Numerical Methods for Elliptic Partial Differential Equations SS 2010
Tutorial 9 Tuesday, 8 June 2010 10.15-11.45, T 041

Read and understand:

Let (7n)neo be a family of admissible subdivisions 7, = {J, : » € R,} of a bounded
domain 2 C R? into triangles. The length of the longest edge of §, is denoted by h(").
Let A denote the reference triangle and x;, the affine linear mapping from A to 4, with
its Jacobian J;s, (see Tutorial 7).
For each m € Ny, it can be shown that there exist constants ¢; and ¢y (depending only
on m) such that
[0lames,y < ex|det Js, [V2 |5 I v o x5, [ama)

v 0w, |mmay < ex|det Js, [TV |5, 1 [0l
for all h € ©, r € Ry, and v € H™(4,). In class (9.1) was shown for m = 1 and (9.2) for
m = 2.
Consider the finite element space Vj, C H*(Q), given by the shape functions F(A) = Py,

where k& > 1, and the evaluations at all nodes £ € {(£,1) : 4,5 € Ny with i + j < k} as
the nodal variables ¢(®. For example, for k = 3:

In class, the linear (interpolation) operator I, : H*(Q) — V}, was constructed, where

(In())(@5,(6) = ((wous))(€) VEEA VreRy,

with the corresponding linear (interpolation) operator I : H2(A) — P, on the reference
element. For all integers s and [ with 0 < s <[ and 2 <[ <k + 1 it can be shown that
there exists a constant c3 (depending only on s and [) with

[0~ 1(0)

o) < csflga) V0 € H(A). (9.3)

In class, (9.3) was shown for s =1 and [ = 2.
For m € Ny consider the so-called broken Sobolev space H™(A,T},), given by

H™AT,) = {veL®:v; € H"(3,) VreRy}

with semi-norm

1/2
plamemy = (3 Whiny) -

reRy

Obviously,
H™(Q) c H"(Q,7,) and |v|[5(Q) = [v|lgm@z) Yve H™(Q).

Assume that there are constants ¢4 and ¢5 such that

15 lle < csh Vhe®, reR, (9.4)
1
15 e < ¢ 7 YhEO, reR,. (9.5)
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Use conditions (9.4)—(9.5) to show that, for all integers s and [ with 0 < s <[ and
2 <1 < k+1, there exists a constant ¢g (depending only on ¢y, ..., ¢;) such that

’U — Ih(v) H5(Q,T3) < cg hlis ”U’Hz(g) Yo € HZ(Q),

with A = max,cp, h(")

Show the following statements.

(a) For all integers s and [ with 0 < s < 1 and 2 < [ < k + 1, there exists a
constant ¢; such that

|U — Ih<1}) Hs () < ¢ hl_s ’U|HZ(Q) Yv € HZ(Q)

(b) For all integers s and [ with 0 < s <[l and 2 <[ < k+1, there exists a constant
cs (depending only on ¢y, ..., ¢;) such that

|Ih(U)‘Hs(Q,’]'h) < cg H’UHHZ(Q) Yv € HZ<Q)

Hint: In(v) = I(v) —v 4o

(c) There exists a constant c¢g such that

”U — [h(v)HL2(Q) + h ‘U — [h(’U)’Hl(Q) S Cg h2 ‘U’Hz(g) Yv € HQ(Q)

Show that there exists a constant cjy such that the inverse inequality

1

) ||UhHL2(Q) Yov € Vh

min

|vnllar ) < Co 7

holds, where A, := min h(r).
reRy,

46* | (BONUS example)
Does a positive constant c¢q; exist such that the “inverse” of the inverse inequality

1
h_ ||Uh||L2(Q) < o ||Uh||H1(Q) Yv eV,

(with h, = h or h, = hyy) is satisfied?

Programming

Continue the program from Tutorial 8. As a concrete example we consider the problem
to find u € H*(2) such that

/QVu(x) -Vou(z) +u(x)v(zr)de = /Qf(x) v(x)de Vv e H(Q), (9.6)

with f(z1,22) = (572 + 1) cos(2m 21) cos(4m z,).
(please turn over)
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Download cg.hh. Implement a Jacobi preconditioner:

class JacobiPreconditioner

{

public:
JacobiPreconditioner (const SparseMatrix& K);
void solve (const Vector& r, Vector& z);

}s

Assemble the finite element system Ku = b for (9.6) for the initial mesh from
meshdemo . cc and solve it using conjugate gradients with your Jacobi preconditioner.
Solve the same system for the uniformly refined meshes with h/hg = 2, 4,8, 16 where
ho is the mesh size of the initial mesh.

You can visualize solutions calling mesh.matlabOutput ("output.m", u); from
your program, and then loading the file into matlab (provided you have the PDE
Toolbox).

Write a function

double calcElErrorL2 (const Point2D& pO, const Point2D& pl,
const Point2D& p2, ScalarField exact,
double v0O, double vl, double v2);

that approximates the element L*-error |v — wp| z25,), where exact=v and
0023, (€)) = e 0§ (E) with vO=0 (D etc

Hint: Use the quadrature rule from Exercise to approximate

lo = vnlags,) = / o(z) — vn(z) P = /A 025, (€)) — o5, (€)[ | det Jy, | e

Write a function

double calcErrorlL2 (const Mesh& mesh, ScalarField exact,
const Vector& solution);

that approximates the global L*-error |[v — vallr2(q), where exact=v and
solution=wvy,.

Hint: use calcElErrorL2 in a loop over all elements.

Show that u(z1,z2) = 1 cos(2m 1) cos(4m z5) is the unique solution of (9.6). Com-
pute ||u —up| 2 for each the finite element solution u, from Exercise for the
different meshes.
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