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Chapter 1

Models

1.1 Kinematics

Let Ω ⊂ R3 be an open, bounded and connected set with Lipschitz-continuous boundary
Γ = ∂Ω. The set Ω is called the reference configuration and describes, e.g., the initial state
or the undeformed state of a continuum (body).

A configuration (or deformation) is a sufficiently smooth, orientation preserving and
injective mapping

φ : Ω −→ R3.

This mapping describes, e.g., the state of the continuum at some later time or the state of
a deformed continuum. The set φ(Ω) consists of all points (or particles) x of the form

x = φ(X)

with X ∈ Ω. X are called the material (or Lagrangian) coordinates, x are called the spatial
(or Eulerian) coordinates of a particle.

The matrix

F(X) = ∇φ(X) =



∂φ1

∂X1

(X)
∂φ1

∂X2

(X)
∂φ1

∂X3

(X)

∂φ2

∂X1

(X)
∂φ2

∂X2

(X)
∂φ2

∂X3

(X)

∂φ3

∂X1

(X)
∂φ3

∂X2

(X)
∂φ3

∂X3

(X)


is called the deformation gradient. Preserving the orientation corresponds to the condition

J(X) = det∇φ(X) > 0 for all X ∈ Ω.

The displacement U : Ω −→ R3, introduced by

U(X) = x−X with x = φ(X)

1



2 CHAPTER 1. MODELS

measures the deviation from the reference configuration. With

x = φ(X) and x+ ∆x = φ(X + ∆X)

we have:
∆x = φ(X + ∆X)− φ(X) = ∇φ(X)∆X + o(∆X),

so

‖∆x‖2
`2

= ∆XT∇φ(X)T∇φ(X)∆X + o(‖∆X‖2
`2

)

= ∆XTC(x)∆X + o(‖∆X‖2
`2

)

with
C(X) = F(X)TF(X) = ∇φ(X)T∇φ(X).

The symmetric tensor C(X) is called the (right) Cauchy-Green deformation tensor. It
describes the local change in distances by the deformation. It can be shown that there is
no change in distances, i.e.:

C(X) = I for all X ∈ Ω,

if and only if the configuration is a rigid body configuration, i.e.:

φ(X) = QX + a,

where Q is an orthogonal matrix with detQ = 1 (describing a rotation) and a ∈ R3

(describing a translation).
The deviation of C(X) from the ideal case I is measured be the symmetric tensor

E(X) =
1

2
(C(X)− I),

the so called Green-St.Venant strain tensor. Then, of course, we have:

‖∆x‖2
`2
− ‖∆X‖2

`2
=

1

2
∆XTE(X)∆X + o(‖∆X‖2

`2
).

E(X) can be expressed directly by the displacement U(X):

E[U ](X) =
1

2

(
∇U(X)T +∇U(X) +∇U(X)T∇U(X)

)
,

or, component-wise:

Eij[U ](X) =
1

2

(
∂Uj

∂Xi

(X) +
∂Ui

∂Xj

(X) +
∑

k

∂Uk

∂Xi

(X)
∂Uk

∂Xj

(X)

)
.

Observe the nonlinear relation between E and U .
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The displacement can also be introduced in Eulerian coordinates by

u(x) = x−X with x = φ(X), i.e. X = φ−1(x).

Then

∆X = (∇φ(X))−1∆x+ o(∆x) with X = φ−1(x)

and, consequently,

‖∆X‖2
`2

= ∆xTc(x)∆x+ o(‖∆x‖2
`2

)

with

c(x) = b(x)−1 with b(x) = F(X)F(X)T = ∇φ(X)∇φ(X)T .

Then

‖∆x‖2
`2
− ‖∆X‖2

`2
=

1

2
∆xTe(x)∆x+ o(‖∆x‖2

`2
).

with

e(x) =
1

2
(I − c(x))

Finally, it easily follows that

e[u](x) =
1

2

(
∇u(x)T +∇u(x)−∇u(x)T∇u(x)

)
.

b(x) is called the Finger deformation tensor or the left Cauchy-Green deformation tensor,
e(x) is called the Almansi-Hamel strain tensor or the Euler strain tensor.

The motion of a continuum (or body) is described by a curve

t 7→ φt.

Interpretation: The position x of a point (particle) at time t, whose position at time 0 was
X, is given by

x = φt(X) ≡ φ(X, t).

Then the material (or Lagrangian) velocity of this particle as a function of X and t is
given by

Vt(X) = V (X, t) =
∂φ

∂t
(X, t),

and the material (or Lagrangian) acceleration is given by

At(X) = A(X, t) =
∂2φ

∂t2
(X, t).

Observe the following linear relation between velocity and acceleration:

A(X, t) =
∂V

∂t
(X, t).
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In the Eulerian approach the motion of a particle is described by the spatial velocity
(field) v(x, t), where v(x, t) is the velocity of that particle, which passes through x at time
t, so

vt(x) = v(x, t) = V (X, t) =
∂φ

∂t
(X, t) with x = φ(X, t).

For the spatial acceleration a(x, t) of that particle we obtain:

at(x) = a(x, t) = A(X, t) =
∂2φ

∂t2
(X, t) with x = φ(X, t).

We have for x = φ(X, t):

a(x, t) =
∂

∂t
[v(φ(X, t), t)] =

∂v

∂t
(x, t) +

∑
i

vi(x, t)
∂v

∂xi

(x, t).

Notation: The differential operator v · grad = v · ∇, given by

(v · grad)f = (v · ∇)f =
d∑

i=1

vi
∂f

∂xi

,

is called the convective derivative and the differential operator d/dt, given by

df

dt
= ḟ =

∂f

∂t
+ (v · grad)f,

is called the total or material derivative.

With these notations the spatial acceleration can be written in the following form:

a(x, t) =
dv

dt
(x, t) =

∂v

∂t
(x, t) + (v(x, t) · grad)v(x, t) =

∂v

∂t
(x, t) + (v(x, t) · ∇)v(x, t).

Observe that this is a nonlinear relation between velocity and acceleration in the Eulerian
approach.

For a given velocity (field) v(x, t) one obtains the trajectories φ(X, t) of the individual
particles as solution of the initial value problem:

∂φ

∂t
(X, t) = v(φ(X, t), t),

φ(X, 0) = X.

(1.1)

1.2 Balance Laws

Let ω ⊂ Ω. The set ωt, given by

ωt = {φ(X, t)
∣∣ X ∈ ω}, (1.2)

describes the position of those particles at time t, which were in ω at time t = 0.
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1.2.1 Transport Theorem

Let F be a given function of x and t. The Transport Theorem describes the rate change
of the quantity

F(t) =

∫
ωt

F (x, t) dx. (1.3)

Namely:

Theorem 1.1 (Transport-Theorem). Let t0 ∈ (T1, T2), let ω ⊂ Ω be a bounded domain
with ω0 ⊂ Ω, and let v and F be continuously differentiable. Then F is well-defined and
continuously differentiable in an interval (t1, t2) ⊂ (T1, T2) with t0 ∈ (t1, t2) by the equations
(1.1), (1.2) and (1.3), and we have:

dF
dt

(t) =

∫
ωt

[
∂F

∂t
(x, t) + div(Fv)(x, t)

]
dx =

∫
ωt

[
dF

dt
(x, t) + F div(v)(x, t)

]
dx.

Notation: The following notation was used in the Transport Theorem: divG = ∇ · G,
given by

divG = ∇ ·G =
3∑

i=1

∂Gi

∂xi

for a continuously differentiable vector-valued function G, is called the divergence of G.

Remark: With the help of Gauss’ Theorem it follows immediately that

dF
dt

(t) =

∫
ωt

∂F

∂t
dx+

∫
∂ωt

F v · n ds.

Here n = n(x) denotes the outer normal unit vector at a point x on the boundary of ωt.

1.2.2 Conservation of Mass

Let ρ(x, t) denote the mass density of a body at the position x and time t. The principle
of conservation of mass states that no mass will be generated or destroyed, i. e.:

d

dt

∫
ωt

ρ(x, t) dx = 0.

Under appropriate smoothness conditions the Transport Theorem implies:∫
ωt

[
∂ρ

∂t
(x, t) + div(ρv)(x, t)

]
dx = 0

for all t and all bounded domains ω with ω ⊂ Ω. This results in the following differential
equation, the so-called equation of continuity: either in conservative form:

∂ρ

∂t
+ div(ρv) = 0, (1.4)
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or, equivalently, in the convective form:

dρ

dt
+ ρ div v = 0.

In the special case ρ = constant (incompressible fluid) the equation of continuity is given
by

div v = 0. (1.5)

We have (by the substitution rule)∫
ωt

ρ(x, t) dx =

∫
ω

ρ(φ(X, t))J(X, t) dX.

Hence, the conservation of mass in Lagrangian coordinates reads:

d

dt
(ρ(φ(X, t), t)J(X, t)) = 0,

Therefore,

ρ(x, t) =
1

J(X, t)
ρ0(X) with x = φ(X, t) and ρ0(X) = ρ(X, 0).

1.2.3 Balance of Momentum and Angular Momentum

The total (linear) momentum of all particles in ωt is given by∫
ωt

ρ(x, t)v(x, t) dx.

Newton’s second law states that the rate of change of the (linear) momentum is equal to
the applied forces F (ωt), hence

d

dt

∫
ωt

ρ(x, t)v(x, t) dx = F (ωt). (1.6)

The forces acting on the body can be split into applied body forces FV (ωt) and applied
surface forces FS(ωt):

F (ωt) = FV (ωt) + FS(ωt).

If the body forces can be described by a specific force density (force per unit mass) f(x, t),
then we obtain the representation

FV (ωt) =

∫
ωt

ρ(x, t)f(x, t) dx.

An example of such a force is the force of gravity with f = (0, 0,−g)T .
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The internal surface forces can be described by a vector ~t(x, t, n) (force per unit area),
the so-called Cauchy stress vector:

FS(ωt) =

∫
∂ωt

~t(x, t, n(x)) ds.

Summarizing, we obtain the following balance law for the momentum:

d

dt

∫
ωt

ρ(x, t)v(x, t) dx =

∫
ωt

ρ(x, t)f(x, t) dx+

∫
∂ωt

~t(x, t, n(x)) ds.

The total angular momentum of all particles in ωt is given by∫
ωt

x× ρ(x, t)v(x, t) dx.

Newton’s second law states that the rate of change of the angular momentum is equal to
the applied torque, so

d

dt

∫
ωt

x× ρ(x, t)v(x, t) dx =

∫
ωt

x× ρ(x, t)f(x, t) dx+

∫
∂ωt

x× ~t(x, t, n(x)) ds.

These two equations are also called equations of motion, in the steady state case, also the
equilibrium conditions.

Under reasonable assumptions it can be shown that the stress vector ~t(x, t, n) =
(ti(x, t, n)) can be represented by the so-called Cauchy stress tensor σ = (σij) in the
following form:

ti(x, t, n) =
∑

j

σji(x, t)nj.

Using Gauss’ Theorem and the Transport Theorem one obtains for sufficiently smooth
functions the following differential equation (in conservative form):

∂

∂t
(ρvi) + div(ρviv) =

∑
j

∂σji

∂xj

+ ρfi (1.7)

from the balance of momentum, or in convective form

ρ
∂vi

∂t
+ ρv · grad vi =

∑
j

∂σji

∂xj

+ ρfi (1.8)

by using the equation of continuity,
It can be shown that the balance of angular momentum is satisfied if and only if σ is

symmetric:

σT = σ.
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Therefore, the balance of momentum in convective form can also be written in the following
form:

ρ
∂v

∂t
+ ρ(v · grad)v = div σ + ρf

with

div σ =

(∑
j

∂σij

∂xj

)
i=1,2,3

.

So far, the equations of motion have been derived in Eulerian coordinates.
By transforming the integrals one easily obtains the equations of motion in Lagrangian

coordinates. We have:

∫
ωt

ρ(x, t)v(x, t) dx =

∫
ω

ρ0(X)V (X, t) dX∫
ωt

ρ(x, t)f(x, t) dx =

∫
ω

ρ0(X)F (X, t) dX∫
∂ωt

σ(x, t)n(x, t) ds =

∫
∂ω

P(X, t)N(X) dS

with the specific force density F (X, t) in Lagrangian coordinates:

F (X, t) = f(x, t) for x = φ(X, t),

the unit normal vector N(X) in Lagrangian coordinates:

∇φ(X, t)−TN(X) = ‖∇φ(X, t)−TN(X)‖`2 n(x, t) for x = φ(X, t),

and
P(X, t) = J(X, t)σ(x, t)∇φ(X, t)−T for x = φ(X, t),

the so-called first Piola Kirchhoff stress tensor.

Remark: The last transformation rule is based on Nanson’s formula:∫
∂ωt

σ(x, t)n(x, t) ds =

∫
∂ω

σ(x, t) J(X, t)∇φ(X, t)−TN(X) dS.

Then one obtains from the balance of momentum the following differential equation in
Lagrangian coordinates:

ρ0(X)
∂2φ

∂t2
(X, t)− div P(X, t) = ρ0(X)F (X, t).

The balance of angular momentum is satisfied if and only if

S(X, t)T = S(X, t)



1.3. CONSTITUTIVE LAWS 9

with

S(X, t) = ∇φ(X, t)−1P(X, t) = J(X, t)∇φ(X, t)−1σ(x, t)∇φ(X, t)−T for x = φ(X, t),

the so-called second Piola Kirchhoff stress tensor.
The corresponding transformation of the tensors S 7→ σ, given by

σ(x, t) =
1

J(X, t)
∇φ(X, t)S(X, t)∇φ(X, t)T for x = φ(X, t)

is called the Piola transformation.

Remark: Other balance laws like the balance of energy will not be discussed here.

1.3 Constitutive Laws

The equations of motion do not yet completely describe the configuration of a body. Equa-
tions for the stress in form of a constitutive laws are necessary.

Two important special cases will be considered here:

1.3.1 Elastic Materials

A material is called elastic if there is a constitutive law of the form

S(X) = Ŝ(X,E(X)).

For the important sub-class of hyperelastic materials the constitutive law can be rep-
resented by an energy functional:

Ŝ(X,E) =
∂Ψ

∂E
(X,E),

where Ψ(X,E) is the so-called stored energy function.
A material is called linearly elastic if

Ψ(X,E) =
1

2

∑
ijkl

Cijkl(X)EijEkl,

where the so-called elastic coefficients (or elasticity coefficients) Cijkl(X) (which form the
so-called elasticity tensor) have the following properties:

Cijkl(X) = Cklij(X)

and
Cijkl(X) = Cjikl(X) = Cjilk(X).
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From these conditions it follows that only 21 coefficients can be chosen independently from
each other. For the corresponding constitutive law we obtain the linear relations:

Sij =
∑
kl

Cijkl(X)Ekl, (1.9)

which is called Hooke’s law.
An important special case of linearly elastic materials are the St.Venant-Kirchhoff ma-

terials (homogenous, isotropic, and linearly elastic materials), for which the constitutive
law has the form

S = λ trace(E) I + 2µE.

The parameters λ and µ are called Lamé coefficients. They are related to Young’s modulus
(or modulus of elasticity) E and Poisson’s ratio ν by

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)

and, vice versa

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

It can be shown by arguments from physics that:

0 < ν <
1

2
and E > 0.

These conditions are equivalent to

λ > 0 and µ > 0.

For St.Venant-Kirchhoff materials the stored energy function takes the form

Ψ(E) =
λ

2
(trace(E))2 + µ trace(E2),

so

Cijkl = λ δij δkl + µ (δik δjl + δil δjk).

1.3.2 Newtonian Fluids

Starting point is the following ansatz for the Cauchy stress tensor

σ = −p I + τ,

where p(x, t) denotes the pressure in the fluid at the position x and time t and τ depends
on the first spatial derivative of the velocity field v(x, t).
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For a parallel flow (in x1 direction) Newton postulated the linear relation

τ21 = µ
dv1

dx2

for the shear stress τ21. The coefficient µ is called the dynamic viscosity of the fluid.

Under reasonable assumptions it can be shown that this implies the following form for
τ :

τ = λ div v I + 2µ ε(v)

with

ε(v) = (ε(v)ij), ε(v)ij =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)
.

Observe that div v = trace ε(v) and the formal similarity to the constitutive law for St.
Venant-Kirchhoff materials.

Arguments from physics show that

µ ≥ 0 and µ̂ = λ+
2

3
µ ≥ 0.

The coefficient µ̂ is called bulk viscosity. In the following we will assume that µ̂ = 0, hence
λ = −2µ/3. Therefore

σ = −(p+
2µ

3
div v) I + 2µ ε(v).

For ρ = constant, µ = constant and with the help of (1.5) (div v = 0) the expressions
for the internal surface force can be further simplified:

div σ = − grad p+ µ∆v,

where ∆ denotes the Laplacian operator:

∆ =
3∑

j=1

∂2

∂x2
j

.

1.4 Boundary Value and Initial-Boundary Value

Problems

For a complete description we need boundary conditions and for time-dependent problems
initial conditions.
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1.4.1 Elastostatics and Elastodynamics

Usually Lagrangian coordinates are used in elasticity.
In typical applications the surface force is prescribed on some part ΓN of the boundary

Γ = ∂Ω of Ω, given by its surface force density TN(x). This results in the boundary
condition

(∇φS)N = TN for all x ∈ ΓN , t > 0.

For the remaining part ΓD of the boundary we assume that the deformation is known.
This leads to the boundary condition

φ = φD for all X ∈ ΓD, t > 0.

As initial conditions usually the initial configuration and the initial velocity are pre-
scribed:

φ = φ0,
∂φ

∂t
= V0 for t = 0.

Hence we obtain the following initial-boundary value problem of elastodynamics:

ρ0
∂2φ

∂t2
− div(∇φS) = ρ0 F in Ω, t > 0,

S = Ŝ(E) in Ω, t > 0,

E =
1

2
(∇φT∇φ− I) in Ω, t > 0,

φ = φD on ΓD, t > 0,

(∇φS)N = TN on ΓN , t > 0,

φ = φ0,
∂φ

∂t
= V0 in Ω, t = 0.

The corresponding time-independent problem leads to the following boundary value
problem of elastostatics:

− div(∇φS) = ρ0 F in Ω,

S = Ŝ(E) in Ω,

E =
1

2
(∇φT∇φ− I) in Ω,

φ = φD on ΓD,

(∇φS)N = TN on ΓN .
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1.4.2 Linear(ized) Elasticity

For small displacements it is justified

• not to distinguish between the Eulerian and the Lagrangian description (in the sequel
we will use the Eulerian description), and

• to replace the strain tensor by the linearized strain tensor ε, given by

εij(u) =
1

2

(
∂uj

∂xi

+
∂ui

∂xj

)
.

Then Hooke’s law (1.9) can be written in the form

σij =
∑
kl

Cijkl εkl

or, in short,
σ = C ε.

We obtain the following initial-boundary value problem of linear(ized) elastodynamics:

ρ0
∂2u

∂t2
− div σ = ρ0 f in Ω, t > 0,

σ = C ε in Ω, t > 0,

ε =
1

2
(∇uT +∇u) in Ω, t > 0,

u = uD on ΓD, t > 0,

σ n = tN on ΓN , t > 0,

u = u0,
∂u

∂t
= v0 in Ω, t = 0,

and the following boundary value problem of linear(ized) elastostatics:

− div σ = ρ0 f in Ω,

σ = C ε in Ω,

ε =
1

2
(∇uT +∇u) in Ω,

u = uD on ΓD,

σ n = tN on ΓN .
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For St. Venant-Kirchhoff materials we obtain, in particular,

σ = λ trace(ε) I + 2µ ε

and from constitutive law and the linearized strain-displacement relations it follows that:

− div σ = −2µ div ε(u)− λ grad div u

= −µ∆u− (λ+ µ) grad div u.

The corresponding second order differential equations for the displacement u are called
Lamé (or Cauchy-Navier) equations.

1.4.3 The Navier-Stokes Equations

Usually Eulerian coordinates are used in fluid mechanics. The unknown functions are, e.g.,
the velocity v(x, t) and the pressure p(x, t).

In typical applications the surface force is prescribed on some part ΓN of the boundary
Γ = ∂Ω of Ω, given by its surface force density tN(x). This results in the boundary
condition

σn = tN for all x ∈ ΓN , t > 0.

For the remaining part ΓD of the boundary we assume that the velocity is known. This
leads to the boundary condition

v = vD for all x ∈ ΓD, t > 0.

As initial condition usually the initial velocity is prescribed:

v = v0 for t = 0.

For the case ρ = constant and µ = constant one obtains the equations of motion in
conservative form

∂

∂t
(ρvi) + div(ρviv) = − ∂p

∂xi

+ µ∆vi + ρfi, (1.10)

or in convective form

ρ
∂v

∂t
+ ρ (v · grad)v = − grad p+ µ∆v + ρf (1.11)

or, after dividing by ρ:

∂v

∂t
+ (v · grad)v = −1

ρ
grad p+ ν∆v + f (1.12)

with ν = µ/ρ, the kinematic viscosity. The equations (1.10) or (1.11) or (1.12) are called
the Navier-Stokes equations.
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In summary, one obtains the following initial-boundary value problem of fluid mechan-
ics:

∂v

∂t
+ (v · grad)v − ν∆v +

1

ρ
grad p = f in Ω, t > 0,

div v = 0 in Ω, t > 0,

v = vD on ΓD, t > 0,

σ n = tN on ΓN , t > 0,

v = v0 in Ω, t = 0,

and, for the steady state case, the corresponding boundary value problem:

(v · grad)v − ν∆u+
1

ρ
grad p = f in Ω,

div v = 0 in Ω,

v = vD on ΓD,

σ n = tN on ΓN .

Dimensional analysis:

Starting from reference values L∗, t∗, U∗ and p∗ for the length, the time, the velocity and
the pressure new variables are introduced by

x′i =
xi

L∗
, t′i =

t

t∗
, v′i =

vi

U∗
, p′ =

p

p∗
.

By transformation of variables one obtains:

ρU∗

t∗
∂v′i
∂t′

+
ρ(U∗)2

L∗

N∑
j=1

v′j
∂v′i
x′j

= − p
∗

L∗
∂p′

∂x′i
+

µU∗

(L∗)2
∆v′i + ρf,

or, after multiplication by L∗/(ρ(U∗)2)

L∗
t∗U∗

∂v′i
∂t′

+ 1 ·
N∑

j=1

v′j
∂v′i
x′j

= − p∗

ρ(U∗)2

∂p′

∂x′i
+

µ

ρL∗U∗
∆v′i + f ′

with f ′ = L∗/(U∗)2 · f . With the setting t∗ = L∗/U∗, p∗ = ρ(U∗)2 and

Re =
ρL∗U∗

µ
=
L∗U∗

ν
,
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the so-called Reynolds number, one obtains

∂vi

∂t
+

N∑
j=1

vj
∂vi

xj

= − ∂p

∂xi

+
1

Re
∆vi + f. (1.13)

For Re � 1 the viscosity of the flow dominates, for Re � 1 the flow is dominantly
convective. For Re→∞ one formally obtains the so-called Euler equations:

∂v

∂t
+ (v · grad)v + grad p = f.

If the transformed equations are multiplied by (L∗)2/(µU∗), one obtains

ρ(L∗)2

µt∗
∂v′i
∂t′

+
ρL∗U∗

µ

N∑
j=1

v′j
∂v′i
x′j

= −p
∗L∗

µU∗
∂p′

∂x′i
+ 1 ·∆v′i + f ′

with f ′ = ρ(L∗)2f/(µU∗). With the setting t∗ = (ρ(U∗)2)/µ, p∗ = (µU∗)/L∗ it follows that

∂vi

∂t
+Re

N∑
j=1

vj
∂vi

xj

= − ∂p

∂xi

+ ∆vi + f. (1.14)

In this formulation one obtains for Re = 0 the so-called Stokes equations:

∂v

∂t
−∆v + grad p = f. (1.15)



Chapter 2

Variational Problems

For simplicity we consider only linear boundary value problems:

2.1 Pure Displacement Problem in Linear(ized) Elas-

ticity

Let v = (v1, v2, v3)
T be a trial function from some suitable space V with v = 0 on ΓD. The

equilibrium conditions are multiplied component-wise by this trial function, are integrated
over Ω and are added. Then:

−
∫

Ω

div σ(u) · v dx =

∫
Ω

f · v dx.

From the product rule we obtain:

(div σ(u)T ) · v = div(σv)− σ : grad vT ,

the symmetry of σ implies:
σ : grad vT = σ : ε(v),

where the following notations are used:

f · v =
3∑

i=1

fiv i, σ : ε =
3∑

i,j=1

σij εij.

Hence ∫
Ω

σ(u) : ε(v) dx−
∫

Ω

div(σv) dx =

∫
Ω

f · v dx.

From Gauß’ theorem we obtain∫
Ω

div(σv) dx =

∫
Γ

σv · n ds.

17
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From the symmetry of σ and the boundary conditions for u and v it follows:∫
Γ

σv · n ds =

∫
Γ

σn · v ds =

∫
ΓN

σn · v ds =

∫
ΓN

tN · v ds.

Therefore, we obtain the following variational problem:

Find u ∈ Vg = {v ∈ V : v = uD on ΓD} such that

a(u, v) = 〈F, v〉 (2.1)

for all v ∈ V0 = {v ∈ V : v = 0 on ΓD} with

a(u, v) =

∫
Ω

σ(u) : ε(v) dx =

∫
Ω

Cε(u) : ε(v) dx

and

〈F, v〉 =

∫
Ω

f · v dx+

∫
ΓN

tN · v ds.

If σ and ε are interpreted as 9-dimensional vectors

σ = (σ11, σ22, σ33, σ12, σ21, σ23, σ32, σ31, σ13)
T ,

ε = (ε11, ε22, ε33, ε12, ε21, ε23, ε32, ε31, ε13)
T ,

then C becomes a 9-by-9 matrix and it follows:

a(u, v) =

∫
Ω

σ(u) · ε(v) dx =

∫
Ω

C ε(u) · ε(v) dx.

In the following it is assumed that C is symmetric and positive definite. Then it follows
that the bilinear form a is symmetric

a(u, v) = a(v, u) for all u, v ∈ V

and non-negative

a(v, v) ≥ 0 for all v ∈ V.

For the special case of St.Venant-Kirchhoff materials we have:

a(u, v) =

∫
Ω

[
λ

3∑
i=1

εii(u)
3∑

k=1

εkk(v) + 2µ
3∑

i,j=1

εij(u)εij(v)

]
dx

=

∫
Ω

[λ div u div v + 2µ ε(u) : ε(v)] dx.
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This corresponds to the setting

C =



λ+ 2µ λ λ
λ λ+ 2µ λ
λ λ λ+ 2µ

2µ
2µ

2µ
2µ

2µ
2µ


.

C has exactly 2 different eigenvalues:

λmin(C) = 2µ, λmax(C) = 3λ+ 2µ.

So, in this case, C is symmetric and positive definite.
From the symmetry and the positivity of the bilinear form a it easily follows that the

variational problem (2.1) is equivalent to the following optimization problem:

Find u ∈ Vg such that
J(u) = inf

v∈Vg

J(v)

with

J(v) =
1

2
a(v, v)− 〈F, v〉.

A natural choice for the space V is the Sobolev spaceH1(Ω,R3). Observe thatH1(Ω,R3)
is a Hilbert space. ‖v‖1 denotes the norm in H1(Ω,R3), |v|1 the semi-norm, built from the
first derivatives, and ‖v‖0 the L2-norm .

Furthermore, we assume that there is a function g ∈ V such that g = uD on ΓD. Then
the problem can be homogenized. Therefore, in the following, we consider, without loss of
generality, only the homogeneous problem Vg = V0 = H1

0,D(Ω,R3) with

H1
0,D(Ω,R3) = {v ∈ H1(Ω,R3) : v = 0 on ΓD}.

The theorem of Lax-Milgram guarantees the existence and uniqueness of a solution
to (2.1):

Theorem 2.1 (Lax-Milgram). Let V0 be a real Hilbert space and assume that

1. F ∈ V ∗0 .

2. a : V0 × V0 −→ R is a bilinear form, which is

(a) bounded on V0, i.e.: there is a constant µ2 > 0 with

|a(u, v)| ≤ µ2 ‖u‖V0 ‖v‖V0 , for all u, v ∈ V0,

and
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(b) coercive on V0, i.e.: there is a constant µ1 > 0 with

|a(v, v)| ≥ µ1 ‖v‖2
V0

for all v ∈ V0.

Then the variational problem: find u ∈ V0 such that

a(u, v) = 〈F, v〉 for all v ∈ V0,

has a unique solution and we have

‖u‖V0 ≤
1

µ1

‖F‖V ∗
0
.

For
f ∈ L2(Ω,R3) and tN ∈ L2(ΓN ,R3)

the standard assumptions can be verified:

1. F is linear: trivial. From the Cauchy inequality it follows:

|〈F, v〉| ≤ ‖f‖0,Ω ‖v‖0,Ω + ‖tN‖0,ΓN
‖v‖0,ΓN

.

From
‖v‖0,Ω ≤ ‖v‖1,Ω and ‖v‖0,ΓN

≤ c(ΓN) ‖v‖1,Ω

the boundedness of F follows.

2. a is bilinear: trivial.

(a) a is bounded:

|a(u, v)| ≤
∫

Ω

|Cε(u) : ε(v)| dx

≤ λmax(C)

∫
Ω

‖ε(v)‖`2 ‖ε(u)‖`2 dx

≤ λmax(C)

(∫
Ω

‖ε(u)‖2
`2
dx

)1/2(∫
Ω

‖ε(v)‖2
`2
dx

)1/2

.

Now: [
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)]2

≤ 1

2

[(
∂vi

∂xj

)2

+

(
∂vj

∂xi

)2
]
,

hence∫
Ω

‖ε(v)‖2
`2
dx =

3∑
i,j=1

∫
Ω

εij(v)
2 dx ≤ 1

2

3∑
i,j=1

∫
Ω

[(
∂vi

∂xj

)2

+

(
∂vj

∂xi

)2
]
dx

=
1

2

(
|v|21 + |v|21

)
= |v|21 ≤ ‖v‖2

1.

This implies:

|a(u, v)| ≤ λmax(C) |u|1 |v|1 ≤ λmax(C) ‖u‖1 ‖v‖1.
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(b) a is coercive:

a(v, v) =

∫
Ω

C ε(v) : ε(v) dx ≥ λmin(C)

∫
Ω

ε(v) : ε(v) dx.

Next we need Korn’s inequality:

For the case ΓD = Γ (first boundary value problem) the proof of Korn’s inequality is
simple. Here we have

V0 = H1
0 (Ω,R3).

Lemma 2.1 (First Korn Inequality). Let Ω ⊂ R3 be open. Then∫
Ω

ε(v) : ε(v) dx ≥ 1

2
|v|21 for all v ∈ V0 = H1

0 (Ω,R3).

Proof. The set C∞0 (Ω) is dense in H1
0 (Ω). Therefore, it suffices to show the inequality for

all v ∈ C∞0 (Ω,R3):

3∑
i,j=1

∫
Ω

εij(v) εij(v) dx =
1

2

3∑
i,j=1

∫
Ω

εij(v)

(
∂vi

∂xj

+
∂vj

∂xi

)
dx =

3∑
i,j=1

∫
Ω

εij(v)
∂vi

∂xj

dx

=
1

2

3∑
i,j=1

∫
Ω

(
∂vi

∂xj

)2

dx+
1

2

3∑
i,j=1

∫
Ω

∂vi

∂xj

∂vj

∂xi

dx

=
1

2
|v|21 +

1

2

3∑
i,j=1

∫
Ω

∂vi

∂xj

∂vj

∂xi

dx.

Using integration by parts twice it follows:

3∑
i,j=1

∫
Ω

∂vi

∂xj

∂vj

∂xi

dx =
3∑

i,j=1

∫
Ω

∂vi

∂xi

∂vj

∂xj

dx =

∫
Ω

(div v)2 dx ≥ 0.

This completes the proof.

This easily implies the coercivity of the first boundary value problem:

a(v, v) ≥ λmin(C)

∫
Ω

ε(v) : ε(v) dx ≥ λmin(C)

2
|v|21 ≥

λmin(C)

2(1 + c2F )
‖v‖2

1,

where cF denotes the constant from Friedrichs’ inequality:

‖v‖0 ≤ cF |v|1,

from which it immediately follows that:

‖v‖2
1 ≤ (1 + c2F )|v|21.

For proving the coercivity of the second boundary value problem (ΓN = Γ) and the
mixed boundary value problem (ΓD 6= ∅ and ΓN 6= ∅) the second Korn inequality is needed:
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Lemma 2.2 (Second Korn Inequality). Let Ω ⊂ Rd be open and bounded with a Lipschitz-
continuous boundary. Then there is a constant cK = cK(Ω) > 0 such that∫

Ω

ε(v) : ε(v) dx+ ‖v‖2
0 ≥ c2K ‖v‖2

1 for all v ∈ H1(Ω,Rd).

The proof of the second Korn inequality is similar to the proof of the so-called inf-sup
condition of the divergence operator, discussed later. For d = 2 the statements are even
equivalent.

A proof of the second Korn inequality can be found, e.g., in [4], [10].
In order to conclude coercivity from the second Korn inequality, we first need the kernel

of ε(v):

Lemma 2.3. Let Ω ⊂ R3 be open and connected. Then:

ε(v) = 0 ⇐⇒ v(x) = a× x+ b

with some constant vectors a, b ∈ R3.

Proof. Assume ε(v) = 0. Then we have (in H−1(Ω)):

∂2

∂xi∂xj

vk =
∂

∂xi

εjk(v) +
∂

∂xj

εik(v)−
∂

∂xk

εij(v) = 0.

Therefore, v is a linear function:

v(x) = Ax+ b,

where A is a real 3-by-3 matrix. Hence

ε(v) =
1

2

(
A+ AT

)
and

ε(v) = 0 ⇐⇒ A = −AT ⇐⇒ A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 .

Since

Ax = a× x

with a = (a1, a2, a3)
T , the proof is completed. The reverse direction is trivial.

Now the coercivity can be shown for the mixed and the second boundary value problem:

Corollary 2.1. Let Ω ⊂ R3 be a open, bounded and connected domain with Lipschitz-
continuous boundary Γ = ∂Ω. Then:
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1. If ΓD ⊂ Γ with meas2(ΓD) 6= 0, then there exists a constant cK = cK(Ω) > 0 such
that ∫

Ω

ε(v) : ε(v) dx ≥ c2K |v|21

for all V0 = H1
0,D(Ω,R3).

2. If ΓD = ∅, then there exists a constant cK = cK(Ω) > 0 with∫
Ω

ε(v) : ε(v) dx ≥ c2K |v|21

for all V0 = Ĥ(Ω) = {v ∈ V = H1(Ω,R3) |
∫

Ω
v dx = 0,

∫
Ω

curl v dx = 0}.

Proof. Assume that the inequality does not hold. Then there is a sequence (vn) in V0 with∫
Ω

ε(vn) : ε(vn) dx→ 0 and |vn|1 = 1.

From Friedrichs’ inequality or Poincaré’s inequality it follows that there is a constant c > 0
with

‖vn‖1 ≤ c |vn|1 = c for all n ∈ N.

Hence (vn) is a bounded sequence in H1(Ω,R3).
The embedding H1(Ω,R3) −→ L2(Ω,R3) is compact. Therefore, there exists a sub-

sequence (vn′) which converges in L2(Ω,R3).
The second Korn inequality implies

c2K ‖vn′ − vm′‖2
1 ≤

∫
Ω

ε(vn′ − vm′) : ε(vn′ − vm′) dx+ ‖vn′ − vm′‖2
0

≤ 2

∫
Ω

ε(vn′) : ε(vn′) dx+ 2

∫
Ω

ε(vm′) : ε(vm′) dx+ ‖vn′ − vm′‖2
0 −→ 0

for n′,m′ →∞.
So (vn′) converges in H1(Ω,R3) towards some element v0. Then, however:

ε(v0) = lim
n′→∞

ε(vn′) = 0

and, therefore, v0 = 0 because of definition of V0 and Lemma 2.3 in contradiction to

|v0|1 = lim
n′→∞

|vn′|1 = 1.

In summary, we have
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Corollary 2.2. Under the assumptions of Lemma 2.1 and Corollary 2.1 the bilinear form
a is coercive on V0 with

a(v, v) ≥ µ1 |v|21
where

µ1 = λmin(C) c2K .

So all assumptions of the theorem of Lax-Milgram are satisfied and we have:

Theorem 2.2. Under the appropriate assumptions the formulated boundary value problems
in linear(ized) elasticity are well-posed.

Remark: In the case of pure Neumann boundary conditions the so-called compatibility
conditions ∫

Ω

f dx+

∫
Γ

tN ds = 0 and

∫
Ω

x× f dx+

∫
Γ

x× tN ds = 0,

are necessary and sufficient that a solution of the variational problem in V0 is also a solution
of the variational problem in V = H1(Ω,R3). The solution in V is unique up to an arbitrary
element from the kernel of ε(v).

For estimating the discretization error or the condition number of the stiffness matrix for
finite element methods the ratio µ2/µ1 (the condition number of the problem) is of essential
importance. Using |v|1 as the norm in V0, which is equivalent to ‖v‖1 by Friedrichs’ or
Poincaré’s inequality, we obtain the following estimate for this condition number

µ2

µ1

≤ λmax(C)

λmin(C)

1

c2K
= κ(C)

1

c2K
,

where κ(C) = λmax(C)/λmin(C) denotes the condition number of C .
For certain values of the data (Ω, ΓD, ΓN , C, f and g) the condition number µ2/µ1 can

become very large, e.g.:

1. Almost incompressible materials: For ν → 1/2 we have:

κ(C) =
3λ+ 2µ

2µ
=

1 + ν

1− 2 ν
→∞.

This is called material locking.

2. Long cantilever (Kragbalken):

In this case the constant in Korn’s inequality is very large:

c−1
K = sup

v∈V0

|v|1
‖ε(v)‖0

≥

√
1 + 2

(
L

H

)2

= O

(
L

H

)
−→∞

for H � L. (Choose v(x, y, z) = (2xy,−x2, 0)T ∈ V0.) This phenomenon is called
geometry locking.
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2.2 Mixed Variational Problems in Continuum Me-

chanics

2.2.1 Incompressible and Almost Incompressible Materials

We consider only the case of a St.Venant-Kirchhoff material. The (primal) variational
problem reads:

Find u ∈ Vg, such that∫
Ω

[λ div u div v + 2µ ε(u) : ε(v)] dx =

∫
Ω

f · v dx+

∫
ΓN

tN · v ds

for all v ∈ V0.
For λ −→∞, i.e.: ν = λ/(2(λ+µ)) −→ 1/2 the problem becomes very ill-conditioned.

The basic idea is to derive a so-called mixed variational formulation by introducing a new
variable

p = λ div u.

Then

2µ

∫
Ω

ε(u) : ε(v) dx+

∫
Ω

p div v dx =

∫
Ω

f · v dx+

∫
ΓN

tN · v ds

for all v ∈ V0 and ∫
Ω

q div u dx− 1

λ

∫
Ω

p q dx = 0

for all q ∈ L2(Ω). So the following mixed variational problem results:

Find u ∈ Vg and p ∈ L2(Ω), such that

a(u, v) + b(v, p) = 〈F, v〉 for all v ∈ V0,

b(u, q)− t2 c(p, q) = 0 for all q ∈ L2(Ω)

with

a(u, v) = 2µ

∫
Ω

ε(u) : ε(v) dx, b(v, p) =

∫
Ω

p div v dx, c(p, q) =

∫
Ω

p q dx

and

〈F, v〉 =

∫
Ω

f · v dx+

∫
ΓN

tN · v ds, t2 =
1

λ
.

For the limit case t = 0 the following variational problem is obtained:

Find u ∈ Vg and p ∈ L2(Ω), such that

a(u, v) + b(v, p) = 〈F, v〉 for all v ∈ V0,
b(u, q) = 0 for all q ∈ L2(Ω)

for describing incompressible materials.
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2.2.2 The Stokes Problem in Fluid Mechanics

Consider the steady state Stokes problem in some domain Ω:

−ν∆u+ grad p = f in Ω,

div u = 0 in Ω,

where, instead of the original notation v from now on the velocity is denoted by u and, for
simplicity we set ρ = 1.

Here we will consider only the boundary condition:

u = uD, x ∈ Γ.

Let v be a trial function with v = 0 on Γ. By multiplying the balance law of momentum
by v and integrating over Ω we obtain:

−ν
∫

Ω

∆u · v dx+

∫
Ω

grad p · v dx =

∫
Ω

f · v dx.

By integration by parts it follows:∫
Ω

∆u · v dx =

∫
∂Ω

∂u

∂n
· v ds−

∫
Ω

gradu : grad v dx = −
∫

Ω

gradu : grad v dx

and ∫
Ω

grad p · v dx =

∫
∂Ω

p v · n ds−
∫

Ω

p div v dx = −
∫

Ω

p div v dx.

Therefore, we obtain the following weak form of the balance law of momentum:

ν

∫
Ω

gradu : grad v dx−
∫

Ω

p div v dx =

∫
Ω

f · v dx.

The weak form of the law of continuity is obtained by multiplying with an arbitrary trial
function q ∈ L2(Ω) and integrating over Ω:∫

Ω

q div u dx = 0.

In summary the weak or variational form of the Stokes equation reads:

Find u ∈ Vg and p ∈ L2(Ω), such that

a(u, v) + b(v, p) = 〈F, v〉 for all v ∈ V0,

b(u, q) = 0 for all q ∈ L2(Ω)

with

a(u, v) = ν

∫
Ω

gradu : grad v dx, b(v, q) = −
∫

Ω

q div v dx,

〈F, v〉 = F (v) =

∫
Ω

f · v dx

and the spaces

V = H1(Ω,R3), V0 = H1
0 (Ω,R3), Vg = {v ∈ V : v = uD on Γ}.
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2.2.3 The Hellinger-Reissner Formulation for Linear Elasticity

Starting point is the following classical formulation : Find the displacement u and the
stress σ, such that:

C−1 σ − ε(u) = 0 in Ω,

div σ = −f in Ω,

u = uD on ΓD,

σ n = tN on ΓN .

Let τ be a mapping from Ω to S = R3×3
sym, the space of symmetric 3-by-3 matrices. By

multiplying the first equation component-wise by the trial function τ , integrating over Ω
and adding, we obtain: ∫

Ω

C−1σ : τ dx−
∫

Ω

τ : ε(u) dx = 0.

Let v be a trial function mapping from Ω to R3 with v = 0 on ΓD. By multiplying the
second equation component-wise by v, integrating over Ω, and adding, we obtain (after
integration by parts):

−
∫

Ω

σ : ε(v) dx = −
∫

Ω

f · v dx−
∫

ΓN

tN · v ds.

Therefore, the following mixed variational problem results:

Find σ ∈ L2(Ω,S) and u ∈ Vg ⊂ H1(Ω,R3) (see the primal variational problem) such that

a(σ, τ) + b(τ, u) = 0 for all τ ∈ L2(Ω,S),

b(σ, v) = 〈G, v〉 for all v ∈ V0

with

a(σ, τ) =

∫
Ω

C−1σ : τ dx, b(τ, u) = −
∫

Ω

τ : ε(u) dx

and

〈G, v〉 = −
∫

Ω

f · v dx−
∫

ΓN

tN · v dx.

The norm ‖.‖L2(Ω,S) (or, in short ‖.‖0) in the space L2(Ω,S) is given by

‖τ‖2
L2(Ω,S) =

3∑
i,j=1

‖τij‖2
0.

Another variational formulation is obtained by using integration by parts for the second
term in the first equation:∫

Ω

τ : ε(u) dx =

∫
Ω

τ : gradu dx =

∫
Γ

τ n · u ds−
∫

Ω

div τ · u dx
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Then we obtain for trial functions τ mapping from Ω to S with τ n = 0 on ΓN :∫
Ω

C−1σ : τ dx+

∫
Ω

div τ · u dx =

∫
ΓD

τ n · uD ds.

Without using integration by parts the second equation reads for arbitrary trial functions
v mapping Ω to R3: ∫

Ω

div σ · v dx = −
∫

Ω

f · v dx.

Then the following mixed variational problem results:

Find σ ∈ Vg and u ∈ Q = L2(Ω,R3), such that

a(σ, τ) + b(τ, u) = 〈F, τ〉 for all τ ∈ V0,

b(σ, v) = 〈G, v〉 for all v ∈ Q

with

a(σ, τ) =

∫
Ω

C−1σ : τ dx, b(τ, u) =

∫
Ω

div τ · u dx

and

〈F, τ〉 =

∫
ΓD

τ n · uD ds, 〈G, v〉 = −
∫

Ω

f · v dx

and the spaces

V = H(div,Ω,S) = {τ = (τij) ∈ L2(Ω,S) : div τ ∈ L2(Ω,R3)},

V0 = H0,N(div,Ω,S), Vg = {τ ∈ V : ”τ n = g on ΓN”}.

with

H0,N(div,Ω,S) = {τ ∈ V : ”τ n = 0 on ΓN”}
= {τ ∈ V : 〈τ n, v〉 = 0 for all v ∈ H1

0,D(Ω,R3)}.

The norm ‖.‖H(div,Ω,S) in the space V is given by

‖τ‖2
H(div,Ω,S) = ‖τ‖2

0 + ‖ div τ‖2
0.

It can be shown that V is a Hilbert space and the trace τ n is well-defined in V .
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Remark:

1. Observe that for the second variant of the Hellinger-Reissner formulation the bound-
ary condition

u = uD on ΓD

is a natural boundary condition, while

σ n = tN on ΓN

is an essential boundary condition. For the original primal variational formulation
and the first form of the mixed variational formulation the situation is the opposite.

2. In applications it is often more important to obtain accurate information on stresses
than on the displacement. The second variant of the Hellinger-Reissner formulation
helps in this direction.

3. For the case of pure Dirichlet boundary conditions (ΓN = ∅) one chooses the space

V0 = {τ ∈ H(div,Ω,S) |
∫

Ω

trace τ dx = 0}

for the second variant of the Hellinger-Reissner formulation to ensure uniqueness of
the solution.

2.3 The Theorems of Brezzi and Babuška-Aziz

All mixed variational problems considered so far have the following form (after homoge-
nization):

Find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = 〈F, v〉 for all v ∈ V,
b(u, q)− t2 c(p, q) = 〈G, q〉 for all q ∈ Q,

where V and Q are suitable Hilbert spaces, a : V × V −→ R, b : V × Q −→ R and
c : Q × Q −→ R are bounded bilinear forms, F : V −→ R and G : Q −→ R are bounded
linear functionals, and t is a real parameter with t ≥ 0.

In the special case t = 0 we obtain the problem

Find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = 〈F, v〉 for all v ∈ V,
b(u, q) = 〈G, q〉 for all q ∈ Q.
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Remark: Let V ∗ and Q∗ be the dual spaces of V and Q. The operators A : V −→ V ∗,
B : V −→ Q∗, B∗ : Q −→ V ∗, and C : Q −→ Q∗ are defined by

〈Au, v〉 = a(u, v), 〈Bv, q〉 = b(v, q), 〈B∗q, v〉 = b(v, q), 〈Cp, q〉 = c(p, q).

The operator B∗ is called the adjoint (operator) of B.
Then we obtain the following representation of the mixed variational problem as oper-

ator equations:

Au+B∗v = F,

Bu− t2Cp = G.

Remark: The mixed variational problem can also be formulated as a non-mixed varia-
tional problem on V ×Q:

Find (u, p) ∈ V ×Q, such that

B((u, p), (v, q)) = 〈F, v〉+ 〈G, q〉 for all (v, q) ∈ V ×Q

with
B((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q)− t2 c(p, q).

Observe that B cannot be coercive for non-negative bilinear forms c:

B((0, q), (0, q)) = −t2 c(q, q) ≤ 0.

Therefore, the theorem of Lax-Milgram is not applicable.

Remark: If, in addition, a and c are symmetric and non-negative bilinear forms, then the
mixed variational problem can be formulated as a saddle point problem:

Find (u, p) ∈ V ×Q, such that

L(u, q) ≤ L(u, p) ≤ L(v, p)

with

L(v, q) =
1

2
a(v, v) + b(v, q)− t2

2
c(q, q)− 〈F, v〉 − 〈G, q〉.

Remark: If C is invertible, then one obtains the following equivalent unconstrained opti-
mization problem for t > 0:

Find u ∈ V , such that
Jt(u) = inf

v∈V
Jt(v)

with

Jt(v) =
1

2
a(v, v)− 〈F, v〉+

1

2t2
〈Bv −G,C−1(Bv −G)〉.
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This can be interpreted as a penalty method for solving the constrained optimization
problem:

Find u ∈ V , such that

J(u) = inf
v∈Vg

J(v)

with

J(v) =
1

2
a(v, v)− 〈F, v〉

and

Vg = {v ∈ V | b(v, q) = 〈G, q〉 for all q ∈ Q}.

The next theorem is of central importance:

Theorem 2.3 (Closed Range Theorem). Let X and Y be real Hilbert spaces, A : X −→
Y ∗ be a linear continuous operator and A∗ : Y −→ X∗ be the adjoint operator, given by
〈A∗y, x〉 = 〈Ax, y〉. Then the following statements are equivalent:

1. ImA is closed;

2. ImA∗ is closed;

3. ImA = (KerA∗)◦;

4. ImA∗ = (KerA)◦.

The following notations were used: W ◦ ⊂ Z∗ denotes the polar of the sub-spaceW ⊂ Z:

W ◦ = {l ∈ Z∗ | 〈l, w〉 = 0 for all w ∈ W}.

An immediate consequence of this theorem is:

Corollary 2.3. Let X and Y be real Hilbert spaces, A : X −→ Y ∗ be a linear and contin-
uous operator, a : X × Y −→ R be the corresponding bilinear form, and A∗ : Y −→ X∗ be
the adjoint operator, given by 〈A∗y, x〉 = a(x, y) = 〈Ax, y〉. Then the following statements
are equivalent:

1. There is a constant µ1 > 0 with

inf
0 6=x∈X

sup
0 6=y∈Y

a(x, y)

‖x‖X ‖y‖Y

≥ µ1 > 0. (2.2)

2. A : X −→ (KerA∗)◦ is an isomorphism, and there is a constant µ1 > 0 with

‖Ax‖Y ∗ ≥ µ1 ‖x‖X for all x ∈ X. (2.3)
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3. A∗ : (KerA∗)⊥ −→ X∗ is an isomorphism, and there is a constant µ1 > 0 with

‖A∗y‖X∗ ≥ µ1 ‖y‖Y for all y ∈ (KerA∗)⊥. (2.4)

3.’ There is a constant µ1 > 0 such that, for each x∗ ∈ X∗, there exists a y ∈ Y with

A∗y = x∗ and ‖y‖Y ≤
1

µ1

‖x∗‖X∗ .

3.” A∗ : Y −→ X∗ is surjective.

Proof.
(1) =⇒ (2): From (2.2) = (2.3) it follows that A is injective and that ImA is closed:
Let (Axn)n∈N be a convergent sequence in ImA, i.e. Axn −→ y∗, then it follows because

of (2.2) = (2.3), that the sequence (xn)n∈N also converges in Y : xn −→ x and Axn −→ Ax
since A is continuous. Hence y∗ = Ax ∈ ImA.

Then it follows from the Closed Range Theorem that ImA = (KerA∗)◦. So, A : x −→
(KerA∗)◦ is bijective and continuous. The inverse mapping is continuous because of (2.2)
= (2.3).

(2) =⇒ (1): trivial
(2) ⇐⇒ (3): The equivalence of the isomorphism of A and A∗ directly follows from the

Closed Range Theorem. It remains to show the equivalence of the inequalities:
Assume (2.3) and let y ∈ (KerA∗)⊥. Then (y, .)Y ∈ (KerA∗)◦. Therefore, a x ∈ X

exists with Ax = (y, .)Y because of (2) and it follows:

‖A∗y‖X∗ ≥ a(x, y)

‖x‖X

=
‖y‖2

Y

‖x‖X

=
‖(y, .)X‖X∗

‖x‖X

‖y‖Y =
‖Ax‖Y ∗

‖x‖X

‖y‖Y ≥ µ1 ‖y‖Y .

Assume (2.4) and let x ∈ X, then (x, .)X ∈ X∗. Therefore, a y ∈ (KerA∗)⊥ exists with
A∗y = (x, .)X and it follows:

‖Ax‖Y ∗ ≥ a(x, y)

‖y‖Y

=
‖x‖2

X

‖y‖Y

=
‖(x, .)X‖X∗

‖y‖Y

‖x‖X =
‖A∗y‖X∗

‖y‖Y

‖x‖X ≥ µ1 ‖x‖X .

(3) =⇒ (3′): For y choose the unique solution of A∗y = x∗ in (KerA∗)⊥.
(3′) =⇒ (3): (3’) implies that A∗ is surjective. It remains to show that (2.4) is satisfied:

Let y ∈ (KerA∗)⊥ and set x∗ = A∗y. From (3) it follows that there exists a ỹ ∈ Y with
A∗ỹ = x∗ and

‖ỹ‖Y ≤
1

µ1

‖x∗‖X∗ =
1

µ1

‖A∗y‖X∗ .

Since ỹ − y ∈ KerA∗ and y ∈ (KerA∗)⊥, we have ‖y‖Y ≤ ‖ỹ‖Y .
(3) =⇒ (3′′): trivial
(3′′) =⇒ (3): By the Open Mapping Theorem it follows that the inverse of a bijective

mapping is continuous, which implies the existence of µ1.
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Now the theorem of Babuška and Aziz can be easily shown:

Theorem 2.4 (Babuška and Aziz). Let X and Y be real Hilbert spaces, A : X −→ Y ∗ be
a linear and continuous operator with corresponding bilinear form a : X × Y −→ R, given
by a(x, y) = 〈Ax, y〉. Then A is an isomorphism if and only if the following conditions are
satisfied:

1. There exists a constant µ2 ≥ 0 with

|a(x, y)| ≤ µ2 ‖x‖X ‖y‖Y for all x ∈ X, y ∈ Y,

i.e.:
‖Ax‖Y ∗ ≤ µ2 ‖x‖X for all x ∈ X.

2. There exists a constant µ1 > 0 with

inf
0 6=x∈X

sup
0 6=y∈Y

a(x, y)

‖x‖X‖y‖Y

≥ µ1,

i.e.:
‖Ax‖Y ∗ ≥ µ1 ‖x‖X for all x ∈ X.

3. For each y ∈ Y with y 6= 0 there exists a x ∈ X with

a(x, y) 6= 0,

i.e.:
KerA∗ = {0}.

Proof. The statement immediately follows from Corollary 2.3.

Remark: From the theorem of Babuška-Aziz the theorem of Lax and Milgram follows:
Let X = Y = V , then the coercivity of a implies the second condition:

sup
v∈V

a(u, v)

‖v‖V

≥ a(u, u)

‖u‖V

≥ µ1 ‖u‖V .

The third condition also follows from the coercivity: For v 6= 0 choose u = v. Then:

a(u, v) = a(v, v) ≥ µ1 ‖v‖2
V > 0.

For mixed variational problems existence and uniqueness of a solution follow from the
theorem of Brezzi:

Theorem 2.5 (Brezzi). Let V and Q be real Hilbert spaces, F ∈ V ∗, G ∈ Q∗, a : V ×V −→
R and b : V ×Q −→ R be bilinear forms. Assume that there exist constants α1, α2, β1, β2 > 0
with
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1. |a(u, v)| ≤ α2‖u‖V ‖v‖V for all u, v ∈ V ,

2. |b(v, q)| ≤ β2‖v‖V ‖q‖Q for all v ∈ V , q ∈ Q,

3. a(v, v) ≥ α1‖v‖2
V for all v ∈ W = KerB = {v ∈ V : b(v, q) = 0 for all q ∈ Q},

4. inf
0 6=q∈Q

sup
0 6=v∈V

b(v, q)

‖v‖V ‖q‖Q

≥ β1 > 0.

Then the variational problem
Find u ∈ V and p ∈ Q, such that

a(u, v) + b(v, p) = 〈F, v〉 for all v ∈ V
b(u, q) = 〈G, q〉 for all q ∈ Q

has a unique solution and we have:

‖u‖V ≤ 1

α1

‖F‖V ∗ +
1

β1

(
1 +

α2

α1

)
‖G‖Q∗

‖p‖Q ≤ 1

β1

(
1 +

α2

α1

)
‖F‖V ∗ +

α2

β2
1

(
1 +

α2

α1

)
‖G‖Q∗

Proof. Condition (4) corresponds to the condition (1) in Corollary 2.3 for

X = Q, Y = V, A = B∗.

Because of Corollary 2.3 (3) there is a unique u0 ∈ W⊥ with

Bu0 = G

and we have

‖u0‖V ≤
1

β1

‖G‖Q∗ .

Let w ∈ W be the unique solution of the variational problem

a(w, v) = 〈F, v〉 − a(u0, v), for all v ∈ W.

From the theorem of Lax-Milgram it follows

‖w‖V ≤
1

α1

(‖F‖V ∗ + α2‖u0‖V ) .

Finally, from Corollary 2.3 (2) it follows that there exists a unique solution p ∈ Q of the
equation

B∗p = F − Au

with u = w + u0, since

〈F − Au,w〉 = 0 for all w ∈ W, so F − Au ∈ W ◦.



2.3. THE THEOREMS OF BREZZI AND BABUŠKA-AZIZ 35

and we obtain

‖p‖Q ≤
1

β1

(‖F‖V ∗ + α2‖u‖V ) .

Then u ∈ V and p ∈ Q solve the mixed variational problem and the following estimates
hold:

‖u‖V ≤ ‖u0‖V + ‖w‖V ≤ ‖u0‖V +
1

α1

(‖F‖V ∗ + α2‖u0‖V )

≤ 1

α1

‖F‖V ∗ +
1

β1

(
1 +

α2

α1

)
‖G‖Q∗

and

‖p‖Q ≤ 1

β1

(‖F‖V ∗ + α2‖u‖V )

≤ 1

β1

(
1 +

α2

α1

)
‖F‖V ∗ +

α2

β2
1

(
1 +

α2

α1

)
‖G‖Q∗ .

Remark: If, in addition, a is a symmetric bilinear form, then it can be shown that the
variational problem

Find u ∈ V , such that

a(u, v) + b(v, p) = 〈F, v〉 for all v ∈ V
b(u, q) = 〈G, q〉 for all q ∈ Q

is equivalent to the optimization problem:

Find u ∈ Vg, such that
J(u) = inf

v∈Vg

J(v)

with

J(v) =
1

2
a(v, v)− 〈F, v〉

and
Vg = {v ∈ V | b(v, q) = 〈G, q〉 for all q ∈ Q}.

2.3.1 Incompressible and Almost Incompressible Materials

First we consider the variational problem for incompressible materials. For simplicity only
the homogenous case uD = 0 is discussed:

Find u ∈ V and p ∈ L2(Ω), such that

a(u, v) + b(v, p) = 〈F, v〉 for all v ∈ V,
b(u, q) = 0 for all q ∈ L2(Ω),
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with

a(u, v) = 2µ

∫
Ω

ε(u) : ε(v) dx, b(v, q) =

∫
Ω

q div v dx

and

〈F, v〉 =

∫
Ω

f · v dx+

∫
ΓN

tN · v ds.

and

V =

{
H1

0,D(Ω,R3) for non-trivial ΓD

Ĥ(Ω) for ΓN = Γ

First we consider only the case of pure Dirichlet boundary conditions (ΓD = Γ):
It is obvious that p is not uniquely determined: Since

b(v, 1) =

∫
Ω

div v dx =

∫
Γ

v · n ds = 0

(u, p + c) is also a solution for each constant c ∈ R, if (u, p) is a solution. In order to
guarantee uniqueness, an additional scaling condition is introduced:∫

Ω

p dx = 0.

this leads to the variational problem:

Find u ∈ V = H1
0 (Ω,R3) and p ∈ Q = L2

0(Ω), such that

a(u, v) + b(v, p) = 〈F, v〉 for all v ∈ V,
b(u, q) = 0 for all q ∈ Q

with

L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q dx = 0}.

The two variational problems are equivalent in the following sense: Each solution of
this variational problem is also a solution of the original variational problem, and each
solution (u, p) of the original variational problem induces a solution (u, p′) with

p′(x) = p(x)− 1

|Ω|

∫
Ω

p(y) dy.

From the first Korn inequality it follows that a is coercive on V and, therefore, also
coercive on KerB ⊂ V .

It remains to prove the inf-sup condition.
Let p ∈ L2(Ω). The gradient of p can be introduced as the linear functional

grad p : H1
0 (Ω,R3) −→ R, given by

〈grad p, v〉 = −(p, div v)0 = −
∫

Ω

p div v dx.
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It is easy to see that grad p ∈ [H1
0 (Ω,Rd)]∗ = H−1(Ω,Rd). If p is interpreted as linear

functional (p, .)0, then p ∈ [H1
0 (Ω)]∗ = H−1(Ω). The norms of p in H−1(Ω) and grad p in

H−1(Ω) and H−1(Ω,Rd) are given by

‖p‖−1 = sup
0 6=q∈H1

0 (Ω)

(p, q)0

‖q‖1

, ‖ grad p‖1 = sup
0 6=v∈H1

0 (Ω,R3)

〈grad p, v〉
‖v‖1

= sup
v∈H1

0 (Ω,R3)

−(p, div v)0

‖v‖1

.

Then we have the following important inequality:

Lemma 2.4 (Nečas). Let Ω ⊂ Rd be a bounded and open set with Lipschitz-continuous
boundary. Then there exists a constant cN > 0, such that

‖p‖0 ≤ cN (‖p‖−1 + ‖ grad p‖−1) for all p ∈ L2(Ω). (2.5)

Proof. See [9], under stronger assumptions also [4].

Then it follows:

Theorem 2.6. Let Ω ⊂ Rd be a bounded, connected and open subset with Lipschitz-
continuous boundary. Then there exists a constant c > 0, such that

‖p‖0 ≤ c ‖ grad p‖−1 for all p ∈ L2
0(Ω). (2.6)

Proof. The embedding i : H1
0 (Ω) −→ L2(Ω) is compact. Therefore, the (adjoint) embed-

ding i∗ : L2(Ω) −→ H−1(Ω) is also compact.
Assume the inequality (2.6) is not valid. There there exists a sequence (pk) in L2

0(Ω)
with ‖pk‖0 = 1 and ‖ grad pk‖−1 → 0. Because of the compact embedding of L2(Ω) in
H−1(Ω) there exists a convergent sub-sequence (p′k) in H−1(Ω). From (2.5) it follows that
(p′k) is a Cauchy-sequence in L2(Ω) and, therefore, p′k → p in L2(Ω) with p ∈ L2

0(Ω).
We have: grad p = limk→∞ grad p′k = 0. Hence, p is constant, since p ∈ L2

0(Ω) it follows
p = 0, in contradiction to ‖p‖0 = ‖pk‖0 = 1.

Therefore, the inf-sup condition holds:

sup
v∈H1

0 (Ω,R3)

(p, div v)0

‖v‖1

= sup
v∈H1

0 (Ω,R3)

−(p, div v)0

‖v‖1

≥ 1

c
‖p‖0 for all p ∈ L2

0(Ω).

Remark: If Corollary 2.3 is applied to the case

X = Q = L2
0(Ω), Y = V = H1

0 (Ω,R3), A = B∗ = − grad: L2
0(Ω) −→ H−1(Ω,R3)

then the adjoint operator is the divergence:

A∗ = B = div : H1
0 (Ω,R3) −→ L2

0(Ω).

Condition (3”), which is equivalent to the inf-sup condition, then reads: div : H1
0 (Ω,R3) −→

L2
0(Ω) is surjective, i.e.: for each q ∈ L2

0(Ω) there is a v ∈ H1
0 (Ω,R3) with div v = q.
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The inf-sup condition can be shown in a similar way

1. for the spaces V = H1
0,D(Ω,R3) and Q = L2(Ω) in the case of non-trivial sets ΓD and

ΓN and

2. for the spaces V = Ĥ(Ω) and Q = L2(Ω) in the case of pure Neumann boundary
conditions (ΓN = Γ).

Summary:

The inf-sup condition is equivalent to the surjectivity of the operator B = div. Surjectivity
of div is guaranteed for the following settings:

1. div : H1
0 (Ω,R3) −→ L2

0(Ω). This covers the case ΓD = Γ (pure Dirichlet boundary
conditions);

2. div : H1
0,D(Ω,R3) −→ L2(Ω) if both ΓD and ΓN are non-trivial (mixed boundary

conditions);

3. div : Ĥ(Ω) −→ L2(Ω). This covers the case ΓN = Γ (pure Neumann boundary
conditions).

The mixed variational problem for almost incompressible materials is equivalent to the
pure displacement problem. Therefore, existence and uniqueness follow from the theorem
of Lax-Milgram. However, for the condition number one obtains

µ2

µ1

= κ(C)
1

c2K
,

which approaches to infinity for ν → 1/2. The question now is whether ν-independent
estimates are possible.

By the theorem of Brezzi the operator Kt : V ×Q −→ (V ×Q)∗, given by

〈Kt(u, p), (v, q)〉 = Bt((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q)− t2c(p, q),

is an isomorphism for t = 0. Under the assumption that c : Q×Q −→ R is bounded, i.e.:
there is a constant γ2 such that

|c(p, q)| ≤ γ2 ‖p‖Q‖q‖Q for all λ, µ ∈ Q,

it immediately follows that Kt as a small perturbation of the isomorphism Ko remains an
isomorphism for sufficiently small parameters t.

Under slightly stronger conditions one can show the following slightly stronger result
as an extension of the theorem of Brezzi:
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Theorem 2.7. Let V , Q be real Hilbert spaces, F ∈ V ∗, G ∈ Q∗, a : V × V −→ R,
b : V ×Q −→ R and c : Q×Q −→ R be bilinear forms. Assume that there exist constants
α1, α2, β1, β2, γ2 > 0 with

1. |a(u, v)| ≤ α2‖u‖V ‖v‖V for all u, v ∈ V ,

2. |b(v, q)| ≤ β2‖v‖V ‖q‖Q for all v ∈ V , q ∈ Q,

3. (a) a(v, v) ≥ 0 for all v ∈ V ,

(b) a(v, v) ≥ α1‖v‖2
V for all v ∈ W = KerB,

4. inf
0 6=q∈Q

sup
0 6=v∈V

b(v, q)

‖v‖V ‖q‖Q

≥ β1 > 0.

5. (a) c(q, q) ≥ 0 for all q ∈ Q.

(b) c(p, q) = c(q, p) for all p, q ∈ Q.

(c) |c(p, q)| ≤ γ2 ‖p‖Q‖q‖Q for all p, q ∈ Q.

Then the linear operator Kt : V ×Q −→ (V ×Q)∗, given by

〈Kt(u, p), (v, q)〉 = Bt((u, p), (v, q)),

with the bilinear form

Bt((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q)− t2c(p, q)

is an isomorphism and we have

‖Kt‖ ≤ ν2, ‖K−1
t ‖ ≤ 1

ν1

uniformly for all t ∈ [0, 1].

Proof. The upper bound easily follows from the boundedness of the bilinear forms:

sup
(v,q)∈V×Q

a(u, v) + b(v, p) + b(u, q)− t2 c(p, q)

‖(v, q)‖V×Q

≤ ν2 ‖(u, p)‖X×M

with
ν2 = (α2

2 + 2 β2
2 + γ2

2)
1/2.

For t = 0 it follows from the theorem of Brezzi, that there exists a constant µ1 > 0
such that

sup
(v,q)∈V×Q

a(u, v) + b(v, p) + b(u, q)

‖(v, q)‖V×Q

≥ µ1 ‖(u, p)‖V×Q

with
‖(v, q)‖2

V×Q = ‖v‖2
V + ‖q‖2

Q.
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Now we have:

t2 |c(p, q)| ≤ t |c(p, q)| ≤
[
t2 c(p, p) c(q, q)

]1/2 ≤ γ2

[
t2 c(p, p)

]1/2 ‖q‖Q

≤ γ2

[
t2 c(p, p)

]1/2 ‖(v, q)‖V×Q.

Hence one obtains:

sup
(v,q)∈V×Q

a(u, v) + b(v, p) + b(u, q)− t2c(p, q)

‖(v, q)‖V×Q

≥ µ1 ‖(u, p)‖V×Q − γ2

[
t2 c(p, p)

]1/2
.

On the other side it follows (set (v, q) = (u,−p)):

sup
(v,q)∈V×Q

a(u, v) + b(v, p) + b(u, q)− t2c(p, q)

‖(v, q)‖V×Q

≥ a(u, u) + b(u, p) + b(u,−p)− t2c(p,−p)
‖(u,−p)‖V×Q

=
a(u, u) + t2c(p, p)

‖(u, p)‖V×Q

≥ t2c(p, p)

‖(u, p)‖V×Q

So, in summary, we have:

sup
(v,q)∈V×Q

a(u, v) + b(v, p) + b(u, q)− t2c(p, p)

‖(v, q)‖V×Q

≥ max

(
µ1 ‖(u, p)‖X×Q

− γ2

[
t2 c(p, p)

]1/2
,

t2c(p, p)

‖(u, p)‖V×Q

)
.

Since

min
y≥0

max

(
µ1 x− γ2 y,

y2

x

)
=
ȳ2

x

with

µ1 x− γ2 ȳ =
ȳ2

x
,

i.e.:

ȳ =

(
−γ2

2
+

√
γ2

2

4
+ µ1

)
x,

it follows that

max

(
µ1 x− γ2 y,

y2

x

)
≥

(
−γ2

2
+

√
γ2

2

4
+ µ1

)2

x

This implies:

sup
(v,µ)∈V×Q

a(u, v) + b(v, p) + b(u, µ)− t2c(p, µ)

‖(v, µ)‖V×Q

≥ ν1 ‖(u, p)‖V×Q.

with

ν1 =

(
−γ2

2
+

√
γ2

2

4
+ µ1

)2

=

(
2µ1

γ2 +
√
γ2

2 + 4µ1

)2

.

From the symmetry of Bt((u, p), (v, µ)) the third condition of the theorem of Babuška-
Aziz is satisfied.
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2.3.2 The Stokes Problem in Fluid Mechanics

The analysis is completely analogous to the case of incompressible materials.

2.3.3 The Hellinger-Reissner Formulation

The first variational formulation for the case of a non-trivial boundary part ΓD with uD = 0
has the following form:

Find σ ∈ V = L2(Ω,S) and u ∈ Q = H1
0,D(Ω,R3), such that

a(σ, τ) + b(τ, u) = 0 for all τ ∈ V,
b(σ, v) = 〈G, v〉 for all v ∈ Q

with

a(σ, τ) =

∫
Ω

C−1σ : τ dx, b(τ, u) = −
∫

Ω

τ : ε(u) dx

and

〈G, v〉 = −
∫

Ω

f · v dx−
∫

ΓN

tN · v ds.

Obviously G is linear and bounded.

a and b are bilinear and we have:

1. a is bounded:

|a(σ, τ)| = |(C−1σ, τ)0| ≤ λmax(C
−1)‖σ‖0 ‖τ‖0 =

1

λmin(C)
‖σ‖0 ‖τ‖0.

2. b is bounded:

|b(σ, v)| = |(σ, ε(v))0| ≤ ‖σ‖0 ‖ε(v)‖0 ≤ ‖σ‖0 |v|1.

3. a is coercive on KerB, since a is coercive even on V :

a(τ, τ) = (C−1τ, τ)0 ≥ λmin(C
−1)(τ, τ)0 =

1

λmax(C)
‖τ‖2

0.

4. b satisfies the inf-sup condition: Under the assumptions of Corollary 2.1 it follows:

sup
τ∈L2(Ω,S)

b(τ, v)

‖τ‖0

= sup
τ∈L2(Ω,S)

(τ, ε(v))0

‖τ‖0

≥ (ε(v), ε(v))0

‖ε(v)‖0

= ‖ε(v)‖0 ≥ cK |v|1.
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The second variational formulation for the case of a non-trivial boundary part ΓN with
tN = 0 has the following form:

Find σ ∈ V = H0,N(div,Ω,S) and u ∈ Q = L2(Ω,R3), such that

a(σ, τ) + b(τ, u) = 〈F, τ〉 for all τ ∈ V,
b(σ, v) = 〈G, v〉 for all v ∈ Q

with

a(σ, τ) =

∫
Ω

C−1σ : τ dx, b(τ, u) =

∫
Ω

div τ · u dx

and

〈F, τ〉 =

∫
ΓD

τ n · uD ds, 〈G, v〉 = −
∫

Ω

f · v dx.

Obviously the functionals F and G are linear and bounded.
a and b are bilinear and we have:

1. a is bounded:

|a(σ, τ)| ≤ 1

λmin(C)
‖σ‖0 ‖τ‖0 ≤

1

λmin(C)
‖σ‖H(div,Ω,S) ‖τ‖H(div,Ω,S).

2. b is bounded:

|b(σ, v)| = |(div σ, v)0‖ ≤ ‖ div σ‖0 ‖v‖0 ≤ ‖σ‖H(div,Ω,S) ‖v‖0.

3. a is coercive on KerB:

KerB = {τ ∈ H0,N(div,Ω,S) | (div τ, v)0 = 0 for all v ∈ L2(Ω,R3)}
= {τ ∈ H0,N(div,Ω,S) | div τ = 0}.

Hence

a(τ, τ) ≥ 1

λmax(C)
‖τ‖2

0 =
1

λmax(C)
‖τ‖2

H(div,Ω,S) for all τ ∈ KerB.

4. b satisfies the inf-sup condition: One has to show that div : H0,N(div,Ω,S) −→
L2(Ω,R3) is surjective: Let v ∈ L2(Ω,R3) be given. There exists a τ ∈ H0,N(div,Ω,S)
with div τ = v. For this we choose the ansatz τ = ε(u) with

(ε(u), ε(w))0 = −(v, w)0 for all w ∈ H1
0,D(Ω,R3).

From the discussion of the primal variational formulation the existence of such a u
and, consequently, the existence of τ is guaranteed and the following estimates hold:

‖ε(u)‖2
0 ≤ ‖v‖0 ‖u‖0 ≤ cF ‖v‖0 |u|1 ≤

cF
cK
‖v‖0 ‖ε(u)‖0,
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hence
‖τ‖0 ≤

cF
cK
‖v‖0

and, therefore,

‖τ‖2
H(div,Ω,S) ≤

(
1 +

c2F
c2K

)
‖v‖2

0

This finally implies

sup
τ∈V0

(div τ, v)0

‖τ‖H(div,Ω,S)

≥ cK√
c2F + c2K

‖v‖0.

For far the analysis was based on the coercivity in L2(Ω,S)

a(τ, τ) ≥ 1

λmax(C)
‖τ‖2

0 for all τ ∈ L2(Ω,S)

for the bilinear form

a(σ, τ) =

∫
Ω

C−1σ : τ dx = (C−1σ, τ)0.

For St.Venant-Kirchhoff materials in the almost incompressible case it follows that
ν −→ 1/2 and 1/λmax(C) −→ 0, while the norm of a is bounded uniformly in ν. This
implies that the estimate of the condition number of the problem approaches infinity in
this case.

By a refined analysis of the Hellinger-Reissner formulation one can actually show ν-
independent estimates.

Actually, by the theorem of Brezzi the L2(Ω,S)-coercivity is needed only on the sub-
space

Z =
{
τ ∈ L2(Ω,S)

∣∣ (τ, ε(v))0 = 0 for all v ∈ H1
0,D(Ω,R3)

}
= {τ ∈ H0,N(div,Ω,S) | div τ = 0}

We have

Lemma 2.5. There exists a constant c > 0 independent of ν with∫
Ω

C−1τ : τ dx ≥ c ‖τ‖2
0 for all τ ∈ Z.

Proof. We have:

σ(C−1) =

{
1− 2ν

E
,
1 + ν

E

}
λ1 = (1− 2ν)/E is a simple eigenvalue of C−1 with eigenvector σ1 = I and λ2 = (1+ ν)/E
is an eigenvalue of C−1 with multiplicity 8.

An arbitrary element τ ∈ Z can be written in the following way:

τ = τ1 + τD with τ1 =
1

3
trace(τ) I and τD = τ − 1

3
trace(τ) I.
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Since (τD, I)0 = 0, it follows that:

(C−1τ, τ)0 = λ1(τ1, τ1)0 + λ2(τD, τD)0.

From the inf-sup condition for div it follows that there exists an element v ∈ H1
0,D(Ω,R3)

such that
div v = trace(τ) with ‖v‖1 ≤ c1 ‖ trace(τ)‖0.

Then

(τ1, τ1)0 =
1

3
(trace(τ), trace(τ))0 =

1

3
(div v, trace(τ))0 =

1

3
(ε(v), trace(τ) I)0

= (ε(v), τ1)0 = (ε(v), τ − τD)0 = (v, div τ)0 − (ε(v), τD)0 = −(ε(v), τD)0,

This implies the following estimates:

‖τ1‖2
0 ≤ ‖ε(v)‖0 ‖τD‖0 ≤ ‖v‖1 ‖τD‖0 ≤ c1 ‖ trace(τ)‖0 ‖τD‖0 =

√
3 c1 ‖τ1‖0 ‖τD‖0,

hence
‖τ1‖0 ≤

√
3 c1 ‖τD‖0

and, therefore,
‖τ‖2

0 = ‖τ1‖2
0 + ‖τD‖2

0 ≤ (1 + 3 c21)‖τD‖2
0.

This implies:

(C−1τ, τ)0 ≥ λ2(τD, τD)0 ≥
λ2

1 + 3 c21
‖τD‖2

0 ≥
1

E(1 + 3 c21)
‖τ‖2

0.



Chapter 3

Finite Element Methods

3.1 FEM for the Primal Variational Problem

The pure displacement problem in elastostatics leads (after homogenization) to a (primal)
variational problem of the following form:

Find u ∈ V , such that
a(u, v) = 〈F, v〉 for all v ∈ V

with V ⊂ H1(Ω,R3).
We use Galerkin’s principle for discretization: An appropriate finite-dimensional sub-

space Vh ⊂ V is chosen and an approximate solution uh ∈ Vh is computed as the solution
of the (finite-dimensional) variational problem:

a(uh, vh) = 〈F, vh〉 for all vh ∈ Vh.

The standard assumptions of the theorem of Lax-Milgram for the continuous problem have
been shown, therefore, the standard assumptions of the theorem of Lax-Milgram are also
satisfied for the discrete problem. Hence there exists a unique solution of the discrete
problem and the solution depends continuously on the data.

Under the standard assumptions of the theorem of Lax-Milgram Cea’s lemma gives the
following estimate for the discretization error:

‖u− uh‖V ≤
µ2

µ1

inf
vh∈Vh

‖u− vh‖V .

So the discretization error can be estimates by the approximation error. The spaces Vh are
to be chosen such that the functions in V can be accurately approximated by functions in
Vh. The finite element method is based on a subdivision of the domain Ω ⊂ R3 in polyhedra
(e.g.: tetrahedra, hexahedra, . . . ). The functions in Vh are typically piecewise polynomial
functions with respect to this subdivision. In order to obtain conforming function spaces,
i.e. Vh ⊂ V ⊂ H1(Ω,R3), the functions have to be continuous.

A few examples of C0-elements (continuous elements):

45
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1. The P1-element on a tetrahedral subdivision: For each component of the displacement
continuous and piecewise linear elements are used.

2. TheQ1-element on a hexahedral subdivision: For each component of the displacement
on the unit cube (the reference element) trilinear elements (i.e. linear with respect
to each coordinate) are used. By a trilinear transformation from the unit cube to
an arbitrary hexahedron the so-called isoparametric trilinear element on hexahedral
subdivisions results.

3. Higher order elements on tetrahedral subdivisions (Pk-elements, continuous and piece-
wise polynomial of degree ≤ k) or on hexahedral subdivisions (Qk-elements, piecewise
polynomial of degree ≤ k in each coordinate of the unit cube, transformation to ar-
bitrary hexahedra).

Under appropriate assumptions the approximation error of Pk- and Qk-elements can be
estimated by:

inf
vh∈Vh

‖u− vh‖1 ≤ c hk ‖u‖k+1.

All these finite element functions are uniquely defined by their values at some nodes,
which allow the construction of a so-called nodal basis for Vh: For each node xj a unique
basis function ϕj is defined by prescribing the value 1 at this node, and 0 in all other nodes.
Then each function uh ∈ Vh can be represented in the form

uh(x) =
N∑

j=1

uj ϕj(x).

For the vector uh of the coefficients a linear system of equations results from the discrete
variational problem:

Khuh = f
h
.

The so-called stiffness matrix Kh is symmetric and positive definite as a consequence of
the properties of the bilinear form a.

The condition number of the stiffness matrix Kh is a measure of the degree of difficulty
for solving the linear system. Typically we have

κ(Kh) =
µ2

µ1

O(h−2),

where h denotes the mesh size of the subdivision (e.g.: the length of the longest edge of a
tetrahedral or hexahedral subdivision).

Efficient methods for solving the linear systems are multilevel or multigrid methods.
These methods can be accelerated by Krylov subspace methods (e.g. the CG method).

This short review shows the importance of the condition number µ2/µ1 of the variational
problem the discretization error as well as for the solution methods of the linear system.

In the case of almost incompressible materials the condition number µ2/µ1 diverges to
∞. This leads to a large discretization error and to growing difficulties for solving the
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linear systems. The actually computed displacements u are too small, in general (locking).
A remedy of this problems is provided by FE methods which are based on the mixed
variational formulation.

3.2 Mixed Finite Element Methods

An approximate solution of the mixed variational problem

a(u, v) + b(v, p) = 〈F, v〉 for all v ∈ V
b(u, q) = 〈G, q〉 for all q ∈ Q (P )

is obtained by chosen appropriate finite-dimensional subspaces

Vh ⊂ V, Qh ⊂ Q.

By Galerkin’s principle the approximate solutions uh ∈ Vh and ph ∈ Qh, solve the discrete
variational problem

a(uh, vh) + b(vh, ph) = 〈F, vh〉 for all vh ∈ Vh

b(uh, qh) = 〈G, qh〉 for all qh ∈ Qh.
(Ph)

Let {ϕj} be a basis for Vh and {ψk} a basis for Qh. Then these approximate solutions
can be represented in the following form:

uh =
∑

j

uj ϕj, ph =
∑

k

pk ψk.

From the discrete variational problem a linear system of equations is obtained:(
Ah BT

h

Bh 0

)(
uh

p
h

)
=

(
f

h

g
h

)
with

Ah = (a(ϕj, ϕi) ,

Bh = (b(ϕj, ψk) ,

uh = (uj) , p
h

= (pk) , f
h

= (〈F, ϕi〉) , g
h

= (〈G,ψk〉) .

The analysis of the discrete problem (Ph) is done analogously to the problem (P ).
We have the following generalization of Cea’s lemma:

Theorem 3.1. Assume the notations and assumptions of the theorem of Brezzi (2.5). Let

Vh ⊂ V , Qh ⊂ Q be finite-dimensional subspaces. Assume that there exist constants α̃1, β̃1

with
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3’ a(vh, vh) ≥ α̃1 ‖vh‖2
V for all vh ∈ Wh = KerBh = {vh ∈ Vh : b(vh, qh) = 0 for all

qh ∈ Qh},

4’ inf
0 6=qh∈Qh

sup
0 6=vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q

≥ β̃1 > 0.

Then the problem (Ph) has a unique solution (uh, ph) ∈ Vh ×Qh and:

‖u− uh‖V ≤
(

1 +
α2

α̃1

)(
1 +

β2

β̃1

)
inf

vh∈Vh

‖u− vh‖V +
β2

α̃1

inf
qh∈Qh

‖p− qh‖Q,

‖p− ph‖Q ≤
(

1 +
α2

α̃1

)(
1 +

β2

β̃1

)
α2

β̃1

inf
vh∈Vh

‖u− vh‖V

+

[
1 +

β2

β̃1

(
1 +

α2

α̃1

)]
inf

qh∈Qh

‖p− qh‖Q.

Proof. The existence and uniqueness of uh ∈ Vh and ph ∈ Qh follows from the theorem of
Brezzi. We have

a(u,w) + b(w, p) = 〈F,w〉 for all w ∈ V,
b(u, r) = 〈G, r〉 for all r ∈ Q.

and
a(uh, wh) + b(wh, ph) = 〈F,wh〉 for all wh ∈ Vh,
b(uh, rh) = 〈G, rh〉 for all rh ∈ Qh.

By subtracting one obtains

a(uh − u,wh) + b(wh, ph − p) = 0 for all wh ∈ Vh,
b(uh − u, rh) = 0 for all rh ∈ Qh.

Hence, we have for arbitrary vh ∈ Vh and qh ∈ Qh

a(uh − vh, wh) + b(wh, ph − qh) = a(u− vh, wh) + b(wh, p− qh) for all wh ∈ Vh,
b(uh − vh, rh) = b(u− vh, rh) for all rh ∈ Qh.

From the theorem of Brezzi it follows that

‖uh − vh‖V ≤ 1

α̃1

‖F̃‖V ∗
h

+
1

β̃1

(
1 +

α2

α̃1

)
‖G̃‖Q∗

h

‖ph − qh‖Q ≤ 1

β̃1

(
1 +

α2

α̃1

)
‖F̃‖V ∗

h
+
α2

β̃2
1

(
1 +

α2

α̃1

)
‖G̃‖Q∗

h

with
〈F̃ , wh〉 = a(u− vh, wh) + b(wh, p− qh) and 〈G̃, rh〉 = b(u− vh, rh).

Now we have:

‖F̃‖V ∗
h
≤ α2 ‖u− vh‖V + β2 ‖p− qh‖Q and ‖G̃‖Q∗

h
≤ β2‖u− vh‖V .
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With

‖u− uh‖V ≤ ‖u− vh‖V + ‖uh − vh‖V and ‖p− ph‖Q ≤ ‖p− qh‖Q + ‖ph − qh‖Q

the statement easily follows.

Observe that KerBh 6⊂ KerB, in general. Therefore, the coercivity of a on KerB does
not necessarily imply the coercivity of a on KerBh.

Similarly, the continuous inf-sup condition does not necessarily imply the discrete inf-
sup condition.

So the assumptions (3′) and (4′) must be explicitly verified for the chosen subspaces Vh

and Qh.
If these assumptions (3′) and (4′) hold with constants which are independent of h, then

the discretization error approaches 0 for h→ 0 if the approximation error does so.
A very helpful tool for showing the discrete inf-sup condition

inf
0 6=qh∈Qh

sup
0 6=vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q

≥ β̃1 > 0, (3.1)

is the following lemma:

Lemma 3.1. Assume there exists a linear operator Πh : V → Vh with

1. b(Πhv, qh) = b(v, qh) for all qh ∈ Qh and all v ∈ V and

2. ‖Πhv‖V ≤ c ‖v‖V for all v ∈ V .

Then the inf-sup condition for b and the spaces V and Q with a constant β1 > 0 implies
the discrete inf-sup condition for b and the spaces Vh and Qh with a constant β̃1 = β1/c.

Proof. We have:

β1 ‖qh‖Q ≤ sup
0 6=v∈V

b(v, qh)

‖v‖V

≤ c sup
0 6=v∈V

b(Πhv, qh)

‖Πhv‖V

≤ c sup
0 6=vh∈Vh

b(vh, qh)

‖vh‖V

.

By dividing by c the statement follows.

The operator Πh is called a Fortin operator.

3.3 Mixed FEM for the Stokes Problem

For simplicity only the case ΓD = Γ (pure Dirichlet boundary conditions) with uD = 0 is
considered.

The bilinear form a is coercive on V = H1
0 (Ω,Rd), therefore, a is also coercive on

KerBh ⊂ V with the same h-independent constant α̃1 = α1.
The discrete inf-sup condition for the bilinear form b with an h-independent constant

β̃1 > 0 has to be investigated explicitly.
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3.3.1 The Q1-P0 Element

Let Ω = (−1, 1) × (−1, 1), n ∈ N and h = 1/(2n). The nodes (xi, yj) with xi = i h and
yj = j h define a subdivision

Th = {Ti,j

∣∣∣ i, j = −2n, . . . , 2n− 1}

of Ω with the squares Ti,j = (xi, xi+1)× (yj, yj+1).

The following spaces are introduced:

C0(Ω,R2) = {v ∈ C(Ω,R2)
∣∣∣ v = 0 on Γ}

and

Pk = {w(x, y) =
∑

0≤i+j≤k

cij x
iyj},

Qk = {w(x, y) =
∑

0≤i,j≤k

cij x
iyj}.

Then the spaces Vh and Qh are defined by:

Vh = {v ∈ C0(Ω,R2)
∣∣∣ v|T ∈ Q1 for all T ∈ Th}

and

Qh = Q̂h ∩ L2
0(Ω) with Q̂h = {q ∈ L2(Ω)

∣∣∣ q|T ∈ P0 for all T ∈ Th}.

Obviously we have

Vh ⊂ V = H1
0 (Ω,R2) and Qh ⊂ Q = L2

0(Ω).

These spaces satisfy the following approximation properties:

1. For u ∈ H1
0 (Ω,R2) and p ∈ L2

0(Ω) we have:

lim
h→0

inf
vh∈Vh

‖u− vh‖1 = 0 and lim
h→0

inf
qh∈Qh

‖p− qh‖0 = 0.

2. Under the stronger assumption u ∈ H1
0 (Ω,R2) ∩H2(Ω,R2) and p ∈ L2

0(Ω) ∩H1(Ω)
we have: There is a constant C with

inf
vh∈Vh

‖u− vh‖1 ≤ C h ‖u‖2 and inf
qh∈Qh

‖p− qh‖0 ≤ C h ‖p‖1.
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Discussion of the inf-sup condition:

The functions ϕi,j ∈ {v ∈ C0(Ω)
∣∣ v|T ∈ Q1 for all T ∈ Th} are given by the conditions

ϕi,j(xk, yl) = δ(i,j),(k,l).

The following basis functions for Vh are used:

ϕi,j

(
1
0

)
and ϕi,j

(
0
1

)
with i, j = −2n+ 1, . . . , 2n− 1.

Then the following representation for an arbitrary function vh ∈ Vh follows:

vh =
2n−1∑

i,j=−2n+1

ϕi,j

(
ui,j

vi,j

)
.

The following basis functions for Q̂h are used:

ψi,j(x, y) =

{
1 for (x, y) ∈ Ti,j,
0 for (x, y) 6∈ Ti,j.

Then the following representation for an arbitrary function qh ∈ Q̂h follows:

qh =
2n−1∑

i,j=−2n

qi+ 1
2
,j+ 1

2
ψi,j.

With these representations one obtains:

−
∫

Ω

qh div vh dx = −
2n−1∑

i,j=−2n

∫
Ti,j

qh div vh dx = −
2n−1∑

i,j=−2n

qi+ 1
2
,j+ 1

2

∫
∂Ti,j

vh · n ds

= −
2n−1∑

i,j=−2n

qi+ 1
2
,j+ 1

2

[
1

2
(ui+1,j+1 + ui+1,j) +

1

2
(vi,j+1 + vi+1,j+1)

−1

2
(ui,j+1 + ui,j)−

1

2
(vi,j + vi+1,j)

]
h.

Since
2n−1∑

i,j=−2n

qi+ 1
2
,j+ 1

2
wi,j =

2n−1∑
i,j=−2n+1

qi+ 1
2
,j+ 1

2
wi,j

2n−1∑
i,j=−2n

qi+ 1
2
,j+ 1

2
wi+1,j =

2n−2∑
i=−2n

2n−1∑
j=−2n+1

qi+ 1
2
,j+ 1

2
wi+1,j =

2n−1∑
i,j=−2n+1

qi− 1
2
,j+ 1

2
wi,j

2n−1∑
i,j=−2n

qi+ 1
2
,j+ 1

2
w1,j+1 =

2n−1∑
i=−2n+1

2n−2∑
j=−2n

qi+ 1
2
,j+ 1

2
wi,j+1 =

2n−1∑
i,j=−2n+1

qi+ 1
2
,j− 1

2
wi,j

2n−1∑
i,j=−2n

qi+ 1
2
,j+ 1

2
wi+1,j+1 =

2n−2∑
i,j=−2n

qi+ 1
2
,j+ 1

2
wi+1,j+1 =

2n−1∑
i,j=−2n+1

qi− 1
2
,j− 1

2
wi,j
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it follows that

−
∫

Ω

qh div vh dx = h2

2n−1∑
i,j=−2n+1

[ui,j (∇1q)i,j + vi,j (∇2q)i,j]

with

(∇1q)i,j =
1

2h

[
qi+ 1

2
,j− 1

2
+ qi+ 1

2
,j+ 1

2
− qi− 1

2
,j− 1

2
− qi− 1

2
,j+ 1

2

]
,

(∇2q)i,j =
1

2h

[
qi− 1

2
,j+ 1

2
+ qi+ 1

2
,j+ 1

2
− qi− 1

2
,j− 1

2
− qi+ 1

2
,j− 1

2

]
.

From this representation it is easy to see that the function

µh =
2n−1∑

i,j=−2n

µi+ 1
2
,j+ 1

2
ψi,j

with
µi+ 1

2
,j+ 1

2
= (−1)i+j

satisfies:

b(vh, µh) = −
∫

Ω

µh div vh dx = 0 for all vh ∈ Vh.

That means that µh ∈ KerBT
h . Since, additionally,∫

Ω

µh = 0,

it follows that µh ∈ Qh and the inf-sup is not satisfied.

Remark: The function µh is called a “spurious pressure mode”, in this particular case it
is also called a “checkerboard mode” (“checkerboard instability”).

A first attempt to stabilize theQ1-P0 element is to consider only those functions qh ∈ Qh

which are orthogonal to µh:

Qh = {qh ∈ Qh

∣∣∣ ∫
Ω

qh µh dx = 0}.

Since the constant functions and the multiples of µh are the only functions in KerBT
h , there

exists a constant β̃1,h with

inf
0 6=qh∈Qh

sup
0 6=vh∈Vh

b(vh, qh)

‖vh‖1 ‖qh‖0

≥ β̃1,h > 0.

However, it can be shown that
β̃1,h = O(h).
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Hence there is no lower bound β̃1 > 0 which is independent of h.
In order to stabilize the Q1-P0 element, the space Qh must be further reduced: By

constructing one macro-element from 4 neighboring elements of the original subdivision Th

Mi,j = (x2i, x2i+2)× (y2j, y2j+2), i, j = −n, n− 1,

a second subdivision is obtained:

Mh = {Mi,j

∣∣∣ i, j = −n, . . . , n− 1}.

We introduce the following space:

Q2h = {q ∈ L2
0(Ω)

∣∣∣ q|M ∈ P0 for all M ∈Mh}.

Now we have

Theorem 3.2. For the spaces Vh and Q2h the discrete inf-sup condition is satisfied with a
constant independent of h.

Sketch of the proof: Let v ∈ H1
0 (Ω,R2). By Lemma 3.1 a vh ∈ Vh must be constructed

such that ∫
Ω

qh div(vh − v) dx = 0 for all qh ∈ Q2h.

This is equivalent to

0 =

∫
M

div(vh − v) dx =

∫
∂M

(vh − v) · n ds for all M ∈Mh.

Let M ∈ Mh be an arbitrary macro-element with vertices x1, x2, x3, x4 and midpoint
x5 and the edges S1, S2, S3, S4.

From the analysis from above it suffices for vh to satisfy the condition∫
Si

vh ds =

∫
Si

v ds for i = 1, 2, 3, 4.

Usually a function in Vh is defined by its values at the nodes. Here we fix vh by the
following conditions:

1. For the four vertices and the midpoint of the macro we prescribe the value of vh:

vh(xi) =


1

|∆i|

∫
∆i

v dx for xi ∈ Ω,

0 for xi ∈ Γ,

where ∆i is the union of all elements Tj of the original subdivision whose closure T j

contain xi as a vertex.
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2. Instead of prescribing the value of vh in the midpoints of the edges, we require∫
Si

vh ds =

∫
Si

v ds.

It is easy to check that vh is well-defined and continuous and vanishes on the boundary
Γ = ∂Ω, therefore vh ∈ Vh, and that the mapping v 7→ vh is linear.

By a so-called scaling argument one shows the existence of an h-independent constant
C with

‖vh‖1 ≤ C‖v‖1.

2

Remark:

1. Although the discrete inf-sup condition is not satisfied for the original spaces Vh

and Qh, the convergence uh → u can be shown. However, ph does not, in general,
converge to p.

2. The results can easily be carried over to more general quadrilateral subdivisions by
using the isoparametric bilinear element.

3.3.2 The P1-P0 Element

The corresponding element on triangular subdivisions is the P1-P0 element. In this case,
we have, in general

KerBh = {0},

since
dimQh > dimVh.

Proof. Obviously we have:

dimVh = 2Ni, dimQh = Ne,

where Ni denotes the number of nodes in Ω and Ne denotes the number of triangles of the
subdivision. For a general triangular subdivision we have:

Ne = 2Ni +Nr − 2 > 2Ni,

where Nr denotes the number of nodes in Γ.

The P1-P0 element can be stabilized analogously to the stabilization of the Q1-P0 el-
ement: Let Th be a triangular subdivision of Ω and let Th/2 be that refined triangular
subdivision which is obtained by uniform refinement: Each triangle T ∈ Th is subdivided
into four congruent sub-triangles.
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The spaces

Vh = {v ∈ C0(Ω,R2)
∣∣∣ v|T ∈ P1 for all T ∈ Th/2}

and
Qh = {q ∈ L2

0(Ω)
∣∣∣ q|T ∈ P0 for all T ∈ Th}

satisfy the discrete inf-sup condition with an h-independent constant. The proof is done
by constructing a Fortin operator analogously to the case of the Q1-P0 element.

The stabilized Q1-P0 element and the stabilized P1-P0 element are suitable finite el-
ements for the mixed variational problem for incompressible and almost incompressible
materials.

In the following we discuss in more details the application of this element for almost
incompressible materials:

The first equation reads

2µ

∫
Ω

ε(uh) : ε(vh) dx+

∫
Ω

ph div vh dx = 〈F, vh〉.

Since ph is piecewise constant, it follows∫
Ω

ph div vh dx =
∑
T∈Th

∫
T

ph div vh dx =
∑
T∈Th

1

|T |

∫
T

ph dx

∫
T

div vh dx,

where |T | denotes the area (volume) of T .
From the second equation∫

Ω

qh div uh dx−
1

λ

∫
Ω

ph qh dx = 0 for all qh ∈ Q̂h

we obtain: ∫
T

ph dx = λ

∫
T

div uh dx for all T ∈ Th.

Hence∫
Ω

ph div vh dx = λ
∑
T∈Th

1

|T |

∫
T

div uh dx

∫
T

div vh dx = λ
∑
T∈Th

div uh
T

div vh
T |T |,

where divwh
T

denotes the mean value of divwh over the element T . In summary, the
following (primal) variational problem for uh results:

2µ

∫
Ω

ε(uh) : ε(vh) dx+ λ
∑
T∈Th

div uh
T

div vh
T |T | = 〈F, vh〉 for all vh ∈ Vh.

This coincides with the discretization of the pure displacement problem in Vh, except that
instead of the original second term

λ

∫
Ω

div uh div vh dx
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the following approximation by a quadrature rule is used:

λ
∑
T∈Th

div uh
T

div vh
T |T |.

This technique is called selective reduced integration.

3.3.3 The MINI Element

Let Th be a triangular subdivision of the domain Ω ⊂ R2. Consider the so-called P1-P1

element on this subdivision, given by

Vh = {v ∈ C0(Ω,R2) : v|T ∈ P1 for all T ∈ Th}

and
Qh = {q ∈ C(Ω) ∩ L2

0(Ω) : q|T ∈ P1 for all T ∈ Th}.

Observe that, contrary to the Q1-P0 element or the P1-P0 element, here the pressure is
approximated by a continuous function.

The spaces Vh and Qh fulfill the corresponding approximation properties on regular
meshes. However, the element is not stable.

In order to stabilize the element the space Vh is enlarged.
Consider an arbitrary triangle T ∈ Th with vertices xi, i = 1, 2, 3. Each point x ∈ T

can uniquely be represented in the form

x =
3∑

i=1

λi xi

with

λi ≥ 0,
3∑

i=1

λi = 1.

The coefficients λi are called the barycentric coordinates of x. We introduce the following
function:

bT (x) = λ1 λ2 λ3.

Obviously we have: bT ∈ P3. Because of the property bT (x) = 0 for all x ∈ ∂T the function
bT is called a bubble function.

The following extension of Vh is introduced:

V h = {v ∈ C0(Ω,R2) : v|T = pT + bT βT , pT ∈ P1, βT ∈ R2 for all T ∈ Th}.

We have

Theorem 3.3. For regular triangular subdivisions the spaces V h and Qh satisfy the discrete
inf-sup condition with a constant independent of h.



3.3. MIXED FEM FOR THE STOKES PROBLEM 57

Sketch of the proof: We use Lemma 3.1 and construct a linear and bounded operator
Πh : V → V h, such that

0 =

∫
Ω

qh div(vh − v) dx = −
∫

Ω

(vh − v) · grad qh dx

= −
∑
T∈Th

grad qh ·
∫

Ω

(vh − v) dx for all qh ∈ Qh

with vh = Πhv. It suffices to satisfy the following condition:∫
T

vh dx =

∫
T

v dx for all T ∈ Th.

Let ∆i be the union of all triangles from Th, which contain xi as a vertex. Let vh ∈ V h be
given by

vh(xi) =
1

∆i

∫
∆i

v dx for i = 1, 2, 3

and ∫
T

vh dx =

∫
T

v dx.

It is easy to show that vh is well-defined and the operator Πh is linear.
By a so-called scaling argument one shows the existence of an h-independent constant

C with

‖vh‖1 ≤ C‖v‖1.

2

The additional degrees of freedom bT by adding the bubble functions βT can be locally
eliminated (static condensation):

With the ansatz

uh = u1
h + ub

h, u1
h ∈ Vh, u

b
h =

∑
T∈Th

bT βT ∈ (B3)
2

where

B3 = span{bT : T ∈ Th}

one obtains from

a(uh, vh) + b(vh, ph) = 〈F, vh〉

for the trial functions bT ei, i = 1, 2:

2∑
j=1

a(bT ej, bT ei) βT,j + a(u1
h, bT ei) + b(bT ei, ph) = 〈F, bT ei〉 for i = 1, 2.
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So the values βT,j can be expressed in terms of the restriction of the unknowns u1
h and ph

on the triangle T .
Especially for the Stokes equation we have:

a(bT ej, bT ei) = δT δij with δT = ν

∫
T

‖ grad(bT )‖2
`2
dx

and
a(vh, wh) = a(wh, vh) = 0 for all vh ∈ Vh, wh ∈ (B3)

2.

Hence

δT βT −
∫

T

ph grad bT dx =

∫
T

bT f dx.

This implies

βT =
1

δT

∫
T

(bT f + ph grad bT ) dx =
1

δT

∫
T

bT (f − grad ph) dx =
γT

δT
(f

T − grad ph)

with

γT =

∫
T

bT dx, f
T

=
1

γT

∫
T

bT f dx.

Using the ansatz for the second equation

−
∫

Ω

qh div uh dx = 0

we obtain

0 = −
∫

Ω

qh div u1
h dx−

∫
Ω

qh div ub
h dx

= −
∫

Ω

qh div u1
h dx−

∑
T∈Th

∫
T

qh div(bT βT ) dx

= −
∫

Ω

qh div u1
h dx+

∑
T∈Th

∫
T

bT βT · grad qh dx

= −
∫

Ω

qh div u1
h dx+

∑
T∈Th

γT

δT
(f

T − grad ph) · grad qh

∫
T

bT dx

= −
∫

Ω

qh div u1
h dx+

∑
T∈Th

α(T )

∫
T

(f
T − grad ph) · grad qh dx

with

α(T ) =
γ2

T

δT |T |
= O(h2

T ).

Together with

a(uh, v
1
h) + b(v1

h, ph) = a(u1
h, v

1
h) + b(v1

h, ph) = 〈F, v1
h〉 for all v1

h ∈ Vh
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one obtains a mixed variational problem in the original spaces, however, with a modified
second equation:

a(u1
h, v

1
h) + b(v1

h, ph) = 〈F, v〉 for all v1
h ∈ Vh,

b(u1
h, qh)− ch(ph, qh) = 〈Gh, qh〉 for all qh ∈ Qh

with

ch(ph, qh) =
∑
T∈Th

α(T )

∫
T

grad ph · grad qh dx,

〈Gh, qh〉 =
∑
T∈Th

α(T )

∫
T

f
T · grad qh dx.

So, adding the bubble functions corresponds to a modification of the second equation with
a new mesh-dependent bilinear form ch and a mesh-dependent linear functional Gh .

3.3.4 The Taylor-Hood Element

As an example of an element with higher accuracy we consider the Taylor-Hood element
on a triangular subdivision Th of Ω ⊂ R2. Let

Vh = {v ∈ C0(Ω,R2) : v|T ∈ P2 for all T ∈ Th}

and

Qh = {q ∈ C(Ω) ∩ L2
0(Ω) : q|T ∈ P1 for all T ∈ Th}.

Of course, we have

Vh ⊂ V = H1
0 (Ω,R2) and Qh ⊂ Q = L2

0(Ω).

These spaces satisfy the following approximation properties:

1. For u ∈ H1
0 (Ω,R2) and p ∈ L2

0(Ω) we have:

lim
h→0

inf
vh∈Vh

‖u− vh‖1 = 0 and lim
h→0

inf
qh∈Qh

‖p− qh‖0 = 0.

2. Under the stronger assumptions u ∈ H1
0 (Ω,R2) ∩H3(Ω.R2) and p ∈ L2

0(Ω) ∩H2(Ω)
there exists a constant C with

inf
vh∈Vh

‖u− vh‖1 ≤ C h2 ‖u‖3 and inf
qh∈Qh

‖p− qh‖0 ≤ C h2 ‖p‖2.

The inf-sup condition can be shown by the so-called Verfürth trick, which consists of
two steps:
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Lemma 3.2. Let Ω ⊂ Rd be a bounded domain with Lipschitz-continuous boundary. Let
Vh ⊂ V = H1

0 (Ω,Rd) and Qh ⊂ Q = L2
0(Ω)∩H1(Ω) be closed subspaces. Assume that there

exists a linear operator Rh : V −→ Vh and a constant c independent of h such that

(∑
T∈Th

h−2
T ‖v −Rhv‖2

0,T

)1/2

≤ c0 ‖v‖1 and ‖Rhv‖1 ≤ c1 ‖v‖1.

Then there exist two positive constants c2 and c3 such that

sup
vh∈Vh

∫
Ω

qh div vh dx

‖vh‖1

≥ c2 ‖qh‖0 − c3

(∑
T∈Th

h2
T ‖ grad qh‖2

0,T

)1/2

.

Proof. The inf-sup condition holds:

inf
q∈L2

0(Ω)
sup
v∈V

∫
Ω

q div v dx

‖v‖1‖q‖0

≥ β1 > 0.

Therefore, for each qh ∈ Qh there exists a v̄ ∈ V with∫
Ω

qh div v̄ dx

‖v̄‖1

≥ β1

2
‖qh‖0.

This implies

sup
vh∈Vh

∫
Ω
qh div vh dx

‖vh‖1

≥
max(0,

∫
Ω

qh divRhv̄ dx)

‖Rhv̄‖1

≥

∫
Ω

qh divRhv̄ dx

c1 ‖v̄‖1

=

∫
Ω

qh div v̄ dx

c1 ‖v̄‖1

+

∫
Ω

qh div(Rhv̄ − v̄) dx

c1 ‖v̄‖1

≥ β1

2c1
‖qh‖0 −

∫
Ω

grad qh · (Rhv̄ − v̄) dx

c1 ‖v̄‖1
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Now we have∫
Ω

grad qh · (Rhv̄ − v̄) dx =
∑
T∈Th

∫
T

grad qh · (Rhv̄ − v̄) dx

≤
∑
T∈Th

hT ‖ grad qh‖0,T h−1
T ‖v̄ −Rhv̄‖0,T

≤

(∑
T∈Th

h2
T ‖ grad qh‖2

0,T

)1/2 (∑
T∈Th

h−2
T ‖v̄ −Rhv̄‖2

0,T

)1/2

≤ c0

(∑
T∈Th

h2
T ‖ grad qh‖2

0,T

)1/2

‖v̄‖1

Hence

sup
vh∈Vh

∫
Ω

qh div vh dx

‖vh‖1

≥ β1

2c1
‖qh‖0 −

c0
c1

(∑
T∈Th

h2
T ‖ grad qh‖2

0,T

)1/2

The operator Rh is called a Clément operator.
The second step of Verfürth’s trick is contained in the next lemma:

Lemma 3.3. Let Th be a regular triangular subdivision of Ω with the property that each
element T ∈ Th has at least two internal edges. Then there exists a positive constant c4
with

sup
vh∈Vh

∫
Ω

qh div vh dx

‖vh‖1

≥ c4

(∑
T∈Th

h2
T ‖ grad qh‖2

0,T

)1/2

Proof. We have∫
Ω

qh div vh dx = −
∫

Ω

grad qh · vh dx = −
∑
T∈Th

grad qh ·
∫

T

vh dx

Let Eh be the set of all internal edges of triangles in Th. To each edge E ∈ Eh a parallel
unit vector tE is assigned.

Let qh ∈ Qh be arbitrary but fixed. Let vh ∈ Vh be that function which vanishes in all
vertices of triangles in Th and which fulfills:

vh(mE) = −h2
E (grad qh · tE) tE,

where mE denotes the midpoint of the edge E.
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Since vh ∈ P2 on T , it follows that∫
T

vh dx =
|T |
3

∑
E⊂∂T

vh(mE).

Hence∫
Ω

qh div vh dx = −
∑
T∈Th

grad qh ·
∫

T

vh dx =
∑
T∈Th

∑
E⊂∂T

1

3
|T |h2

E (grad qh · tE)2

≥ c
∑
T∈Th

|T |h2
E ‖ grad qh‖2

`2
= c1

∑
T∈Th

h2
E ‖ grad qh‖2

0,T

≥ c1c2
∑
T∈Th

h2
T ‖ grad qh‖2

0,T

because ∑
E⊂∂T

(tE · z)2 ≥ c1 ‖z‖2
`2

and min
E⊂T

hE ≥ c2 hT .

as a consequence of the regularity of the subdivision.
Furthermore, the regularity of the subdivision implies

‖vh‖2
1,T ≤ c h−2

T |T |
∑

E⊂∂T

|vh(mE)|2.

Therefore,

‖vh‖2
1 =

∑
T∈Th

‖vh‖2
1,T ≤ c

∑
T∈Th

h−2
T |T |

∑
E⊂∂T

|vh(mE)|2

= c
∑
T∈Th

h−2
T |T |

∑
E⊂∂T

h4
E (grad qh · tE)2 ≤ c′

∑
T∈Th

h2
T |T | ‖ grad qh‖2

`2

= c′
∑
T∈Th

h2
T ‖ grad qh‖2

0,T

3.4 Mixed FEM for the Hellinger-Reissner Formula-

tion

For simplicity only the case of pure Dirichlet boundary condition with uD = 0 is considered:

Find σ ∈ V and u ∈ Q = L2(Ω,R3) such that

a(σ, τ) + b(τ, u) = 0 for all τ ∈ V,
b(σ, v) = 〈G, v〉 for all v ∈ Q



3.4. MIXED FEM FOR THE HELLINGER-REISSNER FORMULATION 63

with

a(σ, τ) =

∫
Ω

C−1σ : τ dx, b(τ, u) =

∫
Ω

div τ · u dx, 〈G, v〉 = −
∫

Ω

f · v dx

and

V = {τ ∈ H(div,Ω,S) |
∫

Ω

trace τ dx = 0}.

By Galerkin’s principle appropriate subspaces Vh ⊂ V , Qh ⊂ Q are chosen and the
approximate solution (σh, uh) ∈ Vh ×Qh is given by the variational problem

a(σh, τh) + b(τh, uh) = 0 for all τh ∈ Vh,
b(σh, vh) = 〈G, vh〉 for all vh ∈ Qh.

As discussed in the last chapter the coercivity of a on the kernel KerBh and the discrete
inf-sup condition of b with a constant independent of h do not automatically follow from
the corresponding conditions of the continuous problem.

This time the coercivity of a on V does not hold. Coercivity of a could only be shown
on the set

W = KerB = {τ ∈ V | b(τ, v) = 0 for all v ∈ Q} = {τ ∈ V | div τ = 0}.

Only for the case that
Wh = KerBh ⊂ W = KerB

with
Wh = KerBh = {τh ∈ Vh | b(τh, vh) = 0 for all vh ∈ Qh}

one immediately obtains the coercivity of a on KerBh with α̃1 = α1. All requirements
formulated so far are not easy to fulfill for simple piecewise polynomial finite element
spaces.

A mixed element for triangular subdivisions in R2, which satisfies all these requirements
is defined as follows, see D. A. Arnold, R. Winther, 2001:

Vh = {τ ∈ V : τ
∣∣
T
∈ P3 and div τ

∣∣
T
∈ P1 for all T ∈ Th}

and
Qh = {v ∈ Q : v

∣∣
T
∈ P1 for all T ∈ Th}

An element τh in Vh is given by

1. the values of τh at the vertices,

2. the values
∫

S
τhn ds and

∫
S
τhn s ds on each edge S and

3. the value
∫

T
τh dx on each triangle T .
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This results in 24 degrees of freedom on each triangle.

Another possibility is to abandon the strong formulation of the symmetry of the stress
tensor. So far, the starting point of the variational formulation was the following classical
formulation of the linear elasticity problem:

C−1 σ − ε(u) = 0 in Ω,

div σ = −f in Ω,

u = 0 on Γ.

From the first equation the symmetry of σ immediately follows. Now we have

ε(u) = ∇u− ω(u)

with

ω(u)ij =
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
.

Observe that ω(u) is a anti-symmetric tensor. This motivates the following equivalent
formulation of the first equation:

C−1 σ −∇u+ γ = 0, σT = σ.

Obviously, γ = ω(u) is the only anti-symmetric tensor that satisfies the first equation,
which then is equivalent to the original first equation.

So the new starting point of a mixed variational formulation is the following system:

C−1 σ −∇u+ γ = 0 in Ω,

σT − σ = 0 in Ω,

div σ = −f in Ω,

u = 0 on Γ.

By multiplying the first equation component-wise by a trial function τ , integrating over
Ω and adding up, one obtains:∫

Ω

C−1σ : τ dx−
∫

Ω

τ : ∇u dx+

∫
Ω

τ : γ dx = 0.

By integration by parts it follows that:∫
Ω

C−1σ : τ dx+

∫
Ω

div τ · u dx+

∫
Ω

τ : γ dx = 0.

By multiplying the second equation component-wise with an anti-symmetric tensor η, one
obtains: ∫

Ω

σT : η dx−
∫

Ω

σ : η dx = 0,
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which is equivalent to ∫
Ω

σ : η dx = 0,

because η is anti-symmetric. Finally one obtains from the third equation∫
Ω

div σ · v dx = −
∫

Ω

f · v dx.

By adding, one obtains∫
Ω

div σ · v dx+

∫
Ω

σ : η dx = −
∫

Ω

f · v dx.

Therefore, the following mixed variational problem results:

Find σ ∈ V and (u, γ) ∈ Q such that

a(σ, τ) + b(τ, (u, γ)) = 0 for all τ ∈ V,
b(σ, (v, η)) = 〈G, v〉 for all (v, η) ∈ Q

with

a(σ, τ) =

∫
Ω

C−1σ : τ dx, b(τ, (u, γ)) =

∫
Ω

div τ · u dx+

∫
Ω

τ : γ dx,

〈G, v〉 = −
∫

Ω

f · v dx

and the spaces

V = H(div,Ω,R3×3), Q = L2(Ω,R3)× {γ ∈ L2(Ω,R3×3) | γ + γT = 0}.

The best-known element in R2 which is based on (the two-dimensional analogue of) this
variational formulation is the PEERS-Element (plane elasticity element with reduced
symmetry) for a triangular subdivision of Ω. It consists of the following components:

1. The Raviart-Thomas element of degree 0 (the RT0 element) enlarged by functions,
piecewise given by

cT curl bT with cT ∈ R,
where bT = λ1 λ2 λ3 denotes the bubble-function on a triangle T , for the rows of σh;

2. Piecewise constant functions (the P0 element) for uh;

3. Continuous and piecewise linear functions (the P1 element) for γh.

The Raviart-Thomas element of degree 0 (the RT0 element) is an H(div,Ω)-conforming
element, piecewise given by functions of the form

aT + dT x with aT ∈ R2, dT ∈ R.

The PEERS element is also suitable for almost incompressible materials.
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Chapter 4

Solution of the Discretized Equations

The discussed mixed FEMs lead to linear systems of equations of the following form:(
A BT

B −C

)(
u
p

)
=

(
f
g

)
. (4.1)

Throughout the chapter we will assume that A is symmetric and positive definite, that C is
symmetric and positive semi-definite, and that the so-called (negative) Schur complement

S = C +BA−1BT

is non-singular.
Under these assumptions the matrix K, given by

K =

(
A BT

B −C

)
,

is non-singular and allows a block LU factorization

K =

(
A 0
B −S

)(
I A−1BT

0 I

)
. (4.2)

The system (4.1) is equivalent to the following system:

Au+BTp = f,

Sp = h with h = BA−1f − g.

4.1 The Uzawa Method and Variants

Let p(0) be a given initial guess for p. The classical Uzawa method is given by the following
steps:

Au(k+1) = f −BTp(k),

p(k+1) = p(k) + τ (Bu(k+1) − Cp(k) − g).

67
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with some positive parameter τ > 0. It is clear that, in the case of convergence, the limit
values solve the system (4.1).

If u(k+1) is eliminated, one obtains:

p(k+1) = p(k) + τ (h− Sp(k)),

which is the classical Richardson method applied to the system

Sp = h.

Since S is symmetric and positive definite, the convergence is guaranteed for sufficiently
small parameters τ > 0.

The convergence can be improved by using the preconditioned Richardson method with
an appropriate preconditioner Ŝ for S. Then the iterative method reads

p(k+1) = p(k) + Ŝ−1(h− Sp(k)).

In the original form we obtain the so-called preconditioned Uzawa method:

Au(k+1) = f −BTp(k),

p(k+1) = p(k) + Ŝ−1(Bu(k+1) − Cp(k) − g).

An obvious disadvantage of the preconditioned Uzawa method is the necessity to com-
pute u(k+1) as exact solution of the system

Au = b with b = f −BTp(k).

If instead one step of some preconditioned Richardson method is used for determining
u(k+1)

u(k+1) = u(k) + Â−1(b− Au(k)),

where Â is an appropriate preconditioner for A, then one obtains a so-called inexact pre-
conditioned Uzawa method (also called preconditioned Arrow-Hurwicz method):

u(k+1) = u(k) + Â−1(f − Au(k) −BTp(k)),

p(k+1) = p(k) + Ŝ−1(Bu(k+1) − Cp(k) − g).

Hence

Â(u(k+1) − u(k)) = f − Au(k) −BTp(k),

B(u(k+1) − u(k))− Ŝ(p(k+1) − p(k)) = g −Bu(k) + Cp(k).

That is

L̂
(
u(k+1) − u(k)

p(k+1) − p(k)

)
=

(
f
g

)
−K

(
u(k)

p(k)

)
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or, equivalently, (
u(k+1)

p(k+1)

)
=

(
u(k)

p(k)

)
+ L̂−1

[(
f
g

)
−K

(
u(k)

p(k)

)]
with

L̂ =

(
Â 0

B −Ŝ

)
.

So the inexact preconditioned Uzawa method can be interpreted as preconditioned Richard-
son method for (4.1) with the block triangular preconditioner L̂.

Remark: With the setting

Â = A, Ŝ =
1

τ
I

one obtains the classical Uzawa method. With the setting

Â =
1

σ
I, Ŝ =

1

τ
I

one obtains the classical Arrow-Hurwicz method.

Observe that the preconditioner L̂ is formally obtained from (4.2) by replacing A and
S by Â and Ŝ in the first factor and ignoring the second factor.

If instead the second factor in (4.2) is treated analogously to the first factor, then the
preconditioner K̂ is obtained:

K̂ =

(
Â 0

B −Ŝ

)(
I Â−1BT

0 I

)
=

(
Â BT

B BÂ−1BT − Ŝ

)
.

Observe that K̂ is a symmetric and indefinite block matrix.
One step of the preconditioned Richardson method(

u(k+1)

p(k+1)

)
=

(
u(k)

p(k)

)
+ K̂−1

[(
f
g

)
−K

(
u(k)

p(k)

)]
requires the solution of the system

K̂
(
u(k+1) − u(k)

p(k+1) − p(k)

)
=

(
f
g

)
−K

(
u(k)

p(k)

)
.

This can be done in three steps:

Â (û(k+1) − u(k)) = f − Au(k) −BTp(k),

Ŝ (p(k+1) − p(k)) = Bû(k+1) − Cp(k) − g,

Â (u(k+1) − u(k)) = f − Au(k) −BTp(k+1).
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Interpretation: From the first and the third equation one obtains:

u(k+1) = û(k+1) − Â−1BT (p(k+1) − p(k)). (4.3)

(4.3) is considered as ansatz for the next approximation u(k+1) which is required to solve
the equation

Bu(k+1) − Cp(k+1) = g.

This leads to the equation:

H(p(k+1) − pk) = Bûk+1 − Cp(k) − g

with

H = C +BÂ−1BT .

H is called the so-called inexact Schur complement. If compared with the second equation,
one could interpret Ŝ as preconditioner for H and the second equation is just one step of
the corresponding preconditioned Richardson method applied to the equation

Hp′ = c with c = Bûk+1 − Cp(k) − g

with starting value 0 for computing p′ = p(k+1) − pk.

Remark: For the case C = 0 and the choice Ŝ = H = BÂ−1BT , i.e.:

K =

(
A BT

B 0

)
and K̂ =

(
Â BT

B 0

)
,

the preconditioned Richardson method(
u(k+1)

p(k+1)

)
=

(
u(k)

p(k)

)
+ K̂−1

[(
f
g

)
−K

(
u(k)

p(k)

)]
can also be written as a projection method:

u(k+1) = P (u(k) + Â−1[f − Au(k)]).

Here P is the Â-orthogonal projection on the linear manifold Vg = {v ∈ Rn : Bv = g}, i.e.:
w = Pu ∈ Vg is the unique solution of the variational problem

(w, v)Â = (u, v)Â for all v ∈ V0 = KerB.
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4.2 Preconditioner for the Schur Complement

An approximate solution of the mixed variational problem

a(u, v) + b(v, p) = 〈F, v〉 for all v ∈ V
b(u, q) = 〈G, q〉 for all q ∈ Q

is obtained by an appropriate choice of finite-dimensional subspaces

Vh ⊂ V, Qh ⊂ Q.

By Galerkin’s principle the approximate solutions uh ∈ Vh and ph ∈ Qh are the solutions
of the discrete variational problem

a(uh, vh) + b(vh, ph) = 〈F, vh〉 for all vh ∈ Vh

b(uh, qh) = 〈G, qh〉 for all qh ∈ Qh.

Let {ϕj} be a basis for Vh and let {ψk} be a basis for Qh. Then the approximate
solution can be represented in the following way:

uh =
∑

j

uj ϕj, ph =
∑

k

pk ψk.

From the discrete variational problem one obtains the following linear system of equations(
Ah BT

h

Bh 0

)(
uh

p
h

)
=

(
f

h

g
h

)
with

Ah = (a(ϕj, ϕi)) ,

Bh = (b(ϕj, ψk)) ,

uh = (uj) , p
h

= (pk) , f
h

= (〈F, ϕi〉) , g
h

= (〈G,ψk〉) .

Assume that the following conditions are satisfied:

1. The bilinear form a is symmetric, coercive and bounded on V . Then ‖v‖V = a(v, v)1/2

can be chosen as a norm in V .

2. The bilinear form b is bounded:

|b(v, q)| ≤ β2 ‖v‖V ‖q‖Q.

3. The discrete inf-sup condition is satisfied:

inf
0 6=qh∈Qh

sup
0 6=vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q

≥ β̃1 > 0,

where β̃ is independent of h.
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Then we have:

(BhA
−1
h BT

h q
h
, q

h
)`2 = (A

−1/2
h BT

h q
h
, A

−1/2
h BT

h q
h
)`2

= sup
wh 6=0

(A
−1/2
h BT

h q
h
, wh)

2
`2

(wh, wh)`2

= sup
vh 6=0

(Bh vh, qh
)2
`2

(Ahvh, vh)`2

= sup
0 6=vh∈Vh

b(vh, qh)
2

a(vh, vh)
= sup

0 6=vh∈Vh

b(vh, qh)
2

‖vh‖2
V

.

Therefore, the following estimates hold:

β̃2
1 ‖qh‖2

Q ≤ (BhA
−1
h BT

h q
h
, q

h
)`2 ≤ β2

2 ‖qh‖2
Q.

Now

‖qh‖2
Q = (Mhqh

, q
h
)`2 with Mh =

(
(ψ(k), ψ(l))Q

)
.

Hence

β̃2
1 Mh ≤ Sh = BhA

−1
h BT

h ≤ β2
2 Mh.

The spectral constants β̃2
1 and β2

2 are independent of h. Therefore, Mh is a spectrally
equivalent preconditioner of the Schur complement Sh = BhA

−1
h BT

h . The corresponding
preconditioned Uzawa method has the convergence rate

q =
κ(M−1

h Sh)− 1

κ(M−1
h Sh) + 1

≤ (β2/β̃1)
2 − 1

(β2/β̃1)2 + 1
< 1,

which is independent of h.

Application to the Stokes problem

For ‖v‖V = |v|1 and for pure Dirichlet boundary conditions we have

b(v, q) = −
∫

Ω

q div v dx ≤ ‖q‖0‖ div v‖0 ≤ ‖q‖0|v|1.

Hence: β2 = 1.

The matrix Mh is the mass matrix, which is spectrally equivalent to hd I for regular
meshes:

c1h
d I ≤Mh ≤ c2h

d I.

Therefore, the Uzawa method (without preconditioner) for τ = O(hd) converges optimally
(h-independent convergence rate). If instead of Richardson’s method the gradient method
is applied to Sp = h it suffices to set the parameter τ = 1.

The method can be additionally accelerated by the CG method.
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4.3 Convergence Analysis for Inexact Uzawa Meth-

ods

We have (
u(k+1)

p(k+1)

)
=

(
u(k)

p(k)

)
+ L̂−1

[(
f
g

)
−K

(
u(k)

p(k)

)]
= M

(
u(k)

p(k)

)
+ L̂−1

(
f
g

)
with the iteration matrix

M = I − L̂−1K.
Therefore, it follows for the error

e(j) =

(
u(j) − u∗

p(j) − p∗

)
that

e(k+1) = Me(k).

Now

M = L̂−1(L̂ − K)

=

(
Â−1 0

Ŝ−1BÂ−1 −Ŝ−1

)(
Â− A −BT

0 −Ŝ + C

)
=

(
Â−1(Â− A) −Â−1BT

Ŝ−1BÂ−1(Â− A) I − Ŝ−1[C +BÂ−1BT ]

)
=

(
−Â−1 −Â−1BT Ŝ−1

−Ŝ−1BÂ−1 Ŝ−1 − Ŝ−1[C +BÂ−1BT ]Ŝ−1

)(
A− Â 0

0 Ŝ

)
= NQ.

This factorization of the iteration matrix into symmetric factors is the key for the conver-
gence analysis, see [11] for typical results.

Here we concentrate on one special case: If

Â < A

then Q is symmetric and positive definite and, therefore, defines a new scalar product:((
u
p

)
,

(
v
q

))
Q

=

(
Q
(
u
p

)
,

(
v
q

))
`2

= ([A− Â]u, v)`2 + (Ŝp, q)`2 .

The iteration matrix M is symmetric with respect to this scalar product:

(Mx, y)Q = (QNQx, y)`2 = (QNQy, x)`2 = (My, x)Q.

Therefore, M and L̂−1K = I −M have only real eigenvalues. In particular the following
convergence property can be shown:
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Theorem 4.1. If
Â < A ≤ α Â and σ Ŝ ≤ S ≤ σ Ŝ

then the matrix L̂−1K is symmetric with respect to the scalar product (x, y)Q and we have

σ
(
L̂−1K

)
⊂ [λ, λ] ⊂ (0,∞)

with

λ =
1

2

[
α(1 + σ)−

√
α2(1 + σ)2 − 4ασ

]
λ =

1

2

[
α(1 + σ) +

√
α2(1 + σ)2 − 4ασ

]
Proof. Let ϕ(λ) be the negative Schur complement of K − λ L̂ or, in short:

ϕ(λ) = − Schur(K − λ L̂).

Then we have:

ϕ(λ) = − Schur

(
A− λ Â B

(1− λ)B −C + λ Ŝ

)
= C − λ Ŝ + (1− λ)B(A− λ Â)−1BT .

It is immediately clear that
ϕ(0) = S > 0

and
ϕ(λ) > 0 for λ ≤ 0.

The first block-diagonal block A−λ Â of the block matrix K−λ L̂ is symmetric and positive
definite for λ ≤ 0.

So A− λ Â and ϕ(λ) are non-singular for λ ≤ 0. This implies that the matrix K− λ L̂
is non-singular in this case and, therefore, all eigenvalues of L̂−1K are positive.

For 0 < λ ≤ 1 it follows that

0 < A− λ Â ≤
(

1− λ

α

)
A

and, therefore,

ϕ(λ) ≥ C − λ Ŝ +
1− λ

1− λ
α

BA−1BT ≥

[
1− λ

1− λ
α

− λ

σ

]
S = θ(λ)S

with

θ(λ) =
1− λ

1− λ
α

− λ

σ
.

The smallest root of θ(λ) is the smallest root λ < 1 of the quadratic equation

λ2 − α(1 + σ)λ+ ασ = 0.
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For α < λ <∞ it follows

A− λ Â ≤
(

1− λ

α

)
A < 0

and, therefore,

ϕ(λ) ≤ C − λ Ŝ +
1− λ

1− λ
α

BA−1BT ≤

[
1− λ

1− λ
α

− λ

σ

]
S = θ(λ)S

with

θ(λ) =
1− λ

1− λ
α

− λ

σ
.

The largest root of θ(λ) is the largest root λ of the quadratic equation

λ2 − α(1 + σ)λ+ ασ = 0.

These estimates show that A− λ Â and ϕ(λ) are non-singular for λ < λ and for λ > λ.
This implies that K − λ L̂ is non-singular. Therefore, λ is not an eigenvalue of L̂−1K.

As a simple consequence the following sufficient condition for convergence is obtained:

λ < 2, i.e.: α (2 + σ) < 4.

In any case the problem is symmetric and positive definite with respect to the scalar
product (x, y)Q and, therefore, the CG method can be applied.

Remark: The statements of the last theorem date back to the work in [2], see also [11].
Similar results can be shown for the symmetric variant, see [11].
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