50 Consider the boundary value problem

$$L u(x) = f(x) \quad \forall x \in (0, 1),$$

 $u(0) = u(1) = 0$

with

$$L u(x) = -u''(x) + b u'(x)$$

and $b \in \mathbb{R}$. Let \mathcal{T}_h denote the equidistant subdivision of the interval [0, 1] with mesh size $h = 1/n, n \in \mathbb{N}$ and let the corresponding set of nodes be $\overline{\omega}_h = \{x_0, x_1, \ldots, x_n\}$. Consider the following variational formulation of the boundary value problem: Find $u \in H_0^1(0, 1)$ such that

$$a(u,v) = (f,v)_{L^2(0,1)} \qquad \forall v \in H^1_0(0,1)$$
(10.1)

with

$$a(u, v) = (u', v')_{L^2(0,1)} + (b u', v)_{L^2(0,1)}$$

For b = 0, the finite element discretization by the Courant element is equivalent to the finite difference method

$$(L_h u_h)(x) = f_h(x) \qquad \forall x \in \omega_h ,$$

$$u_h(0) = u_h(1) = 0$$

with

$$(L_h u_h)(x) = -\frac{1}{h^2} \left[u_h(x-h) - 2 u_h(x) + u_h(x+h) \right]$$

and

$$f_h(x) = \frac{1}{h} \int_{x-h}^{x+h} f(y) p^{(x)}(y) \, dy,$$

where $p^{(x)}$ denotes the nodal basis function associated to the node $x \in \overline{\omega}_h$. This follows from the identity

$$\frac{1}{h}a(u_h, p^{(x)}) = (L_h u_h)(x),$$

which is easy to show.

Consider the case $b \neq 0$ and find the finite difference method that is equivalent to the finite element discretization by the Courant element.

51 Assume the notations of the previous example.

Let α_h be a given positive real number and consider the following discrete variational problem: find $u_h \in V_h$ such that

$$a_h(u_h, v_h) = (f, v_h)_{L^2(0,1)} \quad \forall v_h \in V_h$$
(10.2)

with

$$a_h(u_h, v_h) = (u'_h, v'_h)_{L^2(0,1)} + (b \, u'_h, v_h + \alpha_h \, b \, v'_h)_{L^2(0,1)}$$

where $V_h \subset H_0^1(0,1)$ denotes the finite element space given by the Courant element. Determine the parameter α_h such that the finite element discretization by the Courant element applied to (10.2) is equivalent to the following finite difference method:

$$(L_h u_h)(x) = f_h(x) \qquad \forall x \in \omega_h,$$

$$u_h(0) = u_h(1) = 0,$$

with

$$(L_h u_h)(x) = -\frac{1}{h^2} \left[u_h(x-h) - 2 u_h(x) + u_h(x+h) \right] + + b \left\{ \begin{array}{l} \frac{1}{h} \left[u_h(x) - u_h(x-h) \right] & \text{if } b \ge 0 \\ \frac{1}{h} \left[u_h(x+h) - u_h(x) \right] & \text{if } b < 0 \end{array} \right\}.$$

52 A finite difference method of the form

$$(L_h u_h)(x) = f_h(x) \qquad \forall x \in \omega_h ,$$

$$u_h(0) = u_h(1) = 0$$

with

$$(L_h u_h)(x_h) = A_h(x) u_h(x) - \sum_{\xi \in S'_h(x)} B_h(x,\xi) u_h(\xi)$$

is called *monotone* if and only if

- (i) $A_h(x) > 0$ for all $x \in \omega_h$,
- (ii) $B_h(x,\xi) > 0$ for all $\xi \in S'_h(x), x \in \omega_h$,
- (iii) $D_h(x) := A_h(x) \sum_{\xi \in S'_h(x)} B_h(x,\xi) \ge 0$ for all $x \in \omega_h$.

Under which conditions on b and h are the finite difference methods for excercises 50 and 51 monotone?

53 Assume the notations of the previous exercises. Let $\{\delta_r\}_{r\in\mathbb{R}}$ denote the elements of the triangulation, i. e., the intervals (x_i, x_{i+1}) .

Show that

$$a_h(u_h, v_h) = \sum_{r \in \mathbb{R}_h} a^{(r)}(u_h, v_h + \alpha_h b v'_h),$$

with the element-local bilinear forms

$$a^{(r)}(w, v) = (u', v')_{L^2(\delta_r)} + (b u', v)_{L^2(\delta_r)}.$$

54 Assume the notations of the previous exercises.

Show that

$$a_h(u_h, v_h) = a(u_h, v_h) + \sum_{r \in \mathbb{R}} \alpha_h (L u_h, L u_h)_{L^2(\delta_r)}.$$

55 Assume the notations of the previous exercises.

Consider the variational problem to find $u_h \in V_h$ such that

$$a_h(u_h, v_h) = \langle F_h, v_h \rangle \qquad \forall v_h \in V_h$$

with

$$a_{h}(u_{h}, v_{h}) = a(u_{h}, v_{h}) + \sum_{r \in \mathbb{R}_{h}} \alpha_{h} (Lu_{h}, Lv_{h})_{L^{2}(\delta_{r})}$$
$$\langle F_{h}, v_{h} \rangle = (f, v_{h})_{L^{2}(0,1)} + \sum_{r \in \mathbb{R}_{h}} \alpha_{h} (f, Lv_{h})_{L^{2}(\delta_{r})}.$$

Let $u \in H_0^1(0, 1)$ be the exact solution of (10.1). Show that if $u \in H_0^1(0, 1) \cap H^2(0, 1)$, then

$$\langle F_h, v_h \rangle - a_h(u, v_h) = 0 \qquad \forall v_h \in V_h.$$