the area (volume) of T'.
From the second equation

1 N
/qh div uy, das——/phqh der =0 forall g, € Qp
Q A Ja

we obtain:
/ph dr = A /divuh dr forall T € 7p,.
T T
Hence
1 R
/ph divoy, dov = A Z m/diVUh dx/ divu, de =\ Z divuthivth T,
Q T T

TeTy, TeT),

——T .
where divwy, denotes the mean value of divw, over the element 7. In summary, the
following (primal) variational problem for wy, results:

2,u/ e(up) : e(vp) do + A Z divu, divo, |T| = (F,vy) for all v, € V},.
Q

TeT,

This coincides with the discretization of the pure displacement problem in V},, except that
instead of the original second term

A / div uy, divoy, dx
Q
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the following approximation by a quadrature rule is used:

A Z divuy, divo, |T|.
TeTy,

This technique is called selective reduced integration.

3.3.3 The MINI Element

Let 7, be a triangular subdivision of the domain Q@ C R2. Consider the so-called P;-P;
element on this subdivision, given by

Vi =1{v € Co(,R?) : v|p € P, for all T € Tp,}

and
Qn={qeCQNLIQ): qlr € P, forall T € Tp,}.

Observe that, contrary to the ()1-F, element or the P;-F, element, here the pressure is
approximated by a continuous function.

The spaces Vj, and @), fulfill the corresponding approximation properties on regular
meshes. However, the element is not stable.

In order to stabilize the element the space V}, is enlarged.

Consider an arbitrary triangle T' € 7}, with vertices x;, ¢ = 1,2,3. Each point x € T
can uniquely be represented in the form

3
i=1

with

The coefficients \; are called the barycentric coordinates of z. We introduce the following
function:

bT(SC) = /\1 )\2 )\3.

Obviously we have: by € P3. Because of the property br(xz) = 0 for all x € 9T the function
br is called a bubble function.
The following extension of V}, is introduced:

Vi={veCoQR): v|r =pr+brfr, pre P, fr eR*for all T € T, }.
We have

Theorem 3.3. For reqular triangular subdivisions the spaces V', and Q, satisfy the discrete
inf-sup condition with a constant independent of h.
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Sketch of the proof: We use Lemma 3.1 and construct a linear and bounded operator
II,: V — V}, such that

0 = /thiV(Uh—v) dw——/(vh—v)~gradqh dx
0 0

= —Zgradqh-/(vh—v) dxr for all ¢, € Qy
Q

TET,

with v, = Il,v. It suffices to satisfy the following condition:

/vhdx:/vdx for all T' € 7T,
T T

Let A; be the union of all triangles from 7},, which contain z; as a vertex. Let v, € V, be

given by
1

vh(xi):K/Avdx fori=1,2,3

/vhd:v:/vd:r.
T T

It is easy to show that vy, is well-defined and the operator I, is linear.
By a so-called scaling argument one shows the existence of an h-independent constant
C with

and

[onlls < Cllvf]s.
O

The additional degrees of freedom by by adding the bubble functions 87 can be locally
eliminated (static condensation):
With the ansatz

Up = U}ll —|—u2, U;ll - Vh, UZ = Z bTﬁT - (33)2

TeT,

where
B3 = span{br : T € T,}

one obtains from
a(up, vp) + b(vy, pr) = (F,vp)

for the trial functions bre;, 1 =1,2:

Z a(bT 6]', bT 67;) ﬂT,j + CL(U}Z, bT 62‘) + b(bT Bi,ph) = <F, bT €i> fOI' 7 = 1, 2.

j=1
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So the values fr; can be expressed in terms of the restriction of the unknowns u} and py,
on the triangle 7'
Especially for the Stokes equation we have:

a(brej,bre;) =0rd; with ép=v / | grad(bT)H?2 dx
T

and
a(vp, wp) = a(wy,vy) =0 for all vy, € Vi, wy, € (Bs)?.
Hence

(5T5T—/ph grad by dx:/be dx.
T T

This implies

1 —T
Br = i /(be+ph gradbr) dz = — /bT [ —gradpy) dx g—; (f —gradps)
with
=T 1
’VT:/del‘, f=— [ brfdx.
T T Jr
Using the ansatz for the second equation
—/ gndivuy, de =0
Q
we obtain
0 = —/ p div dw—/qh divud dx
Q
= /qhdlvuh dm—Z/qh div(br Or) d
@ TeT,
= /qh divu; do + Z /bTﬁT grad q,, dx
Q TET,
= / qn divuy dx + Z — grad pp,) - grad qh/ br dx
Q TET, T
= / div uy dx + Z /(TT — grad py,) - grad g5, dx
Q TeT), T
with

’V% 2
a(T) = 5r 7] = O(h7).

Together with

a(un, vy) + b(vy, pn) = aluy, vp) + b(vy, pi) = (F,v,)  for all vy, €V,
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one obtains a mixed variational problem in the original spaces, however, with a modified
second equation:

a(uy,vi) +b(vi,prn) = (F,v) for all v; € Vj,
b(uiln an) — cn(Pr,an) = (Gh,qn) for all g, € Qp

with

cnlpnqn) = Y ofT) /gl"adph'gl“ad% dz,
T

TeT),

(Gp,qn) = Z a(T) /TTT-gradqh dzx.

TeTy,

So, adding the bubble functions corresponds to a modification of the second equation with
a new mesh-dependent bilinear form ¢, and a mesh-dependent linear functional G, .

3.3.4 The Taylor-Hood Element

As an example of an element with higher accuracy we consider the Taylor-Hood element
on a triangular subdivision 7;, of Q C R2. Let

Vi =1{v € Co(LR?) : v|p € Pyforall T € Tp,}

and
Qn={q€COQNLYN): q|lr € P, for all T € T;,}.

Of course, we have
Vi CV =H;(Q,R?*) and Q CQ=L3NQ).
These spaces satisfy the following approximation properties:
1. For u € H}(Q,R?) and p € L3(2) we have:

it ol 0 it el
o e = enll =0 and iy g, W= anllo =0

2. Under the stronger assumptions u € Hj(Q, R?) N H3(Q.R?) and p € L3(Q) N H*(Q)
there exists a constant C' with

inf |Jlu—wv < Ch?||u and inf — < Ch? .
nf =y < O Jully andinf o= aullo < CH ol

The inf-sup condition can be shown by the so-called Verfiirth trick, which consists of
two steps:
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Lemma 3.2. Let Q C R? be a bounded domain with Lipschitz-continuous boundary. Let
Vi CV = H}QRY) and Q, € Q = L2(Q)NHY(Q) be closed subspaces. Assume that there
exists a linear operator Ry, : V. — V}, and a constant ¢ independent of h such that

1/2
(Z h? [lo — thllﬁ,T> <cllvlli and |[Rpofi < e vffs
TeT),

Then there exist two positive constants co and c3 such that

/qh div v, dx 1/2
sup = > ¢z [lanllo — s <Z hi ||grath||(2),T> :

e lloally i

Proof. The inf-sup condition holds:

/q divo dx
Q

inf sup=t———-2>73; > 0.
ec@vev  ||v][1llqllo

Therefore, for each ¢, € @), there exists a v € V with

divv dz
/SZQh_ b

- > — llanllo-
9|1 2

This implies

fQ qn div vy, dx max((), /Q qn, div Rpv d:L‘)

sup

REVh [valla - [ Rro |1

/qh diVRh’D dx
> Jo
N e [|ofly

/ qn divo dx / qn div(Rpv — 0) dx
_ Jo 4 Je

c1 |9l c1 |9l
/ grad q, - (Rpv — ) dx

> Q

Bl - _
2, e ol
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Now we have

/ gradqy, - (Rp,o —0) do = Z /grad qn - (Rpo —0) dx
Q T

TeT),

IA

> hr | grad gullor hz' [0 — Ridllor

TeT,

1/2 1/2
(Z hg“ || grad %H&T) (Z h;z HQ_’ - thj”%,T)

TeTy, TeT,

1/2
Co <Z h ngadqhH%,T) 17]l1

TeT,

IA

IN

Hence

/qh div vy, dx 4 . 1/2
1 0
sup Z& > llanllo — o (Z h7. || grad qhH(Q),T>

v EVY thHl 261 TeT,

The operator Ry, is called a Clément operator.
The second step of Verfiirth’s trick is contained in the next lemma:

Lemma 3.3. Let 7, be a reqular triangular subdivision of Q0 with the property that each
element T € Ty, has at least two internal edges. Then there exists a positive constant cy

with
/qh div vy, dz 1/2
sup £ > Cy4 (Z h7 | grad Qh”g,T)

v €V thHl TeT,

Proof. We have

/qh div vy, dx:—/gradqh-vh dr = — Zgradqh~/vh dx
Q Q T

TeT),

Let &, be the set of all internal edges of triangles in 7;,. To each edge E € &, a parallel
unit vector tg is assigned.

Let ¢, € @, be arbitrary but fixed. Let v, € V}, be that function which vanishes in all
vertices of triangles in 7, and which fulfills:

vp(mp) = —h2E (grad gy, - tg) tg,

where mg denotes the midpoint of the edge F.
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Since vy, € P, on T, it follows that
T
/vh dx = % Z vp(mg).
T ECOT

Hence

/qh divy, de = —Zgradqh-/
0

1
vpdr =YY §|T|h% (grad qn - tr)”

TET, T TeT, ECOT
> ¢ > |Thg |lgradull7, =1 Y byl grad gullf
TeTy TeT,
> ciey Y b |lgrad gl
TETh

because
E (tg-2)* > ||z|l7, and minhg > ¢ hy.
ECT
ECOT

as a consequence of the regularity of the subdivision.
Furthermore, the regularity of the subdivision implies

lonllfr < chg? IT| Y fon(ma)l.

ECOT
Therefore,
loall} = D lonlir <e D a2 T D foa(me)|”
TET, TeT), ECOT
= ¢ Y 2T Y hh(graday - tp)? < ¢S W2 |T] | grad g,
TeT), ECOT TeET),
= ¢ > hyllgradallfr
TeT,

]

3.4 Mixed FEM for the Hellinger-Reissner Formula-
tion

For simplicity only the case of pure Dirichlet boundary condition with up = 0 is considered:

Find 0 € V and u € Q = L*(2,R?) such that

a(o,7) +b(r,u) =0 forall 7 €V,
b(o,v) = (G,v) forallve@
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with
a(o, 1) = / Clo:7rdx, b(t,u)= / divr-ude, (G,v)= —/ frvdzx
Q Q Q

and
V ={r € H(div,,S) | / trace T dx = 0}.
Q

By Galerkin’s principle appropriate subspaces V;, C V, Q) C @ are chosen and the
approximate solution (o, up) € Vj, X @y, is given by the variational problem

a(op, ) + b(mh,up) =0 for all 7, € Vj,,
b(O‘h,Uh) = <G, "Uh> for all vy, € Qh.

As discussed in the last chapter the coercivity of a on the kernel Ker By, and the discrete
inf-sup condition of b with a constant independent of A do not automatically follow from
the corresponding conditions of the continuous problem.

This time the coercivity of @ on V' does not hold. Coercivity of a could only be shown
on the set

W=KerB={reV|br,v)=0forallve @} ={reV|divr =0}.

Only for the case that
W, =KerB, CW = Ker B

with
W, = Ker B, = {Th eV, ’ b(Th,Uh) =0 for all vy, € Qh}

one immediately obtains the coercivity of a on Ker B;, with a; = «ay. All requirements
formulated so far are not easy to fulfill for simple piecewise polynomial finite element
spaces.

A mixed element for triangular subdivisions in R?, which satisfies all these requirements
is defined as follows, see D. A. Arnold, R. Winther, 2001:

Vi={reV: T}T € Py and diVT‘T € P forall T € T,}

and
Qn={veQ:v|, € P foralTeT,}

An element 7, in V}, is given by
1. the values of 75, at the vertices,
2. the values [, m,n ds and [;7n s ds on each edge S and

3. the value [, 7, dz on each triangle T'.
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This results in 24 degrees of freedom on each triangle.

Another possibility is to abandon the strong formulation of the symmetry of the stress
tensor. So far, the starting point of the variational formulation was the following classical
formulation of the linear elasticity problem:

Clo—e(u) =0 inQ,
dive = —f in(Q,

u =0 on I
From the first equation the symmetry of ¢ immediately follows. Now we have

e(u) = Vu — w(u)

wll);; = = — .
/ 2 6xj 81‘,
Observe that w(u) is a anti-symmetric tensor. This motivates the following equivalent
formulation of the first equation:

with

Clo—Vu+vy=0, o =o.

Obviously, v = w(u) is the only anti-symmetric tensor that satisfies the first equation,
which then is equivalent to the original first equation.
So the new starting point of a mixed variational formulation is the following system:

Clo—Vu+vy =0 in Q,

ol —o0 =0 in Q,
dive = —f in (),
u =0 on I'.

By multiplying the first equation component-wise by a trial function 7, integrating over
) and adding up, one obtains:

/0_10'2Td:L“—/TZVUd:E—{—/TZ’yd:L‘:O.
Q Q Q

By integration by parts it follows that:

/C'_IJ:Td:c+/div7'-udx+/7':7dx—0.
Q Q Q

By multiplying the second equation component-wise with an anti-symmetric tensor 7, one

obtains:
/UT:nd:E—/J:ndx:(),
Q Q
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/Jzndxzo,
Q

because 7 is anti-symmetric. Finally one obtains from the third equation

/diva-vda::—/f-vdx.
Q Q
By adding, one obtains

/diva-vdx—i—/o:ndx——/f-vd:v.
Q Q Q

Therefore, the following mixed variational problem results:

which is equivalent to

Find o € V and (u,7) € @ such that

a(o,7) + b(1, (u,7y)) =0 for all 7 €V,
b(o, (v,m)) = (G,v) forall (v,n) €Q

with
CL(U,T):/C_lUZTd.T, b(’i‘,(u,’}/)):/diVT-ud.’If—l-/Ti’}/dl',
Q Q Q
(G,U>——/f~vdx
Q

and the spaces
V= H(div, 0, B™), Q= L2(QRY) x {7 € LR |y +47 = 0}.

The best-known element in R? which is based on (the two-dimensional analogue of) this
variational formulation is the PEERS-Element (Blane elasticity element with reduced
symmetry) for a triangular subdivision of 2. It consists of the following components:

1. The Raviart-Thomas element of degree 0 (the RTj element) enlarged by functions,
piecewise given by
cr curlby  with ¢ € R,

where by = A1 Ay A3 denotes the bubble-function on a triangle T, for the rows of oy;
2. Piecewise constant functions (the Py element) for uy;

3. Continuous and piecewise linear functions (the P; element) for ~y,.

The Raviart-Thomas element of degree 0 (the RTj element) is an H (div, §2)-conforming
element, piecewise given by functions of the form

ar +drx with ar € RQ, dr € R.

The PEERS element is also suitable for almost incompressible materials.
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Chapter 4

Solution of the Discretized Equations

The discussed mixed FEMs lead to linear systems of equations of the following form:

(g —Bg> (z) - (g) | (4.1)

Throughout the chapter we will assume that A is symmetric and positive definite, that C'is
symmetric and positive semi-definite, and that the so-called (negative) Schur complement

S=C+BA'BT

is non-singular.
Under these assumptions the matrix IC, given by

A BT
e=(5 %),

is non-singular and allows a block LU factorization

K — (é _OS) (é A_}BT) (4.2)

The system (4.1) is equivalent to the following system:

Au—I—BTp = f,
Sp = h with h=BA'f—g.

4.1 The Uzawa Method and Variants

Let p® be a given initial guess for p. The classical Uzawa method is given by the following
steps:
Au(kJrl) f . BTp(k),

67
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with some positive parameter 7 > 0. It is clear that, in the case of convergence, the limit
values solve the system (4.1).
If w1 is eliminated, one obtains:

p" Y = p® 47 (h — S5p™),
which is the classical Richardson method applied to the system
Sp = h.

Since S is symmetric and positive definite, the convergence is guaranteed for sufficiently
small parameters 7 > 0.

The convergence can be improved by using the preconditioned Richardson method with
an appropriate preconditioner S for S. Then the iterative method reads

pEtD) = pk) 4 gfl(h — Sptky.
In the original form we obtain the so-called preconditioned Uzawa method:

Ayt = f_ BTp®)
pED — B L G (B — op®) _ ).

An obvious disadvantage of the preconditioned Uzawa method is the necessity to com-
pute ©**t1) as exact solution of the system

Au=0b with b= f— BTp®.

If instead one step of some preconditioned Richardson method is used for determining
(k1)
U
ut D = 4 1 A7 — Au®),
where A is an appropriate preconditioner for A, then one obtains a so-called inexact pre-
conditioned Uzawa method (also called preconditioned Arrow-Hurwicz method):

U(k—i—l) _ A (f Au(k BTp(k)),
p(kJrl) + S (BU (k+1) Cp(k) . g)
Hence
A — 8y = ag® _ BT
That is

LB () ! ()
u u u

‘ (1) -k

(p(k“) — p(’“)) (g) (p(k))
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(k1) u®) L /f u®)
() = o) =24 [(7) = (o)
R A 0
L= (B —5’> '

So the inexact preconditioned Uzawa method can be interpreted as preconditioned Richard-
son method for (4.1) with the block triangular preconditioner L.

or, equivalently,

with

Remark: With the setting

A=A §=1y

-
one obtains the classical Uzawa method. With the setting

1 N
I, S=

g

A:

Rl

one obtains the classical Arrow-Hurwicz method.

Observe that the preconditioner £ is formally obtained from (4.2) by replacing A and
S by A and S in the first factor and ignoring the second factor.

If instead the second factor in (4.2) is treated analogously to the first factor, then the
preconditioner K is obtained:

’@_A 0\ (I A'BT\ (A BT
“\B -§)\0 I ~\B BA'BT_-§)°

Observe that K is a symmetric and indefinite block matrix.
One step of the preconditioned Richardson method

B\ [y (k)
(o) = Gw) +[(5) = (ow)

requires the solution of the system

o (D) g (k) f (k)
u u u
K = - K :
<p<’““) - p““) <9> (p(’“))
This can be done in three steps:
@) —y®) = Ay® — BTp®),

A
Sv ( (k+1) p(k)) _ Bﬂ(kJrl) . Cvp(k) — 9,
A ( (k+1) u(k’)) _ f o Au(k) _ BTp(k+1).
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Interpretation: From the first and the third equation one obtains:
u(k+1) _ a(kJrl) _ AleT(p(kJrl) _ p(k)>' (43)

(4.3) is considered as ansatz for the next approximation uw* 1) which is required to solve
the equation

Bu(k+1) . Cp(k+1) =g.
This leads to the equation:
H(p*t — p*) = Biigyr — CpM — g

with
H=C+BA'BT.
H is called the so-called inexact Schur complement. If compared with the second equation,

one could interpret S as preconditioner for H and the second equation is just one step of
the corresponding preconditioned Richardson method applied to the equation

Hp' =c¢ with ¢ = Bl — C'p(k) -9

(k+1) _ k

with starting value 0 for computing p’ = p p~.

Remark: For the case C' = 0 and the choice S = H = BAleT, le.

A BT 5 A BT
IC—(B 0) and IC—(B 0),

the preconditioned Richardson method

(k+1) (k) . f (k)
u u u
= (w) 2 ((0) - G|
<p(k+1)> (p(k)) g p*)
can also be written as a projection method:
u* ) = Pu® 4 A7 — Au®)).

Here P is the A—orthogonal projection on the linear manifold V;, = {v € R" : Bv = g}, i.e.:
w = Pu € V, is the unique solution of the variational problem

(w,v) 4 = (u,v) ;4 forall ve Vy=KerB.
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4.2 Preconditioner for the Schur Complement

An approximate solution of the mixed variational problem

a(u,v) +b(v,p) = (F,v) forallveV
b(u,q) = (G,q) forallgeQ@

is obtained by an appropriate choice of finite-dimensional subspaces
Vi CV, QnCQ.

By Galerkin’s principle the approximate solutions u;, € V;, and p, € )y, are the solutions
of the discrete variational problem

a(uh, Uh) + b(vh,ph) = <F, Uh> for all vy, € V},
b(un, qn) = (G,qn) for all gn, € Qn.

Let {¢;} be a basis for V,, and let {¢;} be a basis for @),. Then the approximate
solution can be represented in the following way:

un =Y U 95 Ph= Y Pk V-
J k

From the discrete variational problem one obtains the following linear system of equations
(%) () - ()
B 0 Py, Iy

A = (alyp),9i)),
By = (b(wj,¥r)),
u, = (), p, =), f,= {(Fe)), g = (G ).

Assume that the following conditions are satisfied:

with

1. The bilinear form a is symmetric, coercive and bounded on V.. Then |jv|y = a(v,v)'/?

can be chosen as a norm in V.

2. The bilinear form b is bounded:

b(v,q)| < B l|vllvllalle-

3. The discrete inf-sup condition is satisfied:

inf sup M > 31 > 0,

0#£qn €Qh 00, €V, HUhHV HQhHQ

where 5 is independent of h.
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Then we have:

(Budy' By q,.0,)e = (A4,'°Bl q,, A" By q,)e

—1/2
B (A, PBE g, w)3 (Bhwsg,)},
= sup =sup ———~+—
w, £0 (wp, Wy )e, v, 0 (AnVy, 03) e,
B b(vn, qn)> b(vn, qn)*
= sup ———— = Su T
0#vREV, a(vhavh) 0#vp €Vh th”V

Therefore, the following estimates hold:

Billanlley < (Brdy ' By q,:0,)e < 55 llan G-

Now
gl = (Mig,, q,)e,  with My = ("), 40)q) .

Hence
B My, < Sy, = ByA; ' Bl < 35 Mj,.

The spectral constants &2 and 33 are independent of h. Therefore, M; is a spectrally
equivalent preconditioner of the Schur complement S;, = BhA,le,?. The corresponding
preconditioned Uzawa method has the convergence rate

R(M 1S — 1 (Bo/ ) 1
RIMS0) + 17 (8y/Br)? +1

q= <1,

which is independent of A.

Application to the Stokes problem

For ||v||y = |v|; and for pure Dirichlet boundary conditions we have

b(v,q) = — / qdive dr < [|gllo[| divollo < flglo]v]s-
Q

Hence: (6, = 1.
The matrix M, is the mass matrix, which is spectrally equivalent to h?I for regular
meshes:

ah?T < M, < eoh®I.

Therefore, the Uzawa method (without preconditioner) for 7 = O(h?) converges optimally
(h-independent convergence rate). If instead of Richardson’s method the gradient method
is applied to Sp = h it suffices to set the parameter 7 = 1.

The method can be additionally accelerated by the CG method.
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4.3 Convergence Analysis for Inexact Uzawa Meth-
ods

We have

(kD) u®\ T/ f u®
(o) = Go) 22 [(2) - Cw)]

with the iteration matrix

Therefore, it follows for the error

that
ek D) = Age®
Now
M = LYL-K)

B A 0 A-A BT

— \S1BAt gt 0 -S+cC

B A" A - A) —A-1pT

~ \STIBAYA—-A) I-S87YC+ BA BT

B —A- —A1BTS! A-A 0
~ \-97'BA! §1-S7lC+ BAIBT)S! 0 S
= NQ.

This factorization of the iteration matrix into symmetric factors is the key for the conver-
gence analysis, see [11] for typical results.
Here we concentrate on one special case: If

A< A

then Q is symmetric and positive definite and, therefore, defines a new scalar product:

() ()= (26): (), =04~ mores s,

The iteration matrix M is symmetric with respect to this scalar product:

(MIL‘,?/)Q = (Q'/\/’Q‘Tvy)@ = (QNvax)EQ = (My,l’)g.

Therefore, M and £7*K = I — M have only real eigenvalues. In particular the following
convergence property can be shown:
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Theorem 4.1. If R X R R
A<A<aA and cS<S5<7S

then the matriz LK is symmetric with respect to the scalar product (z,y)go and we have

o (ﬁ—lzc) c A € (0, 00)

Azl[au+gy—v%%1+gﬁ—¢@g] X:%{au+ay+v%%1+ay—4aa

Proof. Let ¢(A) be the negative Schur complement of K — AL or, in short:
©(\) = — Schur(K — A £).
Then we have:

A— XA B
P = _&mm(ufamB —C+AS>
= C—-AS+(1-)\NBA-XA)'BT

It is immediately clear that
0(0)=5>0

and
©(A) >0 for A <O0.

The first block-diagonal block A— A A of the block matrix K—\ £ is symmetric and positive
definite for A < 0.

So A— A\ A and ¢()\) are non-singular for A < 0. This implies that the matrix K — X £
is non-singular in this case and, therefore, all eigenvalues of LK are positive.

For 0 < A <1 it follows that

O<A—AA§(1—§)A

«

and, therefore,

N N 1—XA A
e(A) > C —AS+ _éBAlBTz __A—E]S:ﬂms
with Lo\
Q()‘>: 1_% _E'

The smallest root of §(\) is the smallest root A < 1 of the quadratic equation

M-—a(l+aod+ac=0.
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For & < \ < oo it follows

and, therefore,

A _ 1—=X A —
e(A\) <C—=AS+ _éBAlBT< _A—EIS:WMS
with Loy
o)) = —= - Z.
N=1"33

The largest root of §()\) is the largest root A of the quadratic equation
M —a(l+a)\+ac=0.

These estimates show that A — A A and ¢(A) are non-singular for A < A and for A > A
This implies that C — A £ is non-singular. Therefore, ) is not an eigenvalue of L71C. [

As a simple consequence the following sufficient condition for convergence is obtained:
A<2, ie: @(2+4+7) <4

In any case the problem is symmetric and positive definite with respect to the scalar
product (z,y)o and, therefore, the CG method can be applied.

Remark: The statements of the last theorem date back to the work in [2], see also [11].
Similar results can be shown for the symmetric variant, see [11].
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