Programming in C^{++}

(prepare your code on a USB stick or send it by e-mail until 30min before the tutorial)
In this tutorial we consider Courant's finite element. The reference triangle is given by

$$
\Delta=\left\{\xi \in \mathbb{R}^{2}: \xi_{1} \geq 0, \xi_{2} \geq 0, \xi_{1}+\xi_{2} \leq 1\right\}
$$

with vertices $\xi^{(0)}=(0,0), \xi^{(1)}=(1,0)$, and $\xi^{(2)}=(0,1)$, the space of shape functions is P_{1}, and the nodal variables are the evaluations at the three vertices. Recall that the nodal shape functions are given by

$$
\begin{aligned}
& p^{(0)}(\xi)=1-\xi_{1}-\xi_{2}, \\
& p^{(1)}(\xi)=\xi_{1}, \\
& p^{(2)}(\xi)=\xi_{2} .
\end{aligned}
$$

To model small vectors from \mathbb{R}^{n} and $n \times m$ matrices, where $m, n \in\{2,3\}$, I recommend to use vec.hh and mat.hh (downloadable from the website, together with a demo matvecdemo.cc). There 0 -based indices are used throughout, for example:

$$
\xi \in \mathbb{R}^{2} \leftrightarrow \text { Vec<2> xi } \quad \begin{aligned}
& \xi_{1} \leftrightarrow \mathrm{xi}[0] \\
& \xi_{2} \leftrightarrow \mathrm{xi}[1]
\end{aligned}
$$

To model the type of a scalar function depending on a vector in \mathbb{R}^{2} use

```
typedef double (*ScalarField)(const Vec<2>& x);
```

25 Write two functions

```
double calcShape (int i, const Vec<2>& xi);
Vec<2> calcDShape (int i, const Vec<2>& xi);
```

that compute the value $p^{(\alpha)}(\xi)$ and the gradient $\nabla_{\xi} p^{(\alpha)}(\xi)$ of a nodal shape function, respectively, where $\mathrm{xi}=\xi$ and $\mathrm{i}=\alpha$.

26 Complete and implement the following class modelling the affine linear transformation x_{δ} from Δ to an arbitrary non-degenerate triangle δ :

$$
x=x_{\delta}(\xi)=x_{0}+J \xi
$$

where x_{0} is the image of $(0,0)$.

```
class ElTrans {
public:
    ElTrans(const Vec<2>& x0, const Vec<2>& x1, const Vec<2>& x2);
    void transform (const Vec<2>& xi, Vec<2>& x);
    void getJacobian (Mat<2, 2>& J);
    };
```

Above, x 0 , $\mathrm{x} 1, \mathrm{x} 2$ are the three vertices of δ. The method transform should transform reference coordinates $\mathrm{xi}=\xi$ to real coordinates $\mathrm{x}=x_{\delta}(\xi)$. The method getJacobian should return the Jacobi matrix J of the transformation.

27 Add two more methods to class ElTrans:

```
double jacobiDet ();
void getInvJacobian (Mat<2, 2>& invJ);
```

The first should return the Jacobi determinant $\operatorname{det} J$, the second one should return invJ $=J^{-1}$.
28 Write a function

```
void calcLaplaceElMat (const Vec<2>& x0, const Vec<2>& x1,
    const Vec<2>& x2, Mat<3, 3>& elMat);
```

that computes the element stiffness matrix elMat $=K_{r}$ associated to an element δ_{r} (given by the three vertices $x 0$, $x 1$, and $x 2$), i.e.

$$
\left(K_{r}\right)_{\alpha \beta}=\int_{\delta_{r}} \nabla_{x} p^{(r, \alpha)}(x) \cdot \nabla_{x} p^{(r, \beta)}(x) d x=\int_{\Delta}\left(J_{r}^{-T} \nabla_{\xi} p^{(\alpha)}(\xi)\right) \cdot\left(J_{r}^{-T} \nabla_{\xi} p^{(\beta)}(\xi)\right) \operatorname{det}\left(J_{r}\right) d \xi
$$

Hint: Consider only the above formula on the reference element. Use calcDShape to get $\nabla_{\xi} p^{(\alpha)}(\xi)$, and ElTrans to get $\operatorname{det} J$ and J_{r}^{-1}. Note finally that J_{r}^{-T} and $\nabla_{\xi} p^{(\alpha)}$ are constant on Δ.

29 Write a function

```
void calcSourceElVec (const Vec<2>& x0, const Vec<2>& x1,
    const Vec<2>& x2, ScalarField f, Vec<3>& elVec);
```

that approximates the element load vector f_{r} given by

$$
\left(f_{r}\right)_{\alpha}=\int_{\delta_{r}} f(x) p^{(r, \alpha)}(x) d x=\int_{\Delta} f\left(x_{\delta_{r}}(\xi)\right) p^{(\alpha)}(\xi) \operatorname{det}\left(J_{r}\right) d \xi
$$

using the following quadrature rule on Δ :

$$
\int_{\Delta} g(\xi) d \xi \approx \frac{1}{6}\left[g\left(\frac{1}{6}, \frac{1}{6}\right)+g\left(\frac{4}{6}, \frac{1}{6}\right)+g\left(\frac{1}{6}, \frac{4}{6}\right)\right] .
$$

Show that this quadrature rule is exact for $g \in P_{2}$.
Hint: Proceed similarly as in exercise 29 and use ElTrans to get $x_{\delta_{r}}(\xi)$. Note that ξ must loop over the three integration points.

30 Write a function

```
void calcMassElMat (const Vec<2>& x0, const Vec<2>& x1,
    const Vec<2>& x2, Mat<3, 3>& elMat);
```

that computes the element mass matrix M_{r} given by

$$
\left(M_{r}\right)_{\alpha \beta}=\int_{\delta_{r}} p^{(r, \alpha)}(x) p^{(r, \beta)}(x) d x
$$

Hint: Transform to the reference element as done in the previous two exercises.
Test all your functions, i. e. apply them to concrete parameters and output the results! At minimum use $f(x, y)=1$ and test $\delta_{r}=\Delta$ as well as the triangle with the vertices $(1,1),(1.5,1)$, and $(1.25,1.5)$.

