The following exercises are around the space $H(\operatorname{curl}, \Omega)$. Let us fix the domain $\Omega \subset \mathbb{R}^{3}$ with sufficiently smooth boundary $\partial \Omega$ and recall that

$$
H(\operatorname{curl}, \Omega):=\left\{\boldsymbol{v} \in L^{2}(\Omega)^{3}: \operatorname{curl} \boldsymbol{v} \in L^{2}(\Omega)^{3}\right\}
$$

with $\boldsymbol{w}=\operatorname{curl} \boldsymbol{v}$ (the weak curl) defined by the relation

$$
\int_{\Omega} \boldsymbol{w} \cdot \boldsymbol{\varphi} d x=\int_{\Omega} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{\varphi} d x \quad \forall \boldsymbol{\varphi} \in C_{0}^{\infty}(\Omega)^{3}
$$

We use the norm

$$
\|\boldsymbol{u}\|_{H(\operatorname{curl}, \Omega)}:=\left(\|\boldsymbol{u}\|_{L^{2}(\Omega)}^{2}+\|\operatorname{curl} \boldsymbol{u}\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2} .
$$

Furthermore, recall that

$$
H_{0}(\operatorname{curl}, \Omega):=\{\boldsymbol{v} \in H(\operatorname{curl}, \Omega): \boldsymbol{v} \times \boldsymbol{n}=0 \text { on } \partial \Omega\}={\overline{C_{0}^{\infty}(\Omega)^{3}}}^{1 \cdot \|_{H(\operatorname{curl}, \Omega)}} .
$$

We also define the weak divergence $w=\operatorname{div} \boldsymbol{v}$ by the relation

$$
\int_{\Omega} w \varphi d x=\int_{\Omega} \boldsymbol{v} \cdot \operatorname{grad} \varphi d x \quad \forall \varphi \in C_{0}^{\infty}(\Omega)
$$

and the space $H(\operatorname{div}, \Omega):=\left\{\boldsymbol{v} \in L^{2}(\Omega)^{3}: \operatorname{div} \boldsymbol{v} \in L^{2}(\Omega)\right\}$.
07 Assume that there are two disjoint open subdomains Ω_{1} and Ω_{2} such that

$$
\bar{\Omega}_{1} \cup \bar{\Omega}_{2}=\bar{\Omega} .
$$

Let \boldsymbol{n}_{1} and \boldsymbol{n}_{2} the unit normal vectors outwards to Ω_{1} and Ω_{2}, respectively, and define the interface $\Gamma:=\partial \Omega_{1} \cap \partial \Omega_{2}$. We fix the two functions $\boldsymbol{v}_{1} \in C^{1}\left(\Omega_{1}\right)^{3}$ and $\boldsymbol{v}_{2} \in C^{1}\left(\Omega_{2}\right)^{3}$. Obviously, $\boldsymbol{v}_{1} \in H\left(\operatorname{curl}, \Omega_{1}\right)$ and $\boldsymbol{v}_{2} \in H\left(\operatorname{curl}, \Omega_{2}\right)$. Show that the function $\boldsymbol{v}^{*} \in L^{2}(\Omega)^{3}$ defined by

$$
\boldsymbol{v}^{*}(x)= \begin{cases}\boldsymbol{v}_{1}(x) & \text { if } x \in \Omega_{1} \\ \boldsymbol{v}_{2}(x) & \text { if } x \in \Omega_{2}\end{cases}
$$

satisfies $\boldsymbol{v}^{*} \in H(\operatorname{curl}, \Omega)$ if and only if

$$
\int_{\Gamma} \boldsymbol{v}_{1} \times \boldsymbol{n}_{1}+\boldsymbol{v}_{2} \times \boldsymbol{n}_{2} d s=0
$$

(the tangential component of \boldsymbol{v}^{*} is continuous).
08 Recall from exercise 02 that for sufficiently smooth functions \boldsymbol{u} and \boldsymbol{v},

$$
\int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot \boldsymbol{v} d x=\int_{\Omega} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v} d x-\int_{\partial \Omega}(\boldsymbol{u} \times \boldsymbol{n}) \cdot \boldsymbol{v} d s
$$

Show that if we define for $\boldsymbol{u} \in H(\operatorname{curl}, \Omega)$ the operator γ_{t} by

$$
\left\langle\gamma_{t} \boldsymbol{u}, \boldsymbol{v}\right\rangle=\int_{\Omega} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v} d x-\int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot \boldsymbol{v} d x \quad \forall \boldsymbol{v} \in H^{1}(\Omega)^{3},
$$

then there exists a constant C such that

$$
\left\langle\gamma_{t} \boldsymbol{u}, \boldsymbol{v}\right\rangle \leq C\|\boldsymbol{u}\|_{H(\operatorname{curl}, \Omega)}\|\boldsymbol{v}\|_{H^{1}(\Omega)} .
$$

Note: Using this estimate, one can show that the tangential trace $\boldsymbol{u} \times \boldsymbol{n}$ is welldefined for $\boldsymbol{u} \in H(\operatorname{curl}, \Omega)$ as a functional in the dual of $H^{1 / 2}(\partial \Omega)^{3}$, where $H^{1 / 2}(\partial \Omega)$ is the trace space of $H^{1}(\Omega)$.

Consider the variational formulation to find $\boldsymbol{u} \in H_{0}(\operatorname{curl}, \Omega)$:

$$
\begin{equation*}
\underbrace{\int_{\Omega} \frac{1}{\mu} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v}+\sigma \boldsymbol{u} \cdot \boldsymbol{v} d x}_{=a(\boldsymbol{u}, \boldsymbol{v})}=\underbrace{\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} d x}_{=\langle F, \boldsymbol{v}\rangle} \quad \forall \boldsymbol{v} \in H_{0}(\operatorname{curl}, \Omega) \tag{3.1}
\end{equation*}
$$

with constant parameters $\mu>0$ and $\sigma \geq 0$.
09 Show that if $\sigma>0$, then the bilinear form is $H_{0}(\operatorname{curl}, \Omega)$-coercive and -bounded, and that the linear functional F is $H_{0}(\operatorname{curl}, \Omega)$-bounded.

10 Consider the case $\sigma=0$.
(a) Show that for all $p \in H_{0}^{1}(\Omega)$:

$$
\text { curl } \operatorname{grad} p=0 \quad \text { weakly in } \Omega \text {. }
$$

Hint: Use the definitions of the weak curl and gradient and that $\operatorname{div} \operatorname{curl} \boldsymbol{\varphi}=0$ for smooth functions φ.
(b) Show that $\operatorname{grad} p \times \boldsymbol{n}=0$ for all $p \in H_{0}^{1}(\Omega)$.

Hint: Start with $0=\int_{\Omega} p \operatorname{div} \operatorname{curl} \boldsymbol{\varphi} d x$ and use integration by parts twice.
Note: (a) and (b) together imply that $\operatorname{grad} p \in H_{0}(\operatorname{curl}, \Omega)$ for all $p \in H_{0}^{1}(\Omega)$.
(c) Show (assuming that $\sigma=0$) that

$$
a(\operatorname{grad} p, \boldsymbol{v})=0 \quad \forall p \in H_{0}^{1}(\Omega), \forall \boldsymbol{v} \in H_{0}(\operatorname{curl}, \Omega) .
$$

11 Consider again the case $\sigma=0$. Show that if a solution to problem (3.1) exists, then

$$
\int_{\Omega} \boldsymbol{J} \cdot \operatorname{grad} p d x=0 \quad \forall p \in H_{0}^{1}(\Omega) .
$$

Show that this implies

$$
\operatorname{div} \boldsymbol{J}=0 \quad \text { weakly in } \Omega .
$$

12 Consider again the case $\sigma=0$. Show that the bilinear form $a(\cdot, \cdot)$ is V_{0}-coercive where

$$
V_{0}:=\left\{\boldsymbol{v} \in H_{0}(\operatorname{curl}, \Omega): \int_{\Omega} \boldsymbol{v} \cdot \operatorname{grad} p d x=0 \quad \forall p \in H_{0}^{1}(\Omega)\right\} .
$$

Use the "Friedrichs type inequality"

$$
\|\boldsymbol{v}\|_{L^{2}(\Omega)} \leq C_{F}\|\operatorname{curl} \boldsymbol{v}\|_{L^{2}(\Omega)} \quad \forall \boldsymbol{v} \in V_{0}
$$

which holds provided that the domain is simply connected and has a connected boundary (cf. Monk, 2003, Corollary 3.51).

