Read and understand:

Let $\left(\mathcal{T}_{h}\right)_{h \in \Theta}$ be a family of admissible subdivisions $\mathcal{T}_{h}=\left\{\delta_{r}: r \in \mathbb{R}_{h}\right\}$ of a bounded domain $\Omega \subset \mathbb{R}^{2}$ into triangles. The length of the longest edge of δ_{r} is denoted by $h^{(r)}$. Let Δ denote the reference triangle and $x_{\delta_{r}}$ the affine linear mapping from Δ to δ_{r} with its Jacobian $J_{\delta_{r}}$ (see Tutorial 7).
For each $m \in \mathbb{N}_{0}$, it can be shown that there exist constants c_{1} and c_{2} (depending only on m) such that

$$
\begin{align*}
|v|_{H^{m}\left(\delta_{r}\right)} & \leq c_{1}\left|\operatorname{det} J_{\delta_{r}}\right|^{1 / 2}\left\|J_{\delta_{r}}^{-1}\right\|_{\ell^{2}}^{m}\left|v \circ x_{\delta_{r}}\right|_{H^{m}(\Delta)} \tag{9.1}\\
\left|v \circ x_{\delta_{r}}\right|_{H^{m}(\Delta)} & \leq c_{2}\left|\operatorname{det} J_{\delta_{r}}\right|^{-1 / 2}\left\|J_{\delta_{r}}\right\|_{\ell^{2}}^{m}|v|_{H^{m}\left(\delta_{r}\right)} \tag{9.2}
\end{align*}
$$

for all $h \in \Theta, r \in \mathbb{R}_{h}$ and $v \in H^{m}\left(\delta_{r}\right)$. In class (9.1) was shown for $m=1$ and (9.2) for $m=2$.
Consider the finite element space $V_{h} \subset H^{1}(\Omega)$, given by the shape functions $\mathcal{F}(\Delta)=P_{k}$, where $k \geq 1$, and the evaluations at all nodes $\xi^{(\alpha)} \in\left\{\left(\frac{i}{k}, \frac{j}{k}\right): i, j \in \mathbb{N}_{0}\right.$ with $\left.i+j \leq k\right\}$ as the nodal variables $\ell^{(\alpha)}$. For example, for $k=3$:

In class, the linear (interpolation) operator $I_{h}: H^{2}(\Omega) \rightarrow V_{h}$ was constructed, where

$$
\left(I_{h}(v)\right)\left(x_{\delta_{r}}(\xi)\right)=\left(\hat{I}\left(v \circ x_{\delta_{r}}\right)\right)(\xi) \quad \forall \xi \in \Delta \quad \forall r \in \mathbb{R}_{h}
$$

with the corresponding linear (interpolation) operator $\hat{I}: H^{2}(\Delta) \rightarrow P_{k}$ on the reference element. For all integers s and l with $0 \leq s \leq l$ and $2 \leq l \leq k+1$ it can be shown that there exists a constant c_{3} (depending only on s and l) with

$$
\begin{equation*}
|\widehat{v}-\hat{I}(\widehat{v})|_{H^{s}(\Delta)} \leq c_{3}|\widehat{v}|_{H^{l}(\Delta)} \quad \forall \widehat{v} \in H^{l}(\Delta) . \tag{9.3}
\end{equation*}
$$

In class, (9.3) was shown for $s=1$ and $l=2$.
For $m \in \mathbb{N}_{0}$ consider the so-called broken Sobolev space $H^{m}\left(\Delta, \mathcal{T}_{h}\right)$, given by

$$
H^{m}\left(\Delta, \mathcal{T}_{h}\right)=\left\{v \in L^{2}: v_{\mid \delta_{r}} \in H^{m}\left(\delta_{r}\right) \quad \forall r \in \mathbb{R}_{h}\right\}
$$

with semi-norm

$$
|v|_{H^{m}\left(\Omega, \mathcal{T}_{h}\right)}=\left(\sum_{r \in \mathbb{R}_{h}}|v|_{H^{m}\left(\delta_{r}\right)}^{2}\right)^{1 / 2}
$$

Obviously,

$$
H^{m}(\Omega) \subset H^{m}\left(\Omega, \mathcal{T}_{h}\right) \quad \text { and } \quad|v|_{H}^{m}(\Omega)=|v|_{H^{m}\left(\Omega, \mathcal{T}_{h}\right)} \quad \forall v \in H^{m}(\Omega) .
$$

Assume that there are constants c_{4} and c_{5} such that

$$
\begin{align*}
\left\|J_{\delta_{r}}\right\|_{\ell^{2}} \leq c_{4} h^{(r)} & \forall h \in \Theta, r \in \mathbb{R}_{h}, \tag{9.4}\\
\left\|J_{\delta_{r}}^{-1}\right\|_{\ell^{2}} \leq c_{5} \frac{1}{h^{(r)}} & \forall h \in \Theta, r \in \mathbb{R}_{h} . \tag{9.5}
\end{align*}
$$

43 Use conditions (9.4)-(9.5) to show that, for all integers s and l with $0 \leq s \leq l$ and $2 \leq l \leq k+1$, there exists a constant c_{6} (depending only on c_{1}, \ldots, c_{5}) such that

$$
\left|v-I_{h}(v)\right|_{H^{s}\left(\Omega, \mathcal{T}_{h}\right)} \leq c_{6} h^{l-s}|v|_{H^{l}(\Omega)} \quad \forall v \in H^{l}(\Omega)
$$

with $h=\max _{r \in \mathbb{R}_{h}} h^{(r)}$.
44 Show the following statements.
(a) For all integers s and l with $0 \leq s \leq 1$ and $2 \leq l \leq k+1$, there exists a constant c_{7} such that

$$
\left|v-I_{h}(v)\right|_{H^{s}(\Omega)} \leq c_{7} h^{l-s}|v|_{H^{l}(\Omega)} \quad \forall v \in H^{l}(\Omega)
$$

(b) For all integers s and l with $0 \leq s \leq l$ and $2 \leq l \leq k+1$, there exists a constant c_{8} (depending only on c_{1}, \ldots, c_{5}) such that

$$
\left|I_{h}(v)\right|_{H^{s}\left(\Omega, \mathcal{T}_{h}\right)} \leq c_{8}\|v\|_{H^{l}(\Omega)} \quad \forall v \in H^{l}(\Omega)
$$

Hint: $I_{h}(v)=I_{h}(v)-v+v$
(c) There exists a constant c_{9} such that

$$
\left\|v-I_{h}(v)\right\|_{L^{2}(\Omega)}+h\left|v-I_{h}(v)\right|_{H^{1}(\Omega)} \leq c_{9} h^{2}|v|_{H^{2}(\Omega)} \quad \forall v \in H^{2}(\Omega)
$$

45 Show that there exists a constant c_{10} such that the inverse inequality

$$
\left\|v_{h}\right\|_{H^{1}(\Omega)} \leq c_{10} \frac{1}{h_{\min }}\left\|v_{h}\right\|_{L^{2}(\Omega)} \quad \forall v \in V_{h}
$$

holds, where $h_{\min }:=\min _{r \in \mathbb{R}_{h}} h^{(r)}$.

46* (BONUS example)

Does a positive constant c_{11} exist such that the "inverse" of the inverse inequality

$$
\frac{1}{h_{*}}\left\|v_{h}\right\|_{L^{2}(\Omega)} \leq c_{11}\left\|v_{h}\right\|_{H^{1}(\Omega)} \quad \forall v \in V_{h}
$$

(with $h_{*}=h$ or $h_{*}=h_{\min }$) is satisfied?

Programming

Continue the program from Tutorial 8. As a concrete example we consider the problem to find $u \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} \nabla u(x) \cdot \nabla v(x)+u(x) v(x) d x=\int_{\Omega} f(x) v(x) d x \quad \forall v \in H^{1}(\Omega) \tag{9.6}
\end{equation*}
$$

with $f\left(x_{1}, x_{2}\right)=\left(5 \pi^{2}+\frac{1}{4}\right) \cos \left(2 \pi x_{1}\right) \cos \left(4 \pi x_{2}\right)$.
(please turn over)

47 Download cg.hh. Implement a Jacobi preconditioner:

```
class JacobiPreconditioner
{
public:
    JacobiPreconditioner (const SparseMatrix& K);
    void solve (const Vector& r, Vector& z);
};
```

Assemble the finite element system $K u=b$ for (9.6) for the initial mesh from meshdemo.cc and solve it using conjugate gradients with your Jacobi preconditioner. Solve the same system for the uniformly refined meshes with $h / h_{0}=2,4,8,16$ where h_{0} is the mesh size of the initial mesh.
You can visualize solutions calling mesh.matlabOutput ("output.m", u); from your program, and then loading the file into matlab (provided you have the PDE Toolbox).

48 Write a function

```
double calcElErrorL2 (const Point2D& p0, const Point2D& p1,
    const Point2D& p2, ScalarField exact,
    double v0, double v1, double v2);
```

that approximates the element L^{2}-error $\left\|v-v_{h}\right\|_{L^{2}\left(\delta_{r}\right)}$, where exact $=v$ and $v_{h}\left(x_{\delta_{r}}(\xi)\right)=\sum_{\alpha \in A} v^{(r, \alpha)} p^{(\alpha)}(\xi)$ with $\mathrm{v} 0=v^{(r, 1)}$ etc.

Hint: Use the quadrature rule from Exercise 29 to approximate

$$
\left\|v-v_{h}\right\|_{L^{2}\left(\delta_{r}\right)}^{2}=\int_{\delta_{r}}\left|v(x)-v_{h}(x)\right|^{2} d x=\int_{\Delta} \mid v\left(x_{\delta_{r}}(\xi)\right)-v_{h}\left(\left.x_{\delta_{r}}(\xi)\right|^{2}\left|\operatorname{det} J_{\delta_{r}}\right| d \xi\right.
$$

49 Write a function

```
double calcErrorL2 (const Mesh& mesh, ScalarField exact,
                        const Vector& solution);
```

that approximates the global L^{2}-error $\left\|v-v_{h}\right\|_{L^{2}(\Omega)}$, where exact $=v$ and solution $=v_{h}$.
Hint: use calcElErrorL2 in a loop over all elements.
Show that $u\left(x_{1}, x_{2}\right)=\frac{1}{4} \cos \left(2 \pi x_{1}\right) \cos \left(4 \pi x_{2}\right)$ is the unique solution of (9.6). Compute $\left\|u-u_{h}\right\|_{L^{2}(\Omega)}$ for each the finite element solution u_{h} from Exercise 47 for the different meshes.

