Tuesday, 27 April 2010 10.15–11.45, T 041

Programming in C⁺⁺

(prepare your code on a USB stick or send it by e-mail until 30min before the tutorial) In this tutorial we consider Courant's finite element. The reference triangle is given by

$$\Delta = \{ \xi \in \mathbb{R}^2 : \xi_1 > 0, \ \xi_2 > 0, \ \xi_1 + \xi_2 < 1 \},$$

with vertices $\xi^{(0)} = (0,0), \; \xi^{(1)} = (1,0), \; \text{and} \; \xi^{(2)} = (0,1), \; \text{the space of shape functions}$ is P_1 , and the nodal variables are the evaluations at the three vertices. Recall that the nodal shape functions are given by

$$p^{(0)}(\xi) = 1 - \xi_1 - \xi_2,$$

$$p^{(1)}(\xi) = \xi_1,$$

$$p^{(2)}(\xi) = \xi_2.$$

To model small vectors from \mathbb{R}^n and $n \times m$ matrices, where $m, n \in \{2, 3\}$, I recommend to use vec.hh and mat.hh (downloadable from the website, together with a demo matvecdemo.cc). There 0-based indices are used throughout, for example:

$$\xi \in \mathbb{R}^2 \leftrightarrow ext{Vec<2> xi} \qquad \qquad \xi_1 \leftrightarrow ext{xi[0]} \ \xi_2 \leftrightarrow ext{xi[1]}$$

To model the type of a scalar function depending on a vector in \mathbb{R}^2 use

typedef double (*ScalarField)(const Vec<2>& x);

25 Write two functions

```
double calcShape (int i, const Vec<2>& xi);
Vec<2> calcDShape (int i, const Vec<2>& xi);
```

that compute the value $p^{(\alpha)}(\xi)$ and the gradient $\nabla_{\xi} p^{(\alpha)}(\xi)$ of a nodal shape function, respectively, where $xi = \xi$ and $i = \alpha$.

26 Complete and implement the following class modelling the affine linear transformation x_{δ} from Δ to an arbitrary non-degenerate triangle δ :

$$x = x_{\delta}(\xi) = x_0 + J\xi,$$

where x_0 is the image of (0,0).

```
class ElTrans {
public:
  ElTrans(const Vec<2>& x0, const Vec<2>& x1, const Vec<2>& x2);
  void transform (const Vec<2>& xi, Vec<2>& x);
  void getJacobian (Mat<2, 2>& J);
};
```

Above, x0, x1, x2 are the three vertices of δ . The method transform should transform reference coordinates $xi=\xi$ to real coordinates $x=x_{\delta}(\xi)$. The method getJacobian should return the Jacobi matrix J of the transformation.

27 Add two more methods to class ElTrans:

double jacobiDet ();
void getInvJacobian (Mat<2, 2>& invJ);

The first should return the Jacobi determinant det J, the second one should return $invJ=J^{-1}$.

|28| Write a function

that computes the element stiffness matrix elMat= K_r associated to an element δ_r (given by the three vertices x0, x1, and x2), i.e.

$$(K_r)_{\alpha\beta} = \int_{\delta_r} \nabla_x p^{(r,\alpha)}(x) \cdot \nabla_x p^{(r,\beta)}(x) dx = \int_{\Delta} \left(J_r^{-T} \nabla_{\xi} p^{(\alpha)}(\xi) \right) \cdot \left(J_r^{-T} \nabla_{\xi} p^{(\beta)}(\xi) \right) \det(J_r) d\xi.$$

Hint: Consider only the above formula on the reference element. Use calcDShape to get $\nabla_{\xi} p^{(\alpha)}(\xi)$, and ElTrans to get det J and J_r^{-1} . Note finally that J_r^{-T} and $\nabla_{\xi} p^{(\alpha)}$ are constant on Δ .

|29| Write a function

that approximates the element load vector f_r given by

$$(f_r)_{\alpha} = \int_{\delta_r} f(x) \, p^{(r,\alpha)}(x) \, dx = \int_{\Delta} f(x_{\delta_r}(\xi)) \, p^{(\alpha)}(\xi) \, \det(J_r) \, d\xi,$$

using the following quadrature rule on Δ :

$$\int_{\Delta} g(\xi) \, d\xi \approx \frac{1}{6} \left[g(\frac{1}{6}, \frac{1}{6}) + g(\frac{4}{6}, \frac{1}{6}) + g(\frac{1}{6}, \frac{4}{6}) \right].$$

Show that this quadrature rule is exact for $g \in P_2$.

Hint: Proceed similarly as in exercise 29 and use ElTrans to get $x_{\delta_r}(\xi)$. Note that ξ must loop over the three integration points.

30 Write a function

that computes the element mass matrix M_r given by

$$(M_r)_{\alpha\beta} = \int_{\delta_r} p^{(r,\alpha)}(x) p^{(r,\beta)}(x) dx$$

Hint: Transform to the reference element as done in the previous two exercises.

Test all your functions, i.e. apply them to concrete parameters and output the results! At minimum use f(x,y) = 1 and test $\delta_r = \Delta$ as well as the triangle with the vertices (1,1), (1.5,1), and (1.25,1.5).