Numerische Methoden für Elliptische Partielle Differentialgleichungen |
letzte Änderung: 2021-10-01 |
Vorlesung
Mittwoch, 10:15 – 11:45, T 111
Dienstag, 10:15 – 11:45, T 111
Ausnahmen:
Dienstag, 13. April, Vorlesung, 10:15 – 11:45, T 041
Mittwoch, 14. April, Übung, 10:15 – 11:45, T 111
Übungen
Dienstag, 10:15 – 11:45, T 041
Übung | Datum | Übungsblatt |
---|---|---|
01 | 9. März 2010 | Hier diskutieren wir einige Aufgaben gemeinsam. |
02 | 16. Mürz 2010 | tut1002.pdf |
03 | 23. Mäz 2010 | tut1003.pdf |
04 | 14. April 2010 | tut1004.pdf |
05 | 20. April 2010 | tut1005.pdf |
06 | 27. April 2010 | tut1006.pdf vec.hh mat.hh matvecdemo.cc Ergebnisse (zur Validierung) |
04. Mai 2010 | Keine Übung (Landespatron) | |
07 | 11. Mai 2010 | tut1007.pdf |
08 | 18. Mai 2010 | tut1008.pdf
tut8code.tar.gz (alles folgende)
Ergebnisse (zur Validierung) vec.hh vector.hh sparsematrix.hh sparsematrix.cc mesh.hh mesh.cc smdemo.cc meshdemo.cc |
25. Mai 2010 | Keine Übung (Pfingstdienstag) | |
01. Juni 2010 | Übung fällt aus | |
09 | 08. Juni 2010 | tut1009.pdf cg.hh Ergebnisse zur Validierung |
10 | 15. Juni 2010 | tut1010.pdf |
11 | 22. Juni 2010 | tut1011.pdf |
12 | 29. Juni 2010 | tut1012.pdf
meshupdate.text (zur Visualisierung mit MATLAB) meshdemo2.cc (Mesh mit Segments) |
Zusatz zu Dirichletrandbedingungen: dirichletbc.cc |
Literatur
[1] Langer U.: Numerik I (Operatorgleichungen), JKU, Linz 1996 (Sobolev-Spaces and Tools).
[ Postscript-File ]
[2] Langer U.: Numerik II (Numerische Verfahren für Randwertaufgaben), JKU, Linz 1996
(FEM and FVM).
[ Postscript-File ]
[3] Jung M., Langer U.: Methode der finiten Elemente für Ingenieure.
Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2001
(practical aspects of the FEM).
[ related homepage ]
[4] Steinbach O.: Numerische Näherungsverfahren für elliptische Randwertprobleme.
Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2003 (FEM and BEM).
[ related homepage ]
English version:
Steinbach O.: Numerical Approximation Methods for Elliptic Boundary Value Problem: Finite and Boundary Elements.
Springer, New York 2008 (FEM and BEM).
[ related homepage ]
[5] Steinbach O.: Lösungsverfahren für lineare Gleichungssysteme: Algorithmen und Anwendungen.
Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2005
(solvers for systems of algebraic equations).
Zusatzliteratur:
[1] Braess D.: Finite Elemente. Springer Lehrbuch, Berlin, Heidelberg 1997.
English version:
Braess D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics.
Cambridge University Press, Cambridge, 1997, 2001, 2007. - ISBN: 0 521 70518-9
[ related homepage ]
[2] Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York 1994.
[3] Ciarlet P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics (40), SIAM, Philadelphia PA, 2002.
[4] Großmann C., Roos H.-G.: Numerik partieller Differentialgleichungen.
Teubner-Verlag, Stuttgart 1992. (3. völlig überarbeitete und erweiterte Auflage, November 2005)
[5] Heinrich B.: Finite Difference Methods on Irregular Networks.
Akademie-Verlag, Berlin 1987.
[6] Knaber P., Angermann L.: Numerik partieller Differentialgleichungen. Eine anwendungsorientierte Einführung.
Springer-Verlag, Berlin-Heidelberg 2000.
[7] Monk P.: Finite Element Methods for Maxwell's Equations.
Oxford Science Publications, Oxford 2003.
[8] Schwarz H.R.: FORTRAN-Programme zur Methode der finiten Elemente.
B.G. Teubner, Stuttgart, 1991.
[9] Schwarz H.R.: Methode der finiten Elemente.
B.G. Teubner, Stuttgart, 1991.
[10] Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques.
Wiley - Teubner, 1996.