A Time-parallel Algorithm for Parabolic Evolution Equations

Dr. Martin Neumüller

Nov. 7, 2017, 3:30 p.m. S2 416-1

We present an original time-parallel algorithm for the solution of the
implicit Euler
discretization of general parabolic evolution equations with
self-adjoint spatial opera-
tors. The main features of the proposed algorithm include a strong
decoupling between
time and space, a detailed convergence theory for time-dependent
spatial operators,
and a parallel complexity per iteration that depends only
logarithmically on the total
number of time-steps. Furthermore first numerical experiments will be
presented.