Numerical Methods for Elliptic Partial Differential Equations

last update: 2021-09-30

[
Lecture ]  [ Tutorial ]  [ Tutorials ]   [ Practical exercises ]   [ Transparencies ]  [ Lecture Notes ]   [ Additional literature ]   [ Software ]  [ Links ]  [ General ]   [ Home ]

Lecture      up

Numerical Methods for Elliptic Partial Differential Equations - Lectures

(CourseId 327.003, 4 hours per week, Semester 6)

Lecturer: O.Univ.-Prof. Dr. Ulrich Langer

- Examination questions: up
as   pdf-file  

- The super question: up
as   pdf-file  

- Examination dates: up
Link to examination dates


Time and room:

Tue, March 1, 201110:15 - 11:45 Room: T 642Lecture 01: Introduction
Wed, March 2, 201108:30 - 10:00 Room: T 211Lecture 02
Thu, March 3, 201110:15 - 11:45 Room: T 111Lecture 03
Tue, March 08, 201110:15 - 11:45 Room: T 642Lecture 04
Wed, March 09, 201108:30 - 10:00 Room: T 211Lecture 05
Wed, March 16, 201108:30 - 10:00 Room: T 211Lecture 06
Thu, March 17, 201110:15 - 11:45 Room: T 111Lecture 07
Wed, March 23, 201108:30 - 10:00 Room: T 211Lecture 08
Thu, March 24, 201110:15 - 11:45 Room: T 111Lecture 09
Wed, March 30, 201108:30 - 10:00 Room: T 211Lecture 10:
Thu, March 31, 201110:15 - 11:45 Room: T 111Lecture 11
Wed, April 06, 201108:30 - 10:00 Room: T 211Lecture 12
Thu, April 07, 201110:15 - 11:45 Room: T 111Lecture 13
Tue, April 12, 201110:15 - 11:45 Room: T 642Lecture 14
Wed, April 13, 201108:30 - 10:00 Room: T 211Lecture 15
Easter Break
Wed, May 04, 2011LandespatronLecture is canceled
Thu, May 05, 201110:15 - 11:45 Room: T 111Lecture 16
Wed, May 11, 201108:30 - 10:00 Room: T 211Lecture 17
Thu, May 12, 201110:15 - 11:45 Room: T 111Lecture 18
Wed, May 18, 201108:30 - 10:00 Room: T 211Lecture 19
Thu, May 19, 201110:15 - 11:45 Room: T 111Lecture 20
Wed, May 25, 201108:30 - 10:00 Room: T 211Lecture 21
Thu, May 26, 201110:15 - 11:45 Room: T 111Lecture 22
Tue, May 31, 201110:15 - 11:45 Room: T 642Lecture 23
Wed, June 01, 201108:30 - 10:00 Room: T 211Lecture 24
Thu, June 02, 2011Christi HimmelfahrtLecture is canceled
Wed, June 08, 201108:30 - 10:00 Room: T 211Lecture 25
Wed, June 15, 201108:30 - 10:00 Room: T 211Lecture 26
Thu, June 16, 201110:15 - 11:45 Room: T 111Lecture 27
Wed, June 22, 201108:30 - 10:00 Room: T 211Lecture 28
Thu, June 23, 2011FronleichnamLecture is canceled
Wed, June 29, 201108:30 - 10:00 Room: T 211Lecture 29: Final Presentations
Thu, June 30, 201110:15 - 11:45 Room: T 111Lecture 30

Lecturer: O.Univ.-Prof. Dr. Ulrich Langer



Tutorial      up

Numerical Methods for Elliptic Partial Differential Equations - Tutorials

(CourseId 327.004, 2 hours per week, Semester 6)

Tutorials held by: DI Michael Kolmbauer

Time and room:

Thu, March 10, 201110:15 - 11:45 Room: T 111Tutorial 01
Tue, March 15, 201110:15 - 11:45 Room: T 642Tutorial 02
Tue, March 22, 201110:15 - 11:45 Room: T 642Tutorial 03
Tue, March 29, 201110:15 - 11:45 Room: T 642Tutorial 04
Tue, April 05, 201110:15 - 11:45 Room: T 642Tutorial 05
Thu, April 14, 201110:15 - 11:45 Room: T 111Tutorial 06
Easter Break
Tue, May 03, 201110:15 - 11:45 Room: T 642Tutorial 07
Tue, May 10, 201110:15 - 11:45 Room: T 642Tutorial 08
Tue, May 17, 201110:15 - 11:45 Room: T 642Tutorial 09
Tue, May 24, 201110:15 - 11:45 Room: T 642Tutorial 10
Tue, June 07, 201110:15 - 11:45 Room: T 642Tutorial 11
Thu, June 09, 201110:15 - 11:45 Room: T 111Tutorial 12
Tue, June 14, 201110:15 - 11:45 Room: T 642Tutorial is canceled
Tue, June 21, 201110:15 - 11:45 Room: T 642Tutorial 13
Tue, June 28, 201110:15 - 11:45 Room: T 642Tutorial 14
Wed, June 29, 201108:30 - 10:00 Room: T 211Tutorial 14 (cont): Final Presentations

Tutorials      up
Easter Break
Tutorial 01March 10, 2011pdf
Tutorial 02March 15, 2011pdf
Tutorial 03March 22, 2011pdf
Tutorial 04March 29, 2011pdf
Tutorial 05April 05, 2011pdf
Tutorial 06April 14, 2011pdf
Tutorial 07May 03, 2011pdf
Tutorial 08May 10, 2011pdf
Tutorial 09May 17, 2011pdf
Tutorial 10May 24, 2011pdf
Tutorial 11June 07, 2011pdf
Tutorial 12June 09, 2011pdf
Tutorial 13June 21, 2011pdf
Tutorial 14June 28, 2011pdf

Transparencies      up
Transparency 00a: b/wMath. Models
Transparency 00b: b/wRemark 1.2
Transparency 01: b/wEx 1.1 - 1.2
Transparency 02: b/wEx 1.3 - 1.4
Transparency 03: b/wEx 1.5 - 1.6
Transparency 04: b/wEx 1.7 - 1.9
Transparency 05: b/wEx 1.10 - 1.11
Transparency 05a: b/w1.3.1. Mixed VF I: General
Transparency 05b: b/w1.3.1. Mixed VF II: Navier-Stokes
Transparency 05c: b/w1.3.1. Mixed VF III: Oseen/Stokes
Transparency 05d: b/w1.3.1. Mixed VF IV: Poisson equ.
Transparency 05e: b/w1.3.1. Mixed VF V: 1st bih. BVP
Transparency 05f: b/w1.3.2. Dual VF I: General
Transparency 05g: b/w1.3.2. Dual VF II: Cont.
Transparency 05h: b/w1.3.2. Dual VF III: Example
Transparency 2-01: colourD(/Omega)
Transparency 2-02: colourWeek derivatives
Transparency 2-03: colourDistributions
Transparency 2-04: colourDistributive derivatives
Transparency 2-05: colourLebesgue spaces Lp
Transparency 2-06: colourSobolev spaces W_p^k
Transparency 2-07: colourTraces
Transparency 2-08: colourNegative-order Sobolev spaces
Transparency 2-09: colourH(div), H(curl), H^s
Transparency 2-10: colourH^{1/2}(\Gamma) ~ \gamma_oH^1(\Omega)
Transparency 2-11: colourTh. 2.13 Norm equivalence theorem
Transparency 2-12: colourExercise 2.14
Transparency 2-13: colourFriedrichs' inequalities I
Transparency 2-14: colourFriedrichs' inequalities II
Transparency 2-15: colour2.4. Poincaré
Transparency 2-16: colour2.5. Main Formula of DIC
Transparency 2-17: colour2.5. Gauss' Theorem
Transparency 2-18: colour2.5. Further Integration Formulas
Transparency 2-19: colour2.5. H(div) - Trace Theorem
Transparency 2-20: colour2.5. H(div) Inverse Trace Theorem
Transparency 2-21: colour2.6. Extension Problem
Transparency 2-22: colour2.6. Extension Problem (cont)
Transparency 2-23: colour2.7. Embedding
Transparency 2-24: colour2.7. Embedding (cont)
Transparency 06a: b/wCourant's idea
Transparency 06b: colourIllustration
Transparency 07a: colourRemark 2.1.1-2
Transparency 07b: b/wRemark 2.1.3-4
Transparency 08a: colourModel Problem
Transparency 08b: colourCHIP
Transparency 09: colourMesh for CHIP
Transparency 10a: b/wCHIP.NET
Transparency 10b: colourMeshing
Transparency 10c: colourTables
Transparency 10d: b/wFiner Mesh
Transparency 11: b/wMesh Generation 1.-2.
Transparency 12a: b/wMesh Generation 3.
Transparency 12b: colourMesh Generation 4.
Transparency 13a: colourstiffness matrix (1)
Transparency 13b: b/wstiffness matrix (2)
Transparency 13c: b/wstiffness matrix (3)
Transparency 14a: b/w2nd kind BC
Transparency 14b: b/w3rd kind BC
Transparency 14c: b/w1st kind BC
Transparency 15: colourIllustration
Transparency 16: b/wExercises 2.5 - 2.8
Transparency 17a: colourRoad Map I
Transparency 17b: b/wRoad Map II
Transparency 17c: colourTheorem 2.6
Transparency 18a: colourRemark 2.7.1
Transparency 18b: b/wRemark 2.7.2-5, E 2.9, E 2.10
Transparency 19: b/wTheorem 2.8 (H1-Convergence)
Transparency 20: b/wRemark 2.9.1-4
Transparency 21: b/wRemark 2.9.5
Transparency 22: b/wRemark 2.14
Transparency 23: colourVar.Crimes I
Transparency 24: colourVar.Crimes II
Transparency 25: colourVar.Crimes III
Transparency 26: b/wRemark 2.20
Transparency 27a: b/wDWR I
Transparency 27b: b/wDWR II
Transparency 27c: colourAFEM
Transparency 28: colourRemark 3.1
Transparency 29: colourExample, Remark 3.2
Transparency 30: b/wSecondary Grids I
Transparency 31: b/wSecondary Grids II
Transparency 32: colourRemark 3.3 + E 3.1
Transparency 33: b/wRemark 3.4
Transparency 34: colourBoundary boxes
Transparency 35: colourRemark 3.5 + E 3.2
Transparency 36a: b/wGalerkin-Petrov I
Transparency 36b: b/wGalerkin-Petrov II
Transparency 36c: colourGalerkin-Petrov Approach
Transparency 36d: colourTwo Galerkin-Petrov Schemes
Transparency 36e: colourSystem of FV-Equations
Transparency 37a: b/wRemark 3.6.1-3.6.4
Transparency 37b: b/wRemark 3.6.5-3.6.6
Transparency 38: colourRef + Remark 3.7
Transparency 39: colourDiscrete Convergence I
Transparency 40: b/wDiscrete Convergence II
Transparency 41: b/wDiscrete Convergence III
Transparency 42: b/wDiscrete Convergence IV (E 3.3)
Transparency 43: b/wDiscrete Convergence V
Transparency 44: colourDiscrete Convergence VI
Transparency 39-44: b/wSummary
Transparency 45: b/w4. BEM 4.1 Introduction I
Transparency 46: b/w4.1 Introduction II
Transparency 47: b/w4.1 Introduction III
Transparency 48: b/w4.1 Introduction IV
Transparency 49a: b/wSubsection 4.2.1
Transparency 50a: colourSection 4.3: CM I
Transparency 50b: b/wSection 4.3: CM II
Transparency 51a: colourSection 4.3: CM III
Transparency 51b: b/wSection 4.3: CM IV
Transparency 52a: b/wSection 4.3: CM V
Transparency 52b: colourSection 4.3: CM VI
Transparency 53: b/wSection 4.3: CM VII
Transparency 54: b/wSection 4.3: CM VIII
Transparency 55: b/wSection 4.3: CM IV
Transparency 56: b/wSection 4.3: CM X
Transparency 57: b/wSection 4.3: CM XI
Transparency 58a: b/wBIO: Def.
Transparency 58b: b/wBIO: Calderon
Transparency 58c: b/wBIO: D2N
Transparency 59a: b/w4.4.2 Properties I
Transparency 59b: b/w4.4.2 Properties II
Transparency 60: b/wGalerkin I
Transparency 61: b/wGalerkin II
Transparency 62: b/wGalerkin III
Transparency 63: b/wGalerkin IV
Transparency 64: b/wGalerkin V

Basic Lecture Notes:      up
[1]   Langer U.: Numerik I (Operatorgleichungen), JKU, Linz 1996 (Sobolev-Spaces and Tools).
Postscript-File
[2]   Langer U.: Numerik II (Numerische Verfahren für Randwertaufgaben), JKU, Linz 1996 (FEM and FVM).
Postscript-File
[3]   Jung M., Langer U.: Methode der finiten Elemente für Ingenieure. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2001 (practical aspects of the FEM).
Methode der Finiten Elemente für Ingenieure
[4]   Steinbach O.: Numerische Näherungsverfahren für elliptische Randwertprobleme. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2003 (FEM and BEM).
English version:
Steinbach O.: Numerical Approximation Methods for Elliptic Boundary Value Problem: Finite and Boundary Elements. Springer, New York 2008 (FEM and BEM):
FEBEBook
[5]   Steinbach O.: Lösungsverfahren für lineare Gleichungssysteme: Algorithmen und Anwendungen. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2005 (solvers for systems of algebraic equations).
[6]   Zulehner W.: Numerische Mathematik: Eine Einführung anhand von Differentialgleichungsproblemen. Band 1: Stationäre Probleme. Mathematik Kompakt. Birkhäuser Verlag, Basel-Bosten-Berlin 2008.

Additional Literature:      up
[1]   Braess D.: Finite Elemente. Springer Lehrbuch, Berlin, Heidelberg 1997.
English version: Braess D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge, 1997, 2001, 2007. - ISBN: 0 521 70518-9 Homepage: http://homepage.ruhr-uni-bochum.de/Dietrich.Braess/ftp.html#books
[2]   Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York 1994.
[3]   Ciarlet P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics (40), SIAM, Philadelphia PA, 2002. [4]   Großmann C., Roos H.-G.: Numerik partieller Differentialgleichungen. Teubner-Verlag, Stuttgart 1992. (3. völlig überarbeitete und erweiterte Auflage, November 2005)
[5]   Heinrich B.: Finite Difference Methods on Irregular Networks. Akademie-Verlag, Berlin 1987.
[6]   Knaber P., Angermann L.: Numerik partieller Differentialgleichungen. Eine anwendungsorientierte Einführung. Springer-Verlag, Berlin-Heidelberg 2000.
[7]   Monk P.: Finite Element Methods for Maxwell's Equations. Oxford Science Publications, Oxford 2003.
[8]   Schwarz H.R.: FORTRAN-Programme zur Methode der finiten Elemente. B.G. Teubner, Stuttgart, 1991.
[9]   Schwarz H.R.: Methode der finiten Elemente. B.G. Teubner, Stuttgart, 1991.
[10]   Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley - Teubner, 1996.


Software:      up
FEM1D FEM2D NETREFINER FEM EP Mesh Generation

Java - Demo of our Example "CHIP"
http://www.informatik.htw-dresden.de/~mjung/FEJavaDemo/FEJavaDemo.html

Links:      up

      NETGEN
      NGSolve
      SPIDER

General Information      up
Previous Knowledge:
These lectures are required for:
Objectives of the Lectures:
Get familiar with advanced numerical methods for the solution of multidimensional elliptic Boundary Value Problems (BVP) for Partial Differential Equations (PDE) and with tools for their analysis.

Contents:
Additional Information:
Examinations:
Lecture:
The lecture contains an oral examination.

Tutorial:
The mark of the tutorial consists of the assessment of the individual exercises, the presentations on the blackboard and a practical exercise on a LLTP (Long-Term Training Problem).