50 Consider the boundary value problem

$$
\begin{aligned}
L u(x) & =f(x) \quad \forall x \in(0,1), \\
u(0)=u(1) & =0
\end{aligned}
$$

with

$$
L u(x)=-u^{\prime \prime}(x)+b u^{\prime}(x)
$$

and $b \in \mathbb{R}$. Let \mathcal{T}_{h} denote the equidistant subdivision of the interval $[0,1]$ with mesh size $h=1 / n, n \in \mathbb{N}$ and let the corresponding set of nodes be $\bar{\omega}_{h}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. Consider the following variational formulation of the boundary value problem: Find $u \in H_{0}^{1}(0,1)$ such that

$$
\begin{equation*}
a(u, v)=(f, v)_{L^{2}(0,1)} \quad \forall v \in H_{0}^{1}(0,1) \tag{10.1}
\end{equation*}
$$

with

$$
a(u, v)=\left(u^{\prime}, v^{\prime}\right)_{L^{2}(0,1)}+\left(b u^{\prime}, v\right)_{L^{2}(0,1)} .
$$

For $b=0$, the finite element discretization by the Courant element is equivalent to the finite difference method

$$
\begin{aligned}
\left(L_{h} u_{h}\right)(x) & =f_{h}(x) \quad \forall x \in \omega_{h}, \\
u_{h}(0)=u_{h}(1) & =0
\end{aligned}
$$

with

$$
\left(L_{h} u_{h}\right)(x)=-\frac{1}{h^{2}}\left[u_{h}(x-h)-2 u_{h}(x)+u_{h}(x+h)\right]
$$

and

$$
f_{h}(x)=\frac{1}{h} \int_{x-h}^{x+h} f(y) p^{(x)}(y) d y
$$

where $p^{(x)}$ denotes the nodal basis function associated to the node $x \in \bar{\omega}_{h}$. This follows from the identity

$$
\frac{1}{h} a\left(u_{h}, p^{(x)}\right)=\left(L_{h} u_{h}\right)(x)
$$

which is easy to show.
Consider the case $b \neq 0$ and find the finite difference method that is equivalent to the finite element discretization by the Courant element.

51 Assume the notations of the previous example.
Let α_{h} be a given positive real number and consider the following discrete variational problem: find $u_{h} \in V_{h}$ such that

$$
\begin{equation*}
a_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{L^{2}(0,1)} \quad \forall v_{h} \in V_{h} \tag{10.2}
\end{equation*}
$$

with

$$
a_{h}\left(u_{h}, v_{h}\right)=\left(u_{h}^{\prime}, v_{h}^{\prime}\right)_{L^{2}(0,1)}+\left(b u_{h}^{\prime}, v_{h}+\alpha_{h} b v_{h}^{\prime}\right)_{L^{2}(0,1)},
$$

where $V_{h} \subset H_{0}^{1}(0,1)$ denotes the finite element space given by the Courant element. Determine the parameter α_{h} such that the finite element discretization by
the Courant element applied to (10.2) is equivalent to the following finite difference method:

$$
\begin{aligned}
\left(L_{h} u_{h}\right)(x) & =f_{h}(x) \quad \forall x \in \omega_{h}, \\
u_{h}(0)=u_{h}(1) & =0,
\end{aligned}
$$

with

$$
\begin{aligned}
\left(L_{h} u_{h}\right)(x)=- & \frac{1}{h^{2}}\left[u_{h}(x-h)-2 u_{h}(x)+u_{h}(x+h)\right]+ \\
& +b\left\{\begin{array}{ll}
\frac{1}{h}\left[u_{h}(x)-u_{h}(x-h)\right] & \text { if } b \geq 0 \\
\frac{1}{h}\left[u_{h}(x+h)-u_{h}(x)\right] & \text { if } b<0
\end{array}\right\} .
\end{aligned}
$$

52 A finite difference method of the form

$$
\begin{aligned}
\left(L_{h} u_{h}\right)(x) & =f_{h}(x) \quad \forall x \in \omega_{h}, \\
u_{h}(0)=u_{h}(1) & =0
\end{aligned}
$$

with

$$
\left(L_{h} u_{h}\right)\left(x_{h}\right)=A_{h}(x) u_{h}(x)-\sum_{\xi \in S_{h}^{\prime}(x)} B_{h}(x, \xi) u_{h}(\xi)
$$

is called monotone if and only if
(i) $A_{h}(x)>0$ for all $x \in \omega_{h}$,
(ii) $B_{h}(x, \xi)>0$ for all $\xi \in S_{h}^{\prime}(x), x \in \omega_{h}$,
(iii) $D_{h}(x):=A_{h}(x)-\sum_{\xi \in S_{h}^{\prime}(x)} B_{h}(x, \xi) \geq 0$ for all $x \in \omega_{h}$.

Under which conditions on b and h are the finite difference methods for excercises 50 and 51 monotone?

53 Assume the notations of the previous exercises. Let $\left\{\delta_{r}\right\}_{r \in \mathbb{R}}$ denote the elements of the triangulation, i.e., the intervals $\left(x_{i}, x_{i+1}\right)$.

Show that

$$
a_{h}\left(u_{h}, v_{h}\right)=\sum_{r \in \mathbb{R}_{h}} a^{(r)}\left(u_{h}, v_{h}+\alpha_{h} b v_{h}^{\prime}\right),
$$

with the element-local bilinear forms

$$
a^{(r)}(w, v)=\left(u^{\prime}, v^{\prime}\right)_{L^{2}\left(\delta_{r}\right)}+\left(b u^{\prime}, v\right)_{L^{2}\left(\delta_{r}\right)} .
$$

54 Assume the notations of the previous exercises.
Show that

$$
a_{h}\left(u_{h}, v_{h}\right)=a\left(u_{h}, v_{h}\right)+\sum_{r \in \mathbb{R}} \alpha_{h}\left(L u_{h}, L u_{h}\right)_{L^{2}\left(\delta_{r}\right)} .
$$

55 Assume the notations of the previous exercises.
Consider the variational problem to find $u_{h} \in V_{h}$ such that

$$
a_{h}\left(u_{h}, v_{h}\right)=\left\langle F_{h}, v_{h}\right\rangle \quad \forall v_{h} \in V_{h},
$$

with

$$
\begin{aligned}
a_{h}\left(u_{h}, v_{h}\right) & =a\left(u_{h}, v_{h}\right)+\sum_{r \in \mathbb{R}_{h}} \alpha_{h}\left(L u_{h}, L v_{h}\right)_{L^{2}\left(\delta_{r}\right)} \\
\left\langle F_{h}, v_{h}\right\rangle & =\left(f, v_{h}\right)_{L^{2}(0,1)}+\sum_{r \in \mathbb{R}_{h}} \alpha_{h}\left(f, L v_{h}\right)_{L^{2}\left(\delta_{r}\right)} .
\end{aligned}
$$

Let $u \in H_{0}^{1}(0,1)$ be the exact solution of (10.1).
Show that if $u \in H_{0}^{1}(0,1) \cap H^{2}(0,1)$, then

$$
\left\langle F_{h}, v_{h}\right\rangle-a_{h}\left(u, v_{h}\right)=0 \quad \forall v_{h} \in V_{h} .
$$

