<u>TUTORIAL</u>

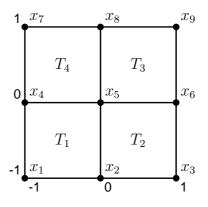
"Computational Mechanics"

to the lecture

"Numerical Methods in Continuum Mechanics 1"

Tutorial 08 Friday, May 16, 2008 (Time : $9^{15} - 10^{00}$ Room : SR T 1010)

28 Consider the macro element $M = (-1, 1) \times (-1, 1)$, consisting of four squares T_1, \ldots, T_4 and nine gridpoints x_1, \ldots, x_9 :



The edges of M are denoted $S_1 = [x_3, x_9]$, $S_2 = [x_9, x_7]$, $S_3 = [x_7, x_1]$, $S_4 = [x_1, x_3]$, the union over all squares in $\{T_1, \ldots, T_4\}$ that contain the grid point x_i is denoted Δ_i , and the area of Δ_i is denoted $|\Delta_i|$. Show, that for each function in $C(\overline{M})$ there exists a unique Function $v_h = \prod_h v \in C(\overline{M})$ which is bilinear (=quadrilinear) on each piece in $\{T_1, \ldots, T_4\}$, and satisfies

$$\forall i \in \{1, 3, 5, 7, 9\}: v_h(x_i) = \frac{1}{|\Delta_i|} \int_{\Delta_i} v \, \mathrm{d}x, \ \forall j \in \{1, 2, 3, 4\}: \int_{S_j} v_h \, \mathrm{d}s = \int_{S_j} v \, \mathrm{d}s.$$

For $i \in \{1, \ldots, 9\}$, let $\varphi^{(i)}$ be the piecewise bilinear map which yields $\varphi^{(i)}(x_j) = \delta_{ij}$. The function v_h , as defined above, can be written as

$$v_h(x) = \sum_{i=1}^9 \alpha_i \,\varphi^{(i)}(x) \,.$$
 (4.57)

Calculate the coefficients α_i explicitly!

29 Consider the assumptions and definitions in Example 28. Show, that there exists a constant $c_F > 0$, such that for all $v \in C^1(\overline{M})$ there holds $\|\prod_h v\|_{H^1(M)} \leq c_F \|v\|_{H^1(M)}$. *Hint:* Use the representation (4.57). The coefficients α_i can be written in terms of $\int_{\Delta_i} v \, dx$ and $\int_{S_i} v \, ds$. Use Cauchy's inequality and identities like

$$\int_{S_1} v \, \mathrm{d}s = \int_{\partial M} \left(v \, t \, , \, n \right)_{l_2} \, \mathrm{d}s = \int_M \operatorname{div}(v \, t) \, \mathrm{d}x \, , \quad \text{where} \quad t(x,y) = \begin{pmatrix} (x+1)/2 \\ 0 \end{pmatrix} \, .$$

30 Consider the assumptions and definitions in Example 28. Show, that there exists a constant C > 0 such that

$$\|v_h - v\|_{H^1(M)} \le C |v|_{H^1(M)} \quad \forall v \in C^1(\overline{M}).$$

Hint: Show, that $v_h - v = \prod_h v - v = \prod_h (v + c) - (v + c)$ holds for any arbitrary constant function c. With Example 29 one obtains $||v_h - v||_{H^1(M)} \leq \tilde{C} ||v + c||_{H^1(M)}$. In order to estimate $||v + c||_{H^1(M)}$ from above, use Poincare's inequality

$$||w||_{L_2(M)}^2 \le c_P^2 \left(\left(\int_M w \, \mathrm{d}x \right)^2 + |w|_{H^1(M)}^2 \right)$$

for w = v + c, where c is chosen properly.

31* Consider the assumptions and definitions in Example 28 and replace $M = (-1, 1) \times (-1, 1)$ by $M_h = (-h, h) \times (-h, h)$, where $h \in (0, 1]$. Show, that there exists a constant c > 0 independent of h ($c \neq c(h)$) such that

$$||v_h||_{H^1(M_h)} \le c ||v||_{H^1(M_h)} \quad \forall v \in C^1(\overline{M}_h) \; \forall h \in (0,1] \; .$$

Hint: Use $||v_h|| \le ||v_h - v|| + ||v||$ and (after a proper transformation of variables) the estimate of Example 30.