Numerical Methods for Elliptic Partial Differential Equations

last update:

[
Lecture ]  [ Tutorial ]  [ Tutorials ]   [ Practical exercises ]   [ Transparencies ]  [ Lecture Notes ]   [ Additional literature ]   [ Software ]  [ Links ]  [ General ]   [ Home ]

Lecture      up

Numerical Methods for Elliptic Partial Differential Equations - Lectures

(CourseId 327.003, 4 hours per week, Semester 6)

Lecturer: O.Univ.-Prof. Dr. Ulrich Langer

- Examination questions: up
as   pdf-file  

- The super question: up
as   pdf-file  

- Examination dates: up
Link to examination dates


Time and room:

Wed, March 7, 201208:30 - 10:00 Room: T 111Lecture 01
Thu, March 8, 201208:30 - 10:00 Room: T 111Lecture 02
Tue, March 13, 201210:15 - 11:45 Room: S2 219Lecture 03
Wed, March 14, 201208:30 - 10:00 Room: T 111Lecture 04
Thu, March 15, 201208:30 - 10:00 Room: T 111Lecture 05
Wed, March 21, 201208:30 - 10:00 Room: T 111Lecture 06
Thu, March 22, 201208:30 - 10:00 Room: T 111Lecture 07
Wed, March 28, 201208:30 - 10:00 Room: T 111Lecture 08
Easter Break
Wed, April 18, 201208:30 - 10:00 Room: T 111Lecture 09
Thu, April 19, 201208:30 - 10:00 Room: T 111Lecture 10
Wed, April 25, 201208:30 - 10:00 Room: T 111Lecture 11
Thu, April 26, 201208:30 - 10:00 Room: T 111Lecture 12
Wed, May 02, 201208:30 - 10:00 Room: T 111Lecture 13
Thu, May 03, 201208:30 - 10:00 Room: T 111Lecture 14
Wed, May 09, 201208:30 - 10:00 Room: T 111Lecture 15
Thu, May 10, 201208:30 - 10:00 Room: T 111Lecture 16
Wed, May 16, 201208:30 - 10:00 Room: T 111Lecture 17
Thu, May 17, 2012Christi HimmelfahrtLecture is canceled
Wed, May 23, 201208:30 - 10:00 Room: T 111Lecture 18
Thu, May 24, 201208:30 - 10:00 Room: T 111Lecture 19
Wed, May 30, 201208:30 - 10:00 Room: T 111Lecture 20
Thu, May 31, 201208:30 - 10:00 Room: T 111Lecture 21
Wed, June 06, 201208:30 - 10:00 Room: T 111Lecture 22
Thu, June 07, 2012FronleichnamLecture is canceled
Tue, June 12, 201210:15 - 11:45 Room: S2 416Lecture 23
Wed, June 13, 201208:30 - 10:00 Room: T 111Lecture 24
Thu, June 14, 201208:30 - 10:00 Room: T 111Lecture 25
Wed, June 20, 201208:30 - 10:00 Room: T 111Lecture 26
Thu, June 21, 201208:30 - 10:00 Room: T 111Lecture 27
Thu, June 28, 201208:30 - 10:00 Room: T 111Lecture 28

Lecturer: O.Univ.-Prof. Dr. Ulrich Langer



Tutorial      up

Numerical Methods for Elliptic Partial Differential Equations - Tutorials

(CourseId 327.004, 2 hours per week, Semester 6)

Tutorials held by: DI Michael Kolmbauer

Time and room:

Tue, March 06, 201210:15 - 11:45 Room: S2 219Tutorial 00: Introduction
Tue, March 20, 201210:15 - 11:45 Room: S2 219Tutorial 01
Tue, March 27, 201210:15 - 11:45 Room: S2 219Tutorial 02
Thu, March 29, 201208:30 - 10:00 Room: T 111Tutorial 03
Easter Break
Tue, April 17, 201210:15 - 11:45 Room: S2 219Tutorial 04
Tue, April 24, 201210:15 - 11:45 Room: S2 219Tutorial 05
Tue, May 01, 2012National holidayTutorial is canceled
Tue, May 08, 201210:15 - 11:45 Room: S2 219Tutorial 06
Tue, May 15, 201210:15 - 11:45 Room: S2 219Tutorial 07
Tue, May 22, 201210:15 - 11:45 Room: S2 219Tutorial 08
Tue, June 05, 201210:15 - 11:45 Room: S2 219Tutorial 09
Tue, June 19, 201210:15 - 11:45 Room: S2 219Tutorial 10
Tue, June 26, 201210:15 - 11:45 Room: S2 219Tutorial 11
Wed, June 27, 201208:30 - 10:00 Room: T 111Tutorial 12
Thu, June 28, 201208:30 - 10:00 Room: T 111Final Presentation

Tutorials      up
Tutorial 01March 20, 2012pdf
Tutorial 02March 27, 2012pdf
Tutorial 03March 29, 2012pdf
Easter Break
Tutorial 04April 17, 2012pdf
Tutorial 05April 24, 2012pdf
Tutorial 06May 08, 2012pdf
Tutorial 07May 15, 2012pdf
Tutorial 08May 22, 2012pdf
Tutorial 09June 05, 2012pdf
Tutorial 10June 19, 2012pdf
Tutorial 11June 26, 2012pdf
Tutorial 12June 27, 2012pdf
Tutorial 13June 28, 2012Final Presentation

Transparencies      up
Transparency 00a: b/wMath. Models
Transparency 00b: b/wRemark 1.2
Transparency 01: b/wEx 1.1 - 1.2
Transparency 02: b/wEx 1.3 - 1.4
Transparency 03: b/wEx 1.5 - 1.6
Transparency 04a: colourEx 1.7 - 1.9
Transparency 04b: colourRemark 1.5
Transparency 05: colourEx 1.10 - 1.11
Transparency 05a: b/w1.3.1. Mixed VF I: General
Transparency 05b: b/w1.3.1. Mixed VF II: Navier-Stokes
Transparency 05c: b/w1.3.1. Mixed VF III: Oseen/Stokes
Transparency 05d: b/w1.3.1. Mixed VF IV: Poisson equ.
Transparency 05e: b/w1.3.1. Mixed VF V: 1st bih. BVP
Transparency 05f: b/w1.3.2. Dual VF I: General
Transparency 05g: b/w1.3.2. Dual VF II: Cont.
Transparency 05h: b/w1.3.2. Dual VF III: Example
Transparency 2-01: colourD(/Omega)
Transparency 2-02: colourWeek derivatives
Transparency 2-03: colourDistributions
Transparency 2-04: colourDistributive derivatives
Transparency 2-05: colourLebesgue spaces Lp
Transparency 2-06: colourSobolev spaces W_p^k
Transparency 2-07: colourTraces
Transparency 2-08: colourNegative-order Sobolev spaces
Transparency 2-09: colourH(div), H(curl), H^s
Transparency 2-10: colourH^{1/2}(\Gamma) ~ \gamma_oH^1(\Omega)
Transparency 2-11: colourTh. 2.13 Norm equivalence theorem
Transparency 2-12: colourExercise 2.14
Transparency 2-13: colourFriedrichs' inequalities I
Transparency 2-14: colourFriedrichs' inequalities II
Transparency 2-15: colour2.4. Poincaré
Transparency 2-16: colour2.5. Main Formula of DIC
Transparency 2-17: colour2.5. Gauss' Theorem
Transparency 2-18: colour2.5. Further Integration Formulas
Transparency 2-19: colour2.5. H(div) - Trace Theorem
Transparency 2-20: colour2.5. H(div) Inverse Trace Theorem
Transparency 2-21: colour2.6. Extension Problem
Transparency 2-22: colour2.6. Extension Problem (cont)
Transparency 2-23: colour2.7. Embedding
Transparency 2-24: colour2.7. Embedding (cont)
Transparency 06a: b/wCourant's idea
Transparency 06b: colourIllustration
Transparency 07a: colourRemark 2.1.1-2
Transparency 07b: b/wRemark 2.1.3-4
Transparency 08a: colourModel Problem
Transparency 08b: colourCHIP
Transparency 09: colourMesh for CHIP
Transparency 10a: b/wCHIP.NET
Transparency 10b: colourMeshing
Transparency 10c: colourTables
Transparency 10d: b/wFiner Mesh
Transparency 11: b/wMesh Generation 1.-2.
Transparency 12a: b/wMesh Generation 3.
Transparency 12b: colourMesh Generation 4.
Transparency 13a: colourstiffness matrix (1)
Transparency 13b: b/wstiffness matrix (2)
Transparency 13c: b/wstiffness matrix (3)
Transparency 14a: b/w2nd kind BC
Transparency 14b: b/w3rd kind BC
Transparency 14c: b/w1st kind BC
Transparency 15: colourIllustration
Transparency 16: b/wExercises 2.5 - 2.8
Transparency 17a: colourRoad Map I
Transparency 17b: b/wRoad Map II
Transparency 17c: colourTheorem 2.6
Transparency 18a: colourRemark 2.7.1
Transparency 18b: b/wRemark 2.7.2-5, E 2.9, E 2.10
Transparency 19: b/wTheorem 2.8 (H1-Convergence)
Transparency 20: b/wRemark 2.9.1-4
Transparency 21: b/wRemark 2.9.5
Transparency 22: b/wRemark 2.14
Transparency 23: colourVar.Crimes I
Transparency 24: colourVar.Crimes II
Transparency 25: colourVar.Crimes III
Transparency 26: b/wRemark 2.20
Transparency 27a: b/wDWR I
Transparency 27b: b/wDWR II
Transparency 27c: colourAFEM
Transparency 28: colourRemark 3.1
Transparency 29: colourExample, Remark 3.2
Transparency 30: b/wSecondary Grids I
Transparency 31: b/wSecondary Grids II
Transparency 32: colourRemark 3.3 + E 3.1
Transparency 33: b/wRemark 3.4
Transparency 34: colourBoundary boxes
Transparency 35: colourRemark 3.5 + E 3.2
Transparency 36a: b/wGalerkin-Petrov I
Transparency 36b: b/wGalerkin-Petrov II
Transparency 36c: colourGalerkin-Petrov Approach
Transparency 36d: colourTwo Galerkin-Petrov Schemes
Transparency 36e: colourSystem of FV-Equations
Transparency 37a: b/wRemark 3.6.1-3.6.4
Transparency 37b: b/wRemark 3.6.5-3.6.6
Transparency 38: colourRef + Remark 3.7
Transparency 39: colourDiscrete Convergence I
Transparency 40: b/wDiscrete Convergence II
Transparency 41: b/wDiscrete Convergence III
Transparency 42: b/wDiscrete Convergence IV (E 3.3)
Transparency 43: b/wDiscrete Convergence V
Transparency 44: colourDiscrete Convergence VI
Transparency 39-44: b/wSummary
Transparency 45: b/w4. BEM 4.1 Introduction I
Transparency 46: b/w4.1 Introduction II
Transparency 47: b/w4.1 Introduction III
Transparency 48: b/w4.1 Introduction IV
Transparency 49a: b/wSubsection 4.2.1
Transparency 50a: colourSection 4.3: CM I
Transparency 50b: b/wSection 4.3: CM II
Transparency 51a: colourSection 4.3: CM III
Transparency 51b: b/wSection 4.3: CM IV
Transparency 52a: b/wSection 4.3: CM V
Transparency 52b: colourSection 4.3: CM VI
Transparency 53: b/wSection 4.3: CM VII
Transparency 54: b/wSection 4.3: CM VIII
Transparency 55: b/wSection 4.3: CM IV
Transparency 56: b/wSection 4.3: CM X
Transparency 57: b/wSection 4.3: CM XI
Transparency 58a: b/wBIO: Def.
Transparency 58b: b/wBIO: Calderon
Transparency 58c: b/wBIO: D2N
Transparency 59a: b/w4.4.2 Properties I
Transparency 59b: b/w4.4.2 Properties II
Transparency 60: b/wGalerkin I
Transparency 61: b/wGalerkin II
Transparency 62: b/wGalerkin III
Transparency 63: b/wGalerkin IV
Transparency 64: b/wGalerkin V

Basic Lecture Notes:      up
[1]   Langer U.: Numerik I (Operatorgleichungen), JKU, Linz 1996 (Sobolev-Spaces and Tools).
Postscript-File
[2]   Langer U.: Numerik II (Numerische Verfahren für Randwertaufgaben), JKU, Linz 1996 (FEM and FVM).
Postscript-File
[3]   Jung M., Langer U.: Methode der finiten Elemente für Ingenieure. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2001 (practical aspects of the FEM).
Methode der Finiten Elemente für Ingenieure
[4]   Steinbach O.: Numerische Näherungsverfahren für elliptische Randwertprobleme. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2003 (FEM and BEM).
English version:
Steinbach O.: Numerical Approximation Methods for Elliptic Boundary Value Problem: Finite and Boundary Elements. Springer, New York 2008 (FEM and BEM):
FEBEBook
[5]   Steinbach O.: Lösungsverfahren für lineare Gleichungssysteme: Algorithmen und Anwendungen. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2005 (solvers for systems of algebraic equations).
[6]   Zulehner W.: Numerische Mathematik: Eine Einführung anhand von Differentialgleichungsproblemen. Band 1: Stationäre Probleme. Mathematik Kompakt. Birkhäuser Verlag, Basel-Bosten-Berlin 2008.
[7]   Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia 2008.

Additional Literature:      up
[1]   Braess D.: Finite Elemente. Springer Lehrbuch, Berlin, Heidelberg 1997.
English version: Braess D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge, 1997, 2001, 2007. - ISBN: 0 521 70518-9 Homepage: http://homepage.ruhr-uni-bochum.de/Dietrich.Braess/ftp.html#books
[2]   Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York 1994.
[3]   Ciarlet P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics (40), SIAM, Philadelphia PA, 2002. [4]   Großmann C., Roos H.-G.: Numerik partieller Differentialgleichungen. Teubner-Verlag, Stuttgart 1992. (3. völlig überarbeitete und erweiterte Auflage, November 2005)
[5]   Heinrich B.: Finite Difference Methods on Irregular Networks. Akademie-Verlag, Berlin 1987.
[6]   Knaber P., Angermann L.: Numerik partieller Differentialgleichungen. Eine anwendungsorientierte Einführung. Springer-Verlag, Berlin-Heidelberg 2000.
[7]   Monk P.: Finite Element Methods for Maxwell's Equations. Oxford Science Publications, Oxford 2003.
[8]   Schwarz H.R.: FORTRAN-Programme zur Methode der finiten Elemente. B.G. Teubner, Stuttgart, 1991.
[9]   Schwarz H.R.: Methode der finiten Elemente. B.G. Teubner, Stuttgart, 1991.
[10]   Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley - Teubner, 1996.


History:      up

      Historical Papers
      Gander's presentation
      M.J. Gander and G. Wanne, SIREV, 2011


Software:      up
FEM1D FEM2D NETREFINER FEM EP Mesh Generation

Java - Demo of our Example "CHIP"
http://www.informatik.htw-dresden.de/~mjung/FEJavaDemo/FEJavaDemo.html

Links:      up

      NETGEN
      NGSolve
      SPIDER

General Information      up
Previous Knowledge:
These lectures are required for:
Objectives of the Lectures:
Get familiar with advanced numerical methods for the solution of multidimensional elliptic Boundary Value Problems (BVP) for Partial Differential Equations (PDE) and with tools for their analysis.

Contents:
Additional Information:
Examinations:
Lecture:
The lecture contains an oral examination.

Tutorial:
The mark of the tutorial consists of the assessment of the individual exercises, the presentations on the blackboard and a practical exercise on a LLTP (Long-Term Training Problem).