Numerical Methods for Elliptic Partial Differential Equations SS 2010
Tutorial 6 Tuesday, 27 April 2010 10.15-11.45, T 041

Programming in C**
(prepare your code on a USB stick or send it by e-mail until 30min before the tutorial)

In this tutorial we consider Courant’s finite element. The reference triangle is given by
A={(eR?:&>0,62>0, §+& <1},

with vertices £ = (0,0), €M = (1,0), and ¢® = (0,1), the space of shape functions
is P;, and the nodal variables are the evaluations at the three vertices. Recall that the
nodal shape functions are given by

p(o)(f) = 1-& — &,
p(l)(g) = gla
p(2)(f) = &

To model small vectors from R™ and n x m matrices, where m, n € {2,3}, I recom-
mend to use vec.hh and mat.hh (downloadable from the website, together with a demo
matvecdemo.cc). There 0-based indices are used throughout, for example:

£ €R? & Vec<2> xi &« xil[o0]
& — xi[1]

To model the type of a scalar function depending on a vector in R? use

typedef double (*ScalarField) (const Vec<2>& x);

Write two functions

double calcShape (int i, const Vec<2>& xi);
Vec<2> calcDShape (int i, const Vec<2>& xi);

that compute the value p® (€) and the gradient Ve p@) (&) of a nodal shape function,
respectively, where xi=¢ and i=a.

Complete and implement the following class modelling the affine linear transforma-
tion x5 from A to an arbitrary non-degenerate triangle o:

r = z5(§) = mo+ JE,

where z is the image of (0,0).

class ElTrans {

public:
ElTrans(const Vec<2>& x0, const Vec<2>& x1, const Vec<2>& x2);
void transform (const Vec<2>& xi, Vec<2>& x);
void getJacobian (Mat<2, 2>& J);

}s

Above, x0, x1, x2 are the three vertices of 9. The method transform should
transform reference coordinates xi=¢ to real coordinates x=w45(§). The method
getJacobian should return the Jacobi matrix J of the transformation.

9

Add two more methods to class ElTrans:

double jacobiDet ();
void getInvJacobian (Mat<2, 2>& invl]);

The first should return the Jacobi determinant det J, the second one should return
invJ=J"1.

Write a function

void calcLaplaceElMat (const Vec<2>& x0, const Vec<2>& x1,
const Vec<2>& x2, Mat<3, 3>& elMat);

that computes the element stiffness matrix elMat=K, associated to an element 6,
(given by the three vertices x0, x1, and x2), i.e.

(K.)op = /5 V") (2)-V, p"? () dz = /A (J7TVep () (I, TVep™(€)) det(J,) dE.

Hint: Consider only the above formula on the reference element. Use calcDShape
to get Vep®(¢), and ElTrans to get detJ and J.'. Note finally that J T and
Ve p(® are constant on A.

Write a function

void calcSourceElVec (const Vec<2>& x0, const Vec<2>& x1,
const Vec<2>& x2, ScalarField f, Vec<3>& elVec);

that approximates the element load vector f,. given by

wnzéfmwwwm:Aﬂm@wwamuwa

using the following quadrature rule on A:

/Ag(f)dﬁ ~ é[g(%%ﬂg(%»%ﬂg(%a%) :

Show that this quadrature rule is exact for g € Ps.

Hint: Proceed similarly as in exercise and use E1Trans to get x5, (£). Note that
& must loop over the three integration points.

Write a function

void calcMassElMat (const Vec<2>& x0, const Vec<2>& x1,
const Vec<2>& x2, Mat<3, 3>& elMat);

that computes the element mass matrix M, given by

Moy = [7)(0)p"(a) da
6'r

Hint: Transform to the reference element as done in the previous two exercises.

Test all your functions, i.e. apply them to concrete parameters and output the results!
At minimum use f(z,y) = 1 and test 6, = A as well as the triangle with the vertices
(1,1), (1.5,1), and (1.25,1.5).

10

