
Numerical Methods for Elliptic Partial Differential Equations SS 2010
Tutorial 9 Tuesday, 8 June 2010 10.15–11.45, T 041

Read and understand:

Let (Th)h∈Θ be a family of admissible subdivisions Th = {δr : r ∈ Rh} of a bounded
domain Ω ⊂ R2 into triangles. The length of the longest edge of δr is denoted by h(r).
Let ∆ denote the reference triangle and xδr the affine linear mapping from ∆ to δr with
its Jacobian Jδr (see Tutorial 7).
For each m ∈ N0, it can be shown that there exist constants c1 and c2 (depending only
on m) such that

|v|Hm(δr) ≤ c1 | det Jδr |1/2 ‖J−1
δr
‖m`2 |v ◦ xδr |Hm(∆) (9.1)

|v ◦ xδr |Hm(∆) ≤ c2 | det Jδr |−1/2 ‖Jδr‖m`2 |v|Hm(δr) (9.2)

for all h ∈ Θ, r ∈ Rh and v ∈ Hm(δr). In class (9.1) was shown for m = 1 and (9.2) for
m = 2.
Consider the finite element space Vh ⊂ H1(Ω), given by the shape functions F(∆) = Pk,
where k ≥ 1, and the evaluations at all nodes ξ(α) ∈ {( i

k
, j
k
) : i, j ∈ N0 with i+ j ≤ k} as

the nodal variables `(α). For example, for k = 3:

In class, the linear (interpolation) operator Ih : H2(Ω)→ Vh was constructed, where

(Ih(v))(xδr(ξ)) = (Î(v ◦ xδr))(ξ) ∀ξ ∈ ∆ ∀r ∈ Rh ,

with the corresponding linear (interpolation) operator Î : H2(∆) → Pk on the reference
element. For all integers s and l with 0 ≤ s ≤ l and 2 ≤ l ≤ k + 1 it can be shown that
there exists a constant c3 (depending only on s and l) with

|v̂ − Î(v̂)|Hs(∆) ≤ c3 |v̂|Hl(∆) ∀v̂ ∈ H l(∆). (9.3)

In class, (9.3) was shown for s = 1 and l = 2.
For m ∈ N0 consider the so-called broken Sobolev space Hm(∆, Th), given by

Hm(∆, Th) = {v ∈ L2 : v|δr ∈ Hm(δr) ∀r ∈ Rh}

with semi-norm

|v|Hm(Ω,Th) =
(∑
r∈Rh

|v|2Hm(δr)

)1/2

.

Obviously,

Hm(Ω) ⊂ Hm(Ω, Th) and |v|mH(Ω) = |v|Hm(Ω,Th) ∀v ∈ Hm(Ω).

Assume that there are constants c4 and c5 such that

‖Jδr‖`2 ≤ c4 h
(r) ∀h ∈ Θ, r ∈ Rh , (9.4)

‖J−1
δr
‖`2 ≤ c5

1

h(r)
∀h ∈ Θ, r ∈ Rh . (9.5)
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43 Use conditions (9.4)–(9.5) to show that, for all integers s and l with 0 ≤ s ≤ l and
2 ≤ l ≤ k + 1, there exists a constant c6 (depending only on c1, . . . , c5) such that

|v − Ih(v)|Hs(Ω,Th) ≤ c6 h
l−s |v|Hl(Ω) ∀v ∈ H l(Ω),

with h = maxr∈Rh
h(r).

44 Show the following statements.

(a) For all integers s and l with 0 ≤ s ≤ 1 and 2 ≤ l ≤ k + 1, there exists a
constant c7 such that

|v − Ih(v)|Hs(Ω) ≤ c7 h
l−s |v|Hl(Ω) ∀v ∈ H l(Ω).

(b) For all integers s and l with 0 ≤ s ≤ l and 2 ≤ l ≤ k+1, there exists a constant
c8 (depending only on c1, . . . , c5) such that

|Ih(v)|Hs(Ω,Th) ≤ c8 ‖v‖Hl(Ω) ∀v ∈ H l(Ω).

Hint: Ih(v) = Ih(v)− v + v

(c) There exists a constant c9 such that

‖v − Ih(v)‖L2(Ω) + h |v − Ih(v)|H1(Ω) ≤ c9 h
2 |v|H2(Ω) ∀v ∈ H2(Ω).

45 Show that there exists a constant c10 such that the inverse inequality

‖vh‖H1(Ω) ≤ c10
1

hmin

‖vh‖L2(Ω) ∀v ∈ Vh

holds, where hmin := min
r∈Rh

h(r).

46∗ (BONUS example)
Does a positive constant c11 exist such that the “inverse” of the inverse inequality

1

h∗
‖vh‖L2(Ω) ≤ c11 ‖vh‖H1(Ω) ∀v ∈ Vh

(with h∗ = h or h∗ = hmin) is satisfied?

Programming

Continue the program from Tutorial 8. As a concrete example we consider the problem
to find u ∈ H1(Ω) such that∫

Ω

∇u(x) · ∇v(x) + u(x) v(x) dx =

∫
Ω

f(x) v(x) dx ∀v ∈ H1(Ω), (9.6)

with f(x1, x2) = (5π2 + 1
4
) cos(2π x1) cos(4π x2).

(please turn over)
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47 Download cg.hh. Implement a Jacobi preconditioner:

class JacobiPreconditioner

{

public:

JacobiPreconditioner (const SparseMatrix& K);

void solve (const Vector& r, Vector& z);

};

Assemble the finite element system K u = b for (9.6) for the initial mesh from
meshdemo.cc and solve it using conjugate gradients with your Jacobi preconditioner.
Solve the same system for the uniformly refined meshes with h/h0 = 2, 4, 8, 16 where
h0 is the mesh size of the initial mesh.

You can visualize solutions calling mesh.matlabOutput ("output.m", u); from
your program, and then loading the file into matlab (provided you have the PDE
Toolbox).

48 Write a function

double calcElErrorL2 (const Point2D& p0, const Point2D& p1,

const Point2D& p2, ScalarField exact,

double v0, double v1, double v2);

that approximates the element L2-error ‖v − vh‖L2(δr), where exact=v and
vh(xδr(ξ)) =

∑
α∈A v

(r,α) p(α)(ξ) with v0=v(r,1) etc.

Hint: Use the quadrature rule from Exercise 29 to approximate

‖v − vh‖2
L2(δr) =

∫
δr

|v(x)− vh(x)|2 dx =

∫
∆

|v(xδr(ξ))− vh(xδr(ξ)|2 | det Jδr | dξ

49 Write a function

double calcErrorL2 (const Mesh& mesh, ScalarField exact,

const Vector& solution);

that approximates the global L2-error ‖v − vh‖L2(Ω), where exact=v and
solution=vh.

Hint: use calcElErrorL2 in a loop over all elements.

Show that u(x1, x2) = 1
4

cos(2π x1) cos(4π x2) is the unique solution of (9.6). Com-

pute ‖u− uh‖L2(Ω) for each the finite element solution uh from Exercise 47 for the
different meshes.
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