Let $\left(\mathcal{T}_{h}\right)_{h \in \Theta}$ be a family of subdivisions $\mathcal{T}_{h}=\left\{\delta_{r}: r \in \mathbb{R}_{h}\right\}$ of a domain $\Omega \subset \mathbb{R}^{2}$ into non-degenerate triangles. For a triangle $\delta_{r} \in \mathcal{T}_{h}$ we denote by

- $x^{(r, \alpha)}$ its vertices,
- $\theta^{(r, \alpha)}$ the corresponding angles,
- $h^{(r, \alpha)}$ the length of the edge opposite to vertex $x^{(r, \alpha)}$,
where $\alpha \in A=\{1,2,3\}$. We define

$$
h^{(r)}:=\operatorname{diam}\left(\delta_{r}\right)=\max \left\{h^{(r, \alpha)}: \alpha \in A\right\},
$$

and we denote the diameter of the largest inscribed circle by $\rho^{(r)}$. Furthermore, let

$$
\Delta=\left\{\xi \in \mathbb{R}^{2}: \xi_{1}>0, \xi_{2}>0, \xi_{1}+\xi_{2}<1\right\}
$$

be the reference triangle, and $x_{\delta_{r}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the map from Δ to δ_{r}, given by

$$
x_{\delta_{r}}(\xi)=x^{(r, 1)}+J_{\delta_{r}} \xi, \quad \text { with } \quad J_{\delta_{r}}=\left(x^{(r, 2)}-x^{(r, 1)} \mid x^{(r, 2)}-x^{(r, 1)}\right) \quad \in \mathbb{R}^{2 \times 2} .
$$

31 Show that the following statements are equivalent:
(i) there exists a constant $\theta_{0}>0$ such that

$$
\theta_{0} \leq \theta^{(r, \alpha)} \quad \text { for all } h \in \Theta, r \in \mathbb{R}_{h}, \alpha \in A
$$

(ii) there exists a constant $\sigma_{0}>0$ such that

$$
\sigma_{0} h^{(r)} \leq \rho^{(r)} \quad \text { for all } h \in \Theta, r \in \mathbb{R}_{h}
$$

Hint: Show and use that

$$
\frac{\rho^{(r)}}{2}\left[\cot \left(\frac{1}{2} \theta^{(r, \beta)}\right)+\cot \left(\frac{1}{2} \theta^{(r, \gamma)}\right)\right]=h^{(r, \alpha)}
$$

for pairwise distinct indices $\alpha, \beta, \gamma \in A$.
32 Show that there exist constants $\underline{c}_{1}, \bar{c}_{1}>0$ such that

$$
\underline{c}_{1} \rho^{(r)} h^{(r)} \leq\left|\operatorname{det} J_{\delta_{r}}\right| \leq \bar{c}_{1} \rho^{(r)} h^{(r)} \quad \forall h \in \Theta, r \in \mathbb{R}_{h}
$$

Hint: Show and use that 2 meas $\left(\delta_{r}\right)=\left(h^{(r, 1)}+h^{(r, 2)}+h^{(r, 3)}\right) \rho^{(r)}$.
33 Show that there exist constants $c_{2}, c_{3}>0$ such that

$$
\left\|J_{\delta_{r}}\right\|_{\ell^{2}} \leq c_{2} h^{(r)} \quad \text { and } \quad\left\|J_{\delta_{r}}^{-1}\right\|_{\ell^{2}} \leq c_{3} \frac{1}{\rho^{(r)}} \quad \forall h \in \Theta, r \in \mathbb{R}_{h}
$$

with the spectral matrix $\|M\|_{\ell^{2}}:=\sup _{v \neq 0} \frac{\|M v\|_{\ell^{2}}}{\|v\|_{\ell^{2}}}$ and the Euclidean norm $\|v\|_{\ell^{2}}$.
Hint: Show and use that

$$
\left\|J_{\delta_{r}}\right\|_{\ell^{2}}=\sup _{\xi \in \partial B_{R}(\eta)} \frac{\left\|x_{\delta_{r}}(\xi)-x_{\delta_{r}}(\eta)\right\|_{\ell^{2}}}{\|\xi-\eta\|_{\ell^{2}}} \quad \forall \eta \in \mathbb{R}^{2}, \forall R>0
$$

with $\partial B_{R}(\eta)=\left\{\xi \in \mathbb{R}^{2}:\|\xi-\eta\|_{\ell^{2}}=R\right\}$. In particular, consider the larges inscribed circle of Δ for $\partial B_{R}(\eta)$ in order to show the first upper bound.

34 Show that a family of triangulations (subdivisions into non-degenerate triangles) is regular if and only if it is quasi-uniform.

35 Show that a family $\left(\mathcal{T}_{h}\right)_{h \in \Theta}$ of subdivisions is shape-regular if and only if there exist positive constants $\underline{c}_{1}^{\prime}, \bar{c}_{1}^{\prime}, c_{2}^{\prime}$, and c_{3}^{\prime} such that
(i) $\underline{c}_{1}^{\prime}\left(h^{(r)}\right)^{2} \leq\left|\operatorname{det} J_{\delta_{r}}\right| \leq \bar{c}_{1}^{\prime}\left(h^{(r)}\right)^{2}$ for all $h \in \Theta, r \in \mathbb{R}_{h}$,
(ii) $\left\|J_{\delta_{r}}\right\|_{\ell^{2}} \leq c_{2}^{\prime} h^{(r)}$ for all $h \in \Theta, r \in \mathbb{R}_{h}$, and
(iii) $\left\|J_{\delta_{r}}^{-1}\right\|_{\ell^{2}} \leq c_{3}^{\prime}\left(h^{(r)}\right)^{-1}$ for all $h \in \Theta, r \in \mathbb{R}_{h}$.

36 Assume that the family $\left(\mathcal{T}_{h}\right)_{h \in \Theta}$ is shape-regular and denote by V_{h} the corresponding finite element space of the Courant element.
Show that there exist positive constants $\underline{\boldsymbol{c}}_{1}$ and $\overline{\boldsymbol{c}}_{1}$ such that
$\underline{\boldsymbol{c}}_{1}\left(\min _{r \in \mathbb{R}_{h}} h^{(r)}\right)^{d}\left(\underline{v}_{h}, \underline{v}_{h}\right)_{\ell^{2}} \leq\left(v_{h}, v_{h}\right)_{H^{1}(\Omega)} \leq \overline{\boldsymbol{c}}_{1}\left(\max _{r \in \mathbb{R}_{h}} h^{(r)}\right)^{d-2}\left(\underline{v}_{h}, \underline{v}_{h}\right)_{\ell^{2}} \quad \forall v_{h} \in V_{h}$,
with $d=2$.
Hint: Modify the proof from the lecture accordingly.

