Let $\mathcal{T}_{h}=\left\{\delta_{r}: r \in \mathbb{R}_{h}\right\}$ be an admissible subdivision of a polygonal domain $\Omega \subset \mathbb{R}^{2}$ into acute triangles and let $\mathcal{T}_{\mathcal{H}}=\left\{\mathcal{H}(x): x \in \bar{\omega}_{h}\right\}$ be the secondary mesh obtained by the PB method.
The Petrov-Galerkin method discussed in class for the boundary value problem

$$
\begin{aligned}
-\operatorname{div}(a(x) \operatorname{grad} u(x)) & =f(x) & & \forall x \in \Omega \\
u(x) & =0 & & \forall x \in \partial \Omega
\end{aligned}
$$

leads to the following discrete variational problem.
Find $u_{h} \in V_{0 h}$ such that

$$
\begin{equation*}
\bar{a}\left(u_{h}, \bar{v}\right)=(f, \bar{v})_{L^{2}(\Omega)} \quad \forall \bar{v} \in T_{0 h} \tag{11.1}
\end{equation*}
$$

(with the notations introduced in class).
56 Show: the variational problem (11.1) can be written as the finite difference method

$$
\begin{aligned}
\left(L_{h} \underline{u}_{h}\right)(x) & =f_{h}(x) & & \forall x \in \omega_{h}, \\
\underline{u}_{h}(x) & =0 & & \forall x \in \gamma_{h}
\end{aligned}
$$

for the grid function $\underline{u}_{h}: \bar{\omega}_{h} \rightarrow \mathbb{R}$, given by $\underline{u}_{h}(x)=u_{h}(x)$ for all $x \in \bar{\omega}_{h}$, with

$$
\begin{aligned}
\left(L_{h} v\right)(x) & =-\frac{1}{H(x)} \sum_{\xi \in S_{h}^{\prime}(x)} \bar{a}\left(x_{\xi}\right) \frac{v(\xi)-v(x)}{h(x, \xi)} s\left(x_{\xi}\right) \quad \text { for all } x \in \omega_{h} \\
\bar{a}\left(x_{\xi}\right) & =\frac{1}{s\left(x_{\xi}\right)} \int_{\zeta(x, \xi)} a(y) d s_{y}, \quad \text { and } \quad f_{h}(x)=\frac{1}{H(x)} \int_{\mathcal{H}(x)} f(y) d y .
\end{aligned}
$$

57 Assume the notations introduced in class and those introduced above.
Let the discrete Laplace operator Δ_{h} be given by

$$
\left(\Delta_{h} v\right)(x)=\frac{1}{H(x)} \sum_{\xi \in S_{h}^{\prime}(x)} \frac{v(\xi)-v(x)}{h(x, \xi)} s\left(x_{\xi}\right) \quad \text { for all } x \in \omega_{h}
$$

and let us introduce the following discrete scalar products for the two grid functions $v: \bar{\omega}_{h} \rightarrow \mathbb{R}$ and $w: \bar{\omega}_{h} \rightarrow \mathbb{R}$ with $v(x)=w(x)=0$ for all $x \in \gamma_{h}:$

$$
\begin{aligned}
(v, w)_{L^{2}\left(w_{h}\right)} & :=\sum_{x \in \omega_{h}} v(x) w(x) H(x), \\
(v, w)_{H_{0}^{1}\left(\omega_{h}\right)} & :=\sum_{x_{\xi}} \frac{[v(\xi)-v(x)][w(\xi)-w(x)]}{h(x, \xi)^{2}} H^{\prime}\left(x_{\xi}\right) .
\end{aligned}
$$

Show the identity

$$
\left(-\Delta_{h} v, w\right)_{L^{2}\left(\omega_{h}\right)}=(v, w)_{H_{0}^{1}\left(\omega_{h}\right)}
$$

58 Assume the notations introduced in class and in the previous exercises.
For $w_{h} \in V_{0 h}$, let \underline{w}_{h} denote the corresponding grid function $\underline{w}_{h}: \bar{\omega}_{h} \rightarrow \mathbb{R}$, given by $\underline{w}_{h}(x)=w_{h}(x)$ for all $x \in \bar{\omega}_{h}$.
Show the identity

$$
\left(\underline{u}_{h}, \underline{v}_{h}\right)_{H_{0}^{1}\left(\omega_{h}\right)}=\left(\operatorname{grad} u_{h}, \operatorname{grad} v_{h}\right)_{L^{2}(\Omega)} \quad \forall u_{h}, v_{h} \in V_{0 h} .
$$

Hints:
(i) Express $\left(\underline{u}_{h}, \underline{v}_{h}\right)_{H_{0}^{1}\left(\omega_{h}\right)}$ with the help of $\Delta_{h} \underline{u}_{h}$, see exercise 57 .
(ii) Express $\Delta_{h} \underline{u}_{h}$ with the help of the bilinear form $\bar{a}(\cdot, \cdot)$, see exercise 56 .
(iii) Express $\bar{a}(\cdot, \cdot)$ with the help of the bilinear form $a(\cdot, \cdot)$, given by

$$
a(u, v)=(\operatorname{grad} u, \operatorname{grad} v)_{L^{2}(\Omega)}
$$

see class.
59 Assume the notations introduced in class and in the previous exercises.
For $w_{h} \in V_{0 h}$, let \underline{w}_{h} denote the corresponding grid function (see exercise 58). In contrast to that, let $\bar{w}_{h} \in T_{0 h}$ denote the corresponding piecewise constant function (with respect to the secondary mesh) with $\bar{w}_{h}(x)=w_{h}(x)$ for all $x \in \bar{\omega}_{h}$.
Show the identity

$$
\left(\underline{u}_{h}, \underline{v}_{h}\right)_{L^{2}\left(\omega_{h}\right)}=\left(\bar{u}_{h}, \bar{u}_{h}\right)_{L^{2}(\Omega)} \quad \forall u_{h}, v_{h} \in V_{0 h} .
$$

60 Assume the notations introduced in class and in the previous exercises.
Show that there exist constants $\underline{c}, \bar{c}>0$, independent of h, such that

$$
\underline{c}\left(\bar{v}_{h}, \bar{v}_{h}\right)_{L^{2}(\Omega)} \leq\left(v_{h}, v_{h}\right)_{L^{2}(\Omega)} \leq\left(\bar{v}_{h}, \bar{v}_{h}\right)_{L^{2}(\Omega)} \quad \forall v_{h} \in V_{0 h}
$$

Hint: Transform to the reference triangle and observe that

$$
\lambda_{\min }(\widehat{M})(\widehat{v}, \widehat{v})_{\ell^{2}} \leq(\widehat{M} \widehat{v}, \widehat{v})_{\ell^{2}} \leq \lambda_{\max }(\widehat{M})(\widehat{v}, \widehat{v})_{\ell^{2}}
$$

where \widehat{M} denotes the mass matrix on the reference triangle.
61 Assume the notations introduced in class and in the previous exercises.
Show the discrete Friedrichs inequality: there exists a constant $\widetilde{c}_{F}>0$, independent of h, such that

$$
\|\underline{v}\|_{L^{2}\left(\omega_{h}\right)} \leq \widetilde{c}_{F}|\underline{v}|_{H_{0}^{1}\left(\omega_{h}\right)}
$$

for all grid functions $\underline{v}: \bar{\omega}_{h} \rightarrow \mathbb{R}$ with $\underline{v}(x)=0 \forall x \in \gamma_{h}$. You can use the (continuous) Friedrichs inequality

$$
\|v\|_{L^{2}(\Omega)} \leq C_{F}|v|_{H^{1}(\Omega)} \quad \forall v \in H_{0}^{1}(\Omega)
$$

without proof.

