Programming

Continue the program from Tutorial 9. As a sightly different example consider the boundary value problem

$$
\begin{aligned}
-\Delta u(x)+u & =f(x) & & \text { for } x \in \Omega:=(0,1)^{2} \\
\frac{\partial u}{\partial n}(x) & =g(x) & & \text { for } x \in \Gamma_{N}:=\partial \Omega
\end{aligned}
$$

The associated variational formulation is to find $u \in V_{0}:=H^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} \nabla u(x) \cdot \nabla v(x)+u(x) v(x) d x=\int_{\Omega} f(x) v(x) d x+\int_{\Gamma_{N}} g(x) v(x) d s \quad \forall v \in V_{0} . \tag{12.1}
\end{equation*}
$$

62 Let $e \subset \Gamma_{N}$ be an element edge on the Neumann boundary with the two endpoints $x^{(e, 1)}$ and $x^{(e, 2)}$ and set $h_{e}:=\left|x^{(e, 2)}-x^{(e, 1)}\right|$. Let us denote the two functions on the reference edge by $p^{(1)}(\xi)=1-\xi$ and $p^{(2)}(\xi)=\xi$.
Write a function

```
void calcNeumannElVec (const Point2D& p0, const Point2D& p1,
    ScalarField g, Vec<2>& elVec);
```

to approximate

$$
g_{e}^{(\alpha)}:=\int_{e} g(x) p^{(e, \alpha)}(x) d s \approx \frac{h_{e}}{2}\left(g\left(x^{(e, 1)}\right) p^{(\alpha)}(0)+g\left(x^{(e, 2)}\right) p^{(\alpha)}(1)\right)
$$

as above by the trapezoidal rule; elVec $\approx\left(g_{e}^{(1)}, g_{e}^{(2)}\right), \mathrm{p} 0=x^{(e, 1)}, \mathrm{p} 1=x^{(e, 2)}$, and $\mathrm{g}=g$.
63 Write a function
void addNeumannLoadVector (const Mesh\& mesh, ScalarField g, Vector\& b);
which adds the contribution corresponding to $\int_{\Gamma_{N}} g(x) v(x) d s$ to an (already existing) load vector b .
Hint: Loop over all segments of the mesh and for those marked as Neumann (use bcSegments[i] == BC_NEUMANN) call calcNeumannElVec.

64 Solve the finite element system corresponding to (12.1) with $f\left(x_{1}, x_{2}\right)=-2.5+x_{1}$ and $g\left(x_{1}, x_{2}\right)=0.5$ for a suitably refined mesh (see exercise 47) and visualize the solution.

