Numerical Methods for Elliptic Partial Differential Equations SS 2010
Tutorial 8 Tuesday, 18 May 2010 10.15-11.45, T 041

Assume the notations of Tutorial 7 and let {p® : a € A} denote the nodal basis on the
reference element A.

Assume that the family (7,)xeco is shape-regular and denote by V}, the corresponding
finite element space of the Courant element.

Show that there exist positive constants ¢, and ¢; such that

d d
go<min h(’")) (vh, v < (vn, vn)r2) < @ (maxh(’")) (vh, v Vou € Vi,
reRy, reRy,

with d = 2.
Let the 3 x 3 matrices Gy and G be given (according to the lecture) by

Go = (0 D)) opers G = (0 D) ia)pen
Show that there exist positive constants c, and ¢g such that

co (Gov, v) < (Giu,v) < éq(Gov,v) Vo eR?.

Let the family (7ce) of subdivisions be shape-regular. Show that there exist posi-
tive constants ¢ and € such that

—2
c(vn, o)z < (U, Un)mi) < € <II€1]£11 hm) (Un, vn)r2() Yup € Vi
TER,

Hint: Use the Exercise to get the upper bound.

Programming

Download the updated version of vec.hh and the new files
e vector.hh — a vector class (for vectors of dynamic length)
e sparsematrix.hh, sparsematrix.cc — a sparse matrix class
e mesh.hh, and mesh.cc — a 2D triangular mesh

from the tutorial website.

There are also two demos:
e smdemo.cc — showing how to work with the sparse matrix and
e mesh.cc — showing how to work with the mesh.

Go through these demos and understand what is happening there.

Complete the implementation of
void Mesh :: getMatrixShape (SparseShape& ss) const;

in mesh.cc. The routine should give back the matrix pattern of the stiffness matrix
corresponding to the mesh.

Hint: An index pair (4, 7) is in the matrix pattern if and only if there is an element
0, containing both vertex ¢ and vertex j. Thus, loop over all elements and for each
element, add 9 positions to ss.

15

Write a function
void assembleStiffnessMatrix (const Mesh& mesh, SparseMatrix& K);

that assembles the stiffness matrix K according to the bilinear form

a(u,v) = /QVu(:c) -Vou(z) +u(x)v(z) de

for mesh being the triangulation of (2.

Hint: Reuse the functions from Tutorial 6, in particular exercises and .

Write a function

void assemblelLoadVector (const Mesh& mesh, ScalarField f, Vector& b);
that assembles the load vector b according to the functional
(F.0) = [f@)ole)da
Q

for mesh being the triangulation of €.
Hint: Reuse the function from exercise .

All routines should be tested for the two meshes created in meshdemo.cc

16

