Assume the notations of Tutorial 7 and let $\left\{p^{(\alpha)}: \alpha \in A\right\}$ denote the nodal basis on the reference element Δ.

37 Assume that the family $\left(\mathcal{T}_{h}\right)_{h \in \Theta}$ is shape-regular and denote by V_{h} the corresponding finite element space of the Courant element.
Show that there exist positive constants $\underline{\boldsymbol{c}}_{0}$ and $\overline{\boldsymbol{c}}_{0}$ such that
$\underline{\boldsymbol{c}}_{0}\left(\min _{r \in \mathbb{R}_{h}} h^{(r)}\right)^{d}\left(\underline{v}_{h}, \underline{v}_{h}\right)_{\ell^{2}} \leq\left(v_{h}, v_{h}\right)_{L^{2}(\Omega)} \leq \overline{\boldsymbol{c}}_{0}\left(\max _{r \in \mathbb{R}_{h}} h^{(r)}\right)^{d}\left(\underline{v}_{h}, \underline{v}_{h}\right)_{\ell^{2}} \quad \forall v_{h} \in V_{h}$,
with $d=2$.
38 Let the 3×3 matrices G_{0} and G_{1} be given (according to the lecture) by

$$
G_{0}=\left(\left(p^{(\alpha)}, p^{(\beta)}\right)_{L^{2}(\Delta)}\right)_{\alpha, \beta \in A}, \quad G_{1}=\left(\left(p^{(\alpha)}, p^{(\beta)}\right)_{H^{1}(\Delta)}\right)_{\alpha, \beta \in A},
$$

Show that there exist positive constants \underline{c}_{G} and \bar{c}_{G} such that

$$
\underline{c}_{G}\left(G_{0} \underline{v}, \underline{v}\right) \leq\left(G_{1} \underline{v}, \underline{v}\right) \leq \bar{c}_{G}\left(G_{0} \underline{v}, \underline{v}\right) \quad \forall \underline{v} \in \mathbb{R}^{3} .
$$

39 Let the family ($\mathcal{T}_{h \in \Theta}$) of subdivisions be shape-regular. Show that there exist positive constants $\underline{\boldsymbol{c}}$ and $\overline{\boldsymbol{c}}$ such that

$$
\underline{\boldsymbol{c}}\left(v_{h}, v_{h}\right)_{L^{2}(\Omega)} \leq\left(v_{h}, v_{h}\right)_{H^{1}(\Omega)} \leq \overline{\boldsymbol{c}}\left(\min _{r \in \mathbb{R}_{h}} h^{(r)}\right)^{-2}\left(v_{h}, v_{h}\right)_{L^{2}(\Omega)} \quad \forall v_{h} \in V_{h}
$$

Hint: Use the Exercise 38 to get the upper bound.

Programming

Download the updated version of vec.hh and the new files

- vector.hh - a vector class (for vectors of dynamic length)
- sparsematrix.hh, sparsematrix.cc - a sparse matrix class
- mesh.hh, and mesh.cc - a 2D triangular mesh
from the tutorial website.
There are also two demos:
- smdemo.cc - showing how to work with the sparse matrix and
- mesh.cc - showing how to work with the mesh.

Go through these demos and understand what is happening there.
40 Complete the implementation of

```
void Mesh :: getMatrixShape (SparseShape& ss) const;
```

in mesh.cc. The routine should give back the matrix pattern of the stiffness matrix corresponding to the mesh.
Hint: An index pair (i, j) is in the matrix pattern if and only if there is an element δ_{r} containing both vertex i and vertex j. Thus, loop over all elements and for each element, add 9 positions to ss.

41 Write a function
void assembleStiffnessMatrix (const Mesh\& mesh, SparseMatrix\& K);
that assembles the stiffness matrix K according to the bilinear form

$$
a(u, v)=\int_{\Omega} \nabla u(x) \cdot \nabla v(x)+u(x) v(x) d x
$$

for mesh being the triangulation of Ω.
Hint: Reuse the functions from Tutorial 6 , in particular exercises 28 and 30 .
42 Write a function

```
void assembleLoadVector (const Mesh& mesh, ScalarField f, Vector& b);
```

that assembles the load vector b according to the functional

$$
\langle F, v\rangle=\int_{\Omega} f(x) v(x) d x
$$

for mesh being the triangulation of Ω.
Hint: Reuse the function from exercise 29 .
All routines should be tested for the two meshes created in meshdemo.cc

