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Abstract

If the Navier-Stokes equations for incompressibleuids are linearized using �xed point
iterations, the Oseenequationsarise. In this thesis we provide conceptsfor the coupled
algebraic multigrid (AMG) solution of this saddlepoint system, where `coupled' here is
meant in contrast to methods, wherepressureand velocity equationsare iterativ ely decou-
pled, and `standard' AMG is usedfor the solution of the resulting scalarproblems.

We show how the coarselevelscanbeconstructed(wheretheir stabilit y is an important
issue) and which smoothers (known from geometric multigrid methods for saddle point
systems)can be used.

To prove the e�ciency of our methods experimentally, we apply them to �nite element
discretizations of various problems (model problems and also more complex industrial
settings) and comparethem with classicalapproaches.

Zusammenfassung

Durch die Fixpunkt-Linearisierung der Navier-StokesGleichungenf•ur inkompressibleFlu-
ide erh•alt man die sogenannten OseenGleichungen. In der vorliegendenArbeit entwick-
eln wir Konzepte f•ur die numerische L•osungdiesesSattelpunktsystemsdurch gekoppelte
algebraische Mehrgittermethoden (AMG), wobei \gekoppelt" im Gegensatzzu Vefahren
steht, bei denenDruck- und Geschwindigkeitsgleichungen iterativ entkoppelt werdenund
`Standard'-AMG zur L•osungder entstehendenskalaren Problemeangewandt wird.

Wir pr•asentieren M•oglichkeiten der Konstruktion der Grobgittersysteme(wobei ins-
besondereauf deren Stabilit•at geachtet wird) und der Anwendung von Gl•attern, welche
von geometrischen Mehrgittermethoden f•ur Sattelpunktgleichungenher bekannt sind.

Die E�zienz der entwickelten Methoden wird schlie�lic h experimentell gezeigt,indem
sie sowohl f•ur einfachereModellproblemeals auch f•ur durchauskomplexeindustrielle An-
wendungengetestetund mit den klassischen Methoden verglichen werden.
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Notation

We generallyusestandard charactersfor scalarvaluesand scalar functions (p, q,. . . ) and
boldface characters for vectors and vector valued functions (u, v ,. . . ). We will use the
underline notation (which will be introduced in detail in section 2.2) for �nite-element
vectors associated to scalar or vector valued functions (p, q,. . . , resp. u, v, . . . ). The
components of vectors are denoted by (u1; : : : ; un)T = u. For matrices we use capital
letters (A,. . . ), or component-notation A = (aij ) i;j .

G is an open, connectedsubsetof Rd with spacedimensiond (generally d = 2 or 3),
@G its boundary.

Op erators

u � v =
P d

i=1 ui vi (scalar product).
u 
 v = (ui vj ) i;j =1 ;:::;d (tensor product).
@j p = @p

@x j
(partial derivative of p with respect to x j ).

@j u = (@j ui ) i =1 ;:::;d.
@tp = @p

@t (partial derivative of p with respect to t) .
@tu = (@tui ) i =1 ;:::;d.
r p = (@i p) i =1 ;:::;d (gradient of p).
r u = (@i uj ) i;j =1 ;:::;d.
div u =

P d
i=1 @i ui (divergenceof u).

(u � r )' =
P d

j =1 uj @j ' .
(u � r )v = (

P d
j =1 uj @j vi ) i =1 ;:::;d.

Function spaces

C(G) spaceof continuous functions on G.
Ck(G) spaceof functions with continuousk-th derivative on G .
C1

0 (G) spaceof in�nitely smooth functions with compactsupport in G.
C1 ( �G) spaceof in�nitely smooth functions on �G.

Lp(G) Lebesguespaceof measurablefunctions q with �nite norm kqk0;p =
� R

G jqjp
� 1

p .

7



NOTATION 8

W k
p (G) Sobolev spaceof functions with k-th derivatives in L p(G).

H k(G) = W k
2 (G).

H 1
0 (G) the closureof C1

0 (G) in H 1(G).
H � 1(G) the dual spaceof H 1

0 (G).
N The natural numbers.
Z The integer numbers.
R The real numbers.

Norms

kqk0 = kqk0;2 for q 2 L2(G).
jqj1 = kr qk0 for q 2 H 1(G).
kqk1 =

p
kqk2

0 + kr qk2
0 for q 2 H 1(G).

kvkX =
p

vT X v for v 2 Rn and a symmetric positive de�nite matrix X 2 Rn� n .
kvk`2 =

p
vT v for v 2 Rn .

kYk� = sup06= v 2
� n

kY v k�

kv k�
for Y 2 Rn� n

(consistent matrix norm to the vector norm k:k� ).

kYkF =
q P n

i;j =1 y2
ij for Y 2 Rn� n (Frobeniusnorm).

Often used Indices, etc.

d Spacedimension.
L Total number of multigrid levels.
l Index indicating a certain multigrid level (l 2 f 1; : : : ; Lg).
D Index indicating a di�usiv e term or Laplacian.
C Index indicating a convective term.
R Index indicating a reaction term.
S Index indicating a stabilization term.
s Index usedif we want to emphasizethat someoperator is scalar.



Chapter 1

In tro duction

A very important set of partial di�erential equations in the �eld of computational uid
dynamicsare the Navier-Stokesequations.They arecapableof describingvariousphenom-
enaof (in our caseincompressible)Newtonian uid o w, but give rise to many nontrivial
mathematical problemsdespiteof their relatively simple outer form. So, for example,the
existenceand smoothnessof solutions of their non-stationary form are currently the topic
of one of the prominent one-million-dollar-problems[Fef00, Dic00]. This thesis will un-
fortunately make no contribution to that aspect (in all probability), but to an e�cien t
numerical solution of the equations.

After decidingwhich kind of nonlinear iteration to use(in our case�xed point iteration,
which leads to the Oseenequations) and which discretization to choose(in our casethe
�nite element method) one obtains an (inde�nite) saddlepoint problem, which has to be
solved. Classicaliterativ e methods for that arevariants of SIMPLE schemes(as introduced
by Patankar and Spalding [PS72]) or Uzawa's algorithm [AHU58], having in commonan
iterativ e decoupling of the saddlepoint system into separateequations for pressureand
velocity, which then can be solved with methods known for the solution of positive de�nite
systems.

A milestone for the e�cien t solution of scalar, elliptic problems was set with the de-
velopment of geometric multigrid (GMG) methods, for example by Federenko [Fed61],
Bachvalov [Bac66],Astrachancev[Ast71], Brandt [Bra73], or Hackbusch [Hac76]to name
but a few (seealsothe monographse.g.by Korneev[Kor77], Hackbusch [Hac85],Wesseling
[Wes92], Bramble [Bra93], or Trottenberg et.al. [TOS01]). The idea of thesemethods is
to split the processinto two parts, a smoothing of the error (i.e. a reduction of its high
frequencycomponents) and a correction step on a coarsergrid.

First stepsin the application of multigrid algorithms to saddlepoint systemsweremade
by Verf•urth [Ver84b]and Wittum [Wit89]. Further important work in this direction was
done by Braessand Sarazin, who showed that it is possibleto use the classicalUzawa
method as smoothing iteration [BS97].

When confronted with \real life" applications with complex three dimensionalgeome-
tries, a hierarchical re�nement of a `coarse'initial mesh| which is neededby geometric
multigrid methods | would be impossiblewith respect to the limitations on computer

9



CHAPTER 1. INTR ODUCTION 10

memory and CPU speedof today's generationof computer hardware. A solution to this
problem are the algebraic multigrid (AMG) methods, where the initial mesh is used as
�nest level, and the coarserlevels are generatedusing (almost) only information of the
algebraicsystem.

A secondreasonfor the popularity of AMG methods is their \black-box" character. In
an ideal situation the userdoesnot needto construct any hierarchy, the method operates
on onesinglealgebraicsystemand canthereforebeusede.g.asa replacement for the direct
solver on the coarsestlevel of a geometricmultigrid algorithm.

Since the pioneering work of Ruge and St•uben [RS86] and Brandt et al. [BMR84]
thesemethods have beenapplied to a wide classof linear systemsarising (mostly) from
scalar partial di�erential equations. For an overview of the technique itself and various
applications we refer for exampleto St•uben [St•u01b].

For the application of AMG to saddlepoint problems one has the sametwo general
possibilitiesasin the geometricmultigrid case.The �rst is the segregatedapproach, i.e. to
usea classicalmethod (Uzawa, SIMPLE,. . . ) for an outer iteration and to apply AMG to
the resulting elliptic problems. This approach is described e.g.by Griebel et al. [GNR98]
or St•uben [St•u01a]. Another idea in this classis to use a Krylov spacemethod such as
GMRES or BiCGstab with a special preconditioner which again decouplesvelocity and
pressureequations. This was donefor exampleby Silvester et al. �rst for the Stokescase
[SW94]and later for the Navier-Stokesproblem [SEKW01].

The focus of our work lies on the secondpossibility, on the coupled approach where
an AMG method for the whole saddlepoint systemis developed (as mentioned above for
GMG methods). Work in this direction hasbeendonefor exampleby Webster[Web94]and
Raw [Raw95] for �nite volume discretizationsof the Navier-Stokesequations,by Bertling
[Ber02] for a �nite element discretization of the Stokes equations,by Adams for contact
problemsin solid mechanics[Ada03], and by Bungartz for constrainedoptimization (with
a small number of constraints) [Bun88].

This thesisis structured asfollows. The secondchapter contains the preliminarieswhich
areneededfor a numericalsolution of the Navier-Stokesequations.Westart with the prob-
lem statement, continue with the weak formulation and the �nite element discretization,
sketch the analysisof the associated Stokesproblem, mention someproblemsinduced by
the convection, and �nally discussclassicalsolution methods for the linear system.

In the third chapter we introducealgebraicmultigrid methods. In this chapter we will
apply it only to scalarequations,but the underlying ideaswill be important for the saddle
point case,too.

The central part of this work is chapter four, wherewe developmethods for the coupled
application of AMG methodsto saddlepoint systems.Weprovide ideasfor the construction
of multigrid hierarchies for di�erent typesof mixed �nite elements, and we will deal with
stabilit y problemswhich may occur on coarselevels. Unfortunately (but not surprisingly)
we werenot able to construct a \black box method" capableof any saddlepoint problem,
with whatever choiceof discretization on an arbitrary mesh. All our methods depend for
exampleon the concretechoiceof the �nite element.

Finally, chapter �v e is devoted to the presentation of numerical results. After a short
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overviewof the softwarepackagewhich wasdevelopedduring the working on this thesis,we
comparedi�erent aspects of the methods presented in the �rst three chapters for various
problems,up to o ws in fairly complexthree dimensionalgeometries.

In most of the tests we observe advantagesof the coupled approach, it seemsas if it
pays o� to keepthe structure of the problem on the coarserlevels. Although there is still
work to be done, the results we have are really promising.



Chapter 2

Preliminaries

The classicalprocessfor the numerical solution of partial di�erential equations(describing
a physical phenomenon,in our casethe Navier-Stokes equations describing the o w of
an incompressibleuid, or the related Oseenor Stokes equations) is to derive a weak
formulation, provide analysis,discretizethe system(in our casewith �nite elements), and
�nally to solve the resulting linear algebraproblems.

This �rst chapter contains the parts of this process,from the problem formulation to
(non-multigrid) solution methods for the arising linear systems.

2.1 Navier-Stok es Equations

Our main point of investigation will be the Navier-Stokesequationsfor incompressibleo w
(Claude Navier, 1785{1836,and GeorgeStokes, 1819{1903). A mathematically rigorous
derivation from fundamental physical principles and conservation laws can be found in
[Fei93].

We denote by u the velocity of the uid, p the static pressure,� the density of the
uid, � its viscosity and f someouter force. Then the instationary o w of incompressible
Newtonian uids in a domain G(whereG is an open,connectedsubsetof Rd with Lipschitz
continuousboundary @G) is governedby

�
@
@t

u � � � u + � (u � r )u + r p = f (2.1a)

div u = 0: (2.1b)

Equation (2.1a) expressesNewton's law of motion, (2.1b) the conservation of mass.
The underlying physical assumptionfor theseequationsto hold are incompressibility

and Stokes' hypothesisfor the stresstensor

T (u; p) = � pI + �
�
r u + r uT

�
; (2.2)

for incompressibleNewtonian uids.

12



CHAPTER 2. PRELIMINARIES 13

Ph ysical similarit y

With the choice of scalesu = Vu � , x = Lx � , t = L=V t � , p = V 2�p � and f = V 2=Lf �

(with a characteristic velocity V and a characteristic length L) we get the dimensionless
formulation

@
@t �

u � � � � � u � + (u � � r � )u � + r � p� = f � ; (2.3a)

div � u � = 0; (2.3b)

where
� :=

1
Re

:=
�

�LV
;

with the dimensionlessReynoldsnumber Re (OsborneReynolds,1842{1912).For simplic-
it y in notation we will omit the stars in the following.

We primarily consider two types of boundary conditions (more can be found e.g. in
[Tur99]). Let @G = � 1 [ � 2. On � 1 we prescribe Dirichlet conditions

uj � 1 = u1;

on � 2 natural outo w conditions of the form

(� pI + � r uT ) � n = 0:

In the non-stationary casewe alsoneeda pair of initial conditions

uj t=0 = u0; pj t=0 = p0:

If we linearize the systemby �xed point iteration we get the socalled Oseen equations
(Carl Wilhelm Oseen,1879{1944)

@
@t

u � � � u + (w � r )u + r p = f ; (2.4a)

div u = 0; (2.4b)

wherew is the old approximation of the velocity, sometimesalsocalled the wind.
Dropping the convection term leadsto the Stokesequations

@
@t

u � � � u + r p = f ; (2.5a)

div u = 0: (2.5b)

Setting @
@t u � 0 givesthe stationary versionsof (2.3), (2.4), and (2.5).
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2.1.0.1 Weak Form ulation of the Stationary Problem

Assumefor now that we want to solve the stationary problem, we will return to the time
dependent problem in Section2.3.

Assumption. There exists ~u1 2 H 1(G)d with

div ~u1 = 0 in G, (2.6)

~u1 = u1 on � 1. (2.7)

Now let

U :=
�
H 1

0 (G)
� d

;

U (~u1) :=
�

v 2 H 1(G)d : v � ~u1 2 U
	

;

Q :=
�

q 2 L2 :
Z

G
qdx = 0

�
:

Then one can derive the weak formulation of the Navier-Stokes equations: Find u 2
U (~u1) and p 2 Q such that

�a(u; u; v) + b(v ; p) = hF; v i 8v 2 U ; (2.8a)

b(u; q) = 0 8q 2 Q; (2.8b)

where
�a(w; u; v) = aD (u; v) + aC (w; u; v);

and

aD (u; v) = � (r u; r v);

aC (w; u; v) = ((w � r )u; v) ;

b(u; q) = � (div u; q);

~u1 as in (2.6), (2.7) and
hF; :i = (f ; :)0:

2.1.1 Analysis of the Associated Stok es Problem | the Inf-Sup
Condition

We sketch the analysis of the associated stationary Stokes problem with homogeneous
Dirichlet boundaryconditions,becausehereonecangeta �rst impressionof the importance
of a major criterion for stabilit y | the inf-sup condition | which appearsagainand again
in the analysisand numerical solution of mixed problems. The associated Stokesproblem
readsas: Find (u; p) 2 U � Q such that

aD (u; v) + b(v ; p) = hF; v i 8v 2 U ; (2.9a)

b(u; q) = 0 8q 2 Q: (2.9b)
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De�ne
V = f v 2 U : b(v; q) = 0 for all q 2 Qg:

The �rst step is to show existenceand uniquenessof solutionsof the following subproblem:
Find u 2 V such that for all v 2 V

aD (u; v) = hF; v i : (2.10)

Theorem 2.1. Problem(2.10) hasa unique solution.

proof (sketch). aD is a bilinearform, and becauseone can show that aD is V -elliptic and
continuous and that F = (f ; :)0 is contained in the dual spaceof V , the theorem of Lax
and Milgram completesthe proof (c.f. [BF91]).

What remainsis to �nd a unique p 2 Q solving the problem

b(v; p) = hF; v i � aD (u; v) 8v 2 U ; (2.11)

whereu is the solution of (2.10). We de�ne B � : Q ! U � , B � p = b(:; p), whereU � denotes
the dual spaceof U , and rewrite (2.11) as

B � p = hF; :i � aD (u; :); (2.12)

with the right hand sidebeing element of the polar set

V 0 := f l 2 U � : l (v ) = 0 for all v 2 V g:

The following theorem introducesthe already mentioned criterion for the solvabilit y of
(2.11) resp. (2.12).

Theorem 2.2. The operator B � : Q ! V 0 is an isomorphismif and only if there existsa
constant c0 > 0 suchthat

inf
06= q2 Q

sup
06= v 2 U

b(v; q)
kvkU kqkQ

� c0: (2.13)

The proof is basedon the closed-rangetheorem(seee.g. [Yos80])and can be found for
examplein [GR86] or [Bra97]. Condition (2.13) is called LBB condition (after Ladyzhen-
skaya, Babu�ska, and Brezzi) or inf-sup condition.

For instance in [GR86] it is shown that in our concretecaseb(:; :) ful�lls the inf-sup
condition, thus we can combine the theoremsabove to the following.

Theorem 2.3. Problem(2.9) is uniquely solvable.
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2.2 Finite Elemen t Discretization

We will briey introduce the concept of mixed Finite Element Methods (FEM). Details
can be found e.g. in [Pir89] or [Bra97].

We assumefrom now on, that G is a polygonal resp.polyhedral domain.
Let U h and Qh be �nite-dimensional subspacesof U and Q, respectively, and let

U h(~u1) :=
�

v 2 H 1(G)d : v � ~u1 2 U h
	

;

V h := f vh 2 U h : b(vh; qh) = 0 for all qh 2 Qhg:

Now we can formulate a discrete version of problem (2.8): Find a couple (uh; ph) 2
U h(~u1h) � Qh such that

�a(uh; uh; vh) + b(vh; ph) = hF; vh i 8vh 2 U h; (2.14a)

b(uh ; qh) = 0 8qh 2 Qh; (2.14b)

where ~u1h is a reasonableapproximation of ~u1.
For reasonswhich will becomeobvious later we extend problem (2.14) to

�a(uh; uh; vh) + b(vh; ph) = hF; vh i 8vh 2 U h;

b(uh ; qh) � c(ph; qh) = hG; qh i 8qh 2 Qh;
(2.15)

where c(:; :) is a positive semi-de�nite bilinearform and G 2 Q� (both may be identical
zero).

The following theorem shows that again the inf-sup condition is of major importance
(for the proof we refer to [GR86]).

Theorem 2.4. Assume that aD is V h-elliptic (with h independent ellipticity constant)
and that there exists a constant c0 > 0 (independent of h) such that the discrete inf-sup
condition

inf
06= q2 Qh

sup
06= v 2 U h

b(v; q)
kvkU kqkQ

� c0; (2.16)

holds.
Then the associated (discretized, stationary) Stokes problem has a unique solution

(uh; ph), and there existsa constant c1 suchthat

ku � uhkU + kp � phkQ � c1

�
inf

v h 2 U h

ku � vhkU + inf
qh 2 Qh

kp � qhkQ

�
; (2.17)

where (u; p) is the solution of (2.9).

Remark 2.5. In literature (e.g. [GR86], [BF91], or [Bra97]) one can �nd prominent exam-
plesof what can go wrongwith elementsnot ful�l ling the inf-sup condition (`checkerboard'-
instabilities, spuriouspressure modes,etc.). The discrete solution may contain unphysical
oscillations and may for h ! 0 not converge to the solution of the continuous problem,
what is il lustrated in Figure 2.1
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Figure 2.1 Part of the discretepressuresolution for a driven cavit y problem discretized
with an unstableelement (unstabilized P1-P1 element, seeSection2.2.1.2). Oscillations in
the pressurecan be observed (light-grey indicateshigh pressure,dark-grey low pressure)

If a basis of Qh is given by f  1; : : : ;  m g and of U h(~u1h) by f ' 1; : : : ; ' ngd we can
represent an element qh 2 Qh by

qh = ( 1; : : : ;  m ) � q
h
; with q

h
2 Q

h
:= Rm

(where we usethe notation ( 1; : : : ;  m ) � q
h

:=
P m

i=1 (q
h
) i �  i ), and analogouslythe com-

ponents of an element vh =
�
vh

T
1 ; : : : ; vh

T
d

� T
2 U h(~u1h) by

vh i = (' 1; : : : ; ' n) � vh i ; with vh =

0

B
@

vh1
...

vhd

1

C
A 2 U h := (Rn )d:

Then we can write (2.15) in matrix form
�

A(uh) B T

B � C

� �
uh

p
h

�
=

�
f h

g
h

�
: (2.18)

Here A(uh) is de�ned as

A(uh) =
�

A(uh)1;1 A(uh)1;2

A(uh)2;1 A(uh)2;2

�

in 2D resp.

A(uh) =

0

@
A(uh)1;1 A(uh)1;2 A(uh)1;3

A(uh)2;1 A(uh)2;2 A(uh)2;3

A(uh)3;1 A(uh)3;2 A(uh)3;3

1

A

in 3D, with
A(uh)r ;s = (�a(uh ; ' j � er ; ' k � es)) j;k ;
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whereer is the r -th unity vector in Rd. For �a(:; :; :) as de�ned above we get

A(uh)r ;s � 0 if r 6= s.

AnalogouslyB is de�ned by the relation

B =
�
B 1 B 2

�

in 2D resp.
B =

�
B 1 B 2 B 3

�

in 3D, with
B r = b(' j � er ;  k)) j;k ;

and C by
C = (c( j ;  k)) j;k :

In the samemanner we de�ne the massmatrix

M = (( ' j ; ' k)0) j;k ;

the pressure massmatrix
Mp = (( j ;  k)0) j;k ;

and the Laplacian
AD = (aD (' j ; ' k)) j;k ;

which we will needlater in this thesis.
We denotethe FE-isomorphismsbetweenthe discretespacesand the spacesof coe�-

cient vectorsby � U : (Rn )d ! U h(~u1h) and � Q : Rm ! Qh. The underline notation is used
to indicate their inverses,i.e.

� Uv h = vh; � Uv h = v h; (2.19)

� Qq
h

= qh; � Qq
h

= q
h
: (2.20)

If it is clear from the context we omit the underlinesand � 's and identify v h 2 U h(~u1h)
and the associated v h 2 (Rn )d and analogouslyqh and q

h
.

2.2.1 Examples of Mixed Elemen ts

We present somepopular choicesof �nite element pairs U h � Qh, in particular those we
will use later for the construction of algebraic multigrid methods and in the numerical
examples,all of them basedon triangular resp. tetrahedral elements. Thus, we assume
that somepartitioning of G into triangles resp. tetrahedra G =

S
i � i is given, we denote

the diameterof an element � i by h� i , we assumethat we can identify sometypical diameter
h (the discretization parameter) with

� h � h� i � �� h for all i;

where � and �� are somepositive constants, and we denote the set of elements by Th =
f � 1; � 2; : : :g. On each element � i we de�ne the spacePk(� i ) of polynomials of degreeless
than or equalk.
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Figure 2.2 Somemixed �nite elements for triangles (�rst row) and tetrahedra (second
row). The circles/spheresindicate degreesof freedomfor velocity-components, the boxes
for pressure.

(a) Taylor-Hood (b) P1-P1 (c) Crouzeix-Raviart

2.2.1.1 (Mo di�ed) Taylor-Ho od Elemen t

For the Taylor-Hood element, or P2-P1 element, we specify

U h = f vh 2 U : vh j � i 2 P2(� i )d for all elements � i g;

Qh = f qh 2 Q : qh j � i 2 P1(� i ) for all elements � i g:
(2.21)

An element (vh; qh) in U h � Qh is uniquely determined by specifying the valuesof the d
components of vh on the nodes and on the midpoints of edgesof the elements and the
valuesof qh on the nodesof the elements as illustrated in Figure 2.2(a).

The so called modi�ed Taylor-Hood element, or P1isoP2-P1, is a mixed element with
the samedegreesof freedomas the classicalTaylor-Hood element, which is obtained the
following way. We take Qh as in (2.21), and then re�ne the meshas indicated in the 2D-
part of Figure 2.2(a): we divide each triangle into four subtriangles,each tetrahedron into
eight subtetrahedra,and get the �ner partitioning G =

S
i ~� i . There we de�ne the velocity

space
U h = f vh 2 U : vh j~� i 2 P1(~� i )d for all (sub-) elements ~� i g:

Both the classicalTaylor-Hood element and the modi�ed one ful�ll the discrete inf-
sup condition as shown in [BF91]. Thus, their precision can be directly estimated using
(2.17) and the well known approximation results for P1 resp.P2 elements. For the classical
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element we get

ku � uhk1 + kp � phk0 � Cht (juj t+1 + jpj t ); for t = 1 or t = 2,

if (u; p) 2 H t+1 (G)d � H t (G). For the modi�ed element, only the estimate with t = 1
remainstrue.

2.2.1.2 Stabilized P1-P1 Elemen t

If weusepiecewiselinear basisfunctions for both pressureand velocity components (Figure
2.2(b)) we obtain an element which is very easy to implement in a concrete computer
program but unfortunately does not ful�ll the discrete inf-sup condition. As mentioned
in Remark 2.5, numerical solutions computedusing this element often contain unphysical
pressuremodeswhich prevent convergenceagainst the solution of the continuousproblem.
A possibleway out is the introduction of the following stabilizing c(:; :) term in (2.15)

c(p;q) = � S

X

i

h2
� i

(r p;r q)0;� i ; (2.22)

and a right hand side term to preserve consistency

hG; qi = � � S

X

i

h2
� i

(f ; r q)0;� i ; (2.23)

where� S is a positive parameter(intensive discussionon the correct choiceof this param-
eter and the local meshsizeh� i can be found for examplein [Bec95]or [FM93]). We will
refer to this stabilized element as P1-P1-stab.

Remark 2.6. Another possibility of stabilizingthe P1-P1 elementleadsto the socalled MINI-
element. Here the velocity space is extended by bubblefunctions, i.e. uh is an elementof
~U h with

~U h := f v 2 U : v j � i = wj � i + b� i �� � i with w 2 U h and �� � i 2 Rdg;

where b� i (x) =
Q

j � j (x), and � j (x) are the barycentric coordinates of x with respect to � i .
It is possibleto locally eliminate the bubble-variables,which leads to a similar problemas
(2.15),(2.22),(2.23), with slightly more information on the choice of � S, e.g. that it should
be of order O(1=� ).

Although this element doesnot ful�ll the inf-sup condition, the following result holds
(without proof)

Theorem 2.7. [FS91, theorem3.1] Supposethat thesolution of thecontinuousStokesprob-
lem satis�es u 2 H 2(G)d and p 2 H 2(G). Then for � S > 0 the problem(2.15),(2.22),(2.23)
hasa unique solution, satisfying

ku � uhk1 + kp � phk0 � C(hjuj2 + h2jpj2): (2.24)
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2.2.1.3 Crouzeix-Ra viart Elemen t

Here we drop the requirement that the �nite dimensional spaceshave to be subsetsof
the continuous spaces,insofar as the functions in U h will not be continuous. We use
nonconformingP1 velocity components (P nc

1 for short), i.e. we de�ne

U h = f vh : vh j � i 2 P1(� i )d for all elements � i ;

vh is continuousat the midpoints of all element-edges/faces(in 2D/3D),

vh(bj ) = 0 for all midpoints of boundary edges/facesbj on � 1h:g
(2.25)

and
Qh = f qh 2 Q : qh j � i 2 P0(� i ) for all elements � i g: (2.26)

The elements in U h � Qh are determined by their velocity valuesat the edge-/face-
centers and pressurevaluesat the element centers (see2.2(c)).

Detailed analysis for this mixed element can be found in [CR73], for example the
convergenceresult

ku � uhk1 � Ch(juj2 + jpj1)

for (u; p) 2 H 2(G)d � H 1(G).
A niceproperty of the Crouzeix-Raviart element is the element-wise massconservation,

which is enforcedby the piecewiseconstant pressurediscretization.
Note that the term \Crouzeix-Raviart element", which we use for P nc

1 -P0, is often
associated to di�erent elements, for example(scalar) P nc

1 or the divergence-freeP nc
1 ele-

ment (where a divergence-freebasisfor the velocities is constructed,and the pressurecan
thereforebe eliminated from the equations).

In the following we will often drop the h subscriptsif it is obvious from the context.

2.2.2 Multi-Elemen t Meshes

All the elements presented above are basedon a meshconsistingof triangles resp. tetra-
hedra. We want to mention that they have counterparts for quadrilateral resp.hexahedral
meshes,but we will not go into detail and refer to literature, especially [BF91] and [Tur99].

The following exampledescribesthe technique we usewhen we want to generateFEM
matrices for more generalmeshes,namely inner condensation.

Example 2.8. Suppose we want to construct an element matrix based on a P1 FE-
discretization of a (scalar) equation for a quadrilateral S1S2S3S4 as in Figure 2.3. If we
construct the midpoint S5, then the discretization on the four resulting subtriangleswould
result in an element sti�ness matrix

0

B
B
B
B
@

a11 a12 0 a14 a15

a21 a22 a23 0 a25

0 a32 a33 a34 a35

a41 0 a43 a44 a45

a51 a52 a53 a54 a55

1

C
C
C
C
A

:
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Figure 2.3 A quadrilateral is discretizedby decomposition into its sub-triangles.

PSfrag replacements

S1
S2

S3

S4

S5

As the midpoint has only connectionsto S1,. . . ,S4 | also in the fully assembled matrix
| there would be a line like

a51x1 + a52x2 + a53x3 + a54x4 + a55x5 = f 5

in the system(where x is the solution vector, f the right hand side). Thus we can locally
eliminate the entries for S5 and get the resulting element matrix

0

B
B
@

a11 � a15a51=a55 a12 � a15a52=a55 � a15a53=a55 a14 � a15a54=a55

a21 � a25a51=a55 a22 � a25a52=a55 a23 � a25a53=a55 � a25a54=a55

� a35a51=a55 a32 � a35a52=a55 a33 � a35a53=a55 a34 � a35a54=a55

a41 � a45a51=a55 � a45a52=a55 a43 � a45a53=a55 a44 � a45a54=a55

1

C
C
A

(and additional right hand side terms if f 6= 0).

This idea can be generalizedto any cell-type (e.g. pentagons, pyramids, hexahedra,
octahedra, or prisms). First, one has to split the cell into triangles resp. tetrahedra and
then eliminate the auxiliary unknowns locally.

2.3 The Non-Stationary Problem

In the non-stationary casewe usethe method of lines for time integration. First, the weak
formulation and the FEM approximation in the spacevariables (with time dependent
coe�cien ts) is performedas shown above to get the system

d
dt

(uh; vh)0 + aD (uh; vh) + aC (uh; uh; vh) + b(vh; ph) = hF; vh i ;

b(uh; qh) = 0

(plus initial conditions), a systemof ordinary di�erential equations,wherestandard meth-
ods of time integration can be applied [HWN00].

To show two examplesthereof, we assumethat the k-th time step has length � k and
that the right hand sideis constant in time, and we search the discretesolution (uk ; pk) at
time tk = t0 +

P k
i=1 � i .
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The �rst exampleis the one-step-� scheme, which takesthe matrix form
�

1
� k

M + � A(uk )
�

uk + B T pk =
�

1
� k

M + (� � 1)A(uk� 1)
�

uk� 1 + f ;

Buk � Cpk = g:

The parameter � can be chosenin [0; 1], � = 0 gives the explicit Euler scheme, � = 1 the
implicit Euler scheme, and � = 0:5 the Crank-Nicolson schemescheme.

As secondexample we present the fractional-step-� -scheme, where each time step is
divided into three substeps(tk� 1 ! tk� 1+ � ! tk� � ! tk):

1.)
�

1
� k �

M + � A(uk� 1+ � )
�
uk� 1+ � + B T pk� 1+ � =

�
1

� k �
M � � A(uk� 1)

�
uk� 1 + f ;

Buk� 1+ � � Cpk� 1+ � = g;

2.)
�

1
� k � 0

M + � A(uk� � )
�
uk� � + B T pk� � =

�
1

� k � 0
M � � A(uk� 1+ � )

�
uk� 1+ � + f ;

Buk� � � Cpk� � = g;

3.)
�

1
� k �

M + � A(uk)
�
uk + B T pk =

�
1

� k �
M � � A(uk� � )

�
uk� � + f ;

Buk � Cpk = g;

with � = 1 �
p

2
2 , � 0 = 1 � 2� , � 2 ( 1

2; 1] and � = 1 � � (where the choice � = 1� 2�
1� � is

convenient for implementation, becausethen � � = � � 0).
In Table 2.1 we list convergenceand stabilit y properties of this schemeswithout going

into the details and without giving any motivation for this properties (what can be found
in [Ran00] or [HW02]). The terms usedare described in the following de�nition.

De�nition 2.9. Assumethat the discretesolution (with constant time step length) of the
test-problem

y0(t) = �y (t); y(0) = y0;

with � 2 C has the form
yk = R(� � )yk� 1;

whereR(z) is called the stability function. A schemeis said to be

� A-stableif jR(z)j � 1 for all z 2 C� := f z 2 C : Rez � 0g,

� strongly A-stable if it is A-stable and lim z!1 R(z) < 1, and

� L-stableif it is A-stable and limz!1 R(z) = 0.
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Table 2.1 Stabilit y and accuracyof sometime stepping methods.
A-stab. str. A-stab. L-stab. accuracy

explicit Euler no no no 1st order
implicit Euler yes yes yes 1st order
Crank-Nicolson yes no no 2nd order
frac.-step-� yes yes no 2nd order

2.4 The Con vectiv e Term

The convective term (ur )u resp.(wr )u causestwo problemswehave to dealwith. Firstly
instabilities may occur becauseof it, secondlywe have to cope with its nonlinearity.

2.4.1 Instabilit y

The unstablebehavior can already be observed in the following 1D model problem.

Example 2.10. Assumethat we want to solve the following scalar convection di�usion
equation for u:

� � u00(x) + wu0(x) = f for x 2 (0; 1),

u(0) = u(1) = 0, w, f and � constant on [0; 1]. A linear �nite elements discretization on a
regular grid with mesh-width h leadsto the system

0

B
B
B
B
B
@

2�
h � �

h + w
2

� �
h � w

2
2�
h � �

h + w
2

. . . . . . . . .
. . . . . . . . .

� �
h � w

2
2�
h

1

C
C
C
C
C
A

| {z }
=: A

0

B
B
B
B
B
@

u1

u2
...
...

un

1

C
C
C
C
C
A

=

0

B
B
B
B
B
@

f h
f h
...
...

f h

1

C
C
C
C
C
A

:

The corresponding eigenvalue problem readsrow-wise

� w
2

�
�
h

�
ui +1 +

�
2�
h

� �
�

ui +
�

�
w
2

�
�
h

�
ui � 1 = 0; for i = 1; : : : ; n;

u0 = un+1 = 0;

where � is the eigenvalue we are searching for. Assumethat n is odd and wh 6= 2� , then
onesolution can easily be found as � = 2�

h , u2k = 0, u2k+1 =
�

wh+2 �
wh� 2�

� k
, for k = 0; : : : ; n� 1

2 .
Thus, for small � this eigenvalue tends to zero and the very oscillatory eigenvector

(Figure 2.4) is ampli�ed in the solution if h is not small enough.

A solution of this problem is to usea lesscentered discretization, test-functions with
more weight upstream than downstream. In the Streamline Upwinding Petrov Galerkin
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Figure 2.4 Unphysical eigenmode causedby an unstable convection term.

(SUPG) scheme (details e.g. in [Pir89]) this is realized by applying the test-functions
vh + � h(whr )vh instead of vh for the momentum equation, where � h is a parameter of
magnitude O(h) and wh is a \good guess" for the velocity uh, e.g. the solution at the
previoustime-step or the latest iterate of the nonlinear iteration (seethe following Section
2.4.2). Amongst the terms introducedthis way, only

� h ((wh � r )uh; (wh � r )vh) (2.27)

is of importance for the increaseof stabilit y, thus we want to add it to �a(w h; uh; vh).
Just doing this solves the stabilit y problems, but results in a loss of order of accuracy
becausethe equation is no longer consistent. For example in the stationary casewith a
modi�ed Taylor-Hood discretization we could repair this by adding appropriate terms to
the momentum equation, i.e. by using

� (r uh ; r vh) + ((wh � r )uh; vh) � (ph; div vh)

+
X

� i

� h [((wh � r )uh; (wh � r )vh)� i + (r ph; (wh � r )vh)� i ]

= hF; vh i +
X

� i

� h hF; (wh � r )vh i � i
: (2.28)

2.4.2 Nonlinearit y

Becauseof its super-linearconvergenceNewton'smethod is a frequently usedalgorithm for
solvingnonlinearequations.As the (Gateaux-) derivative of the convective term calculates
as

((u � r )u)0v = (u � r )v + (v � r )u;

this would lead to equationsof the following form (in the stationary case,ignoring for the
moment the stabilizing terms introducedin the previoussection)

(AD + AC (uk) + AR (uk))( uk+1 � uk)+ B T (pk+1 � pk)= dk ;

B (uk+1 � uk) � C(pk+1 � pk) = ek ;
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whereAR (w)u is the discretizationof (u �r )w, (uk ; pk) arethe Newton iteratesand (dk ; ek)
are somedefect right hand sides.

Unfortunately the zero order reaction term AR posestwo problems. Firstly it adds
block-o�-diagonal entries to matrix A which increaseits computational complexity, sec-
ondly it hasan uncontrollable e�ect on the diagonalof A and could causedivergence.Thus
it is commonpractice to drop this term. This leadsto the �xed point method, where in
each iteration step the Oseenequationshave to be solved.

A third possibility would be to use(few stepsof) an Oseen-preconditionedRichardson-
iteration for the linear problem in each Newton-step,which avoids the reaction term in the
systemmatrix but puts it to the right hand side.

In the caseof strongly dominant convection and stationary equations, the nonlinear
iteration is often hard to control. As this is lessthe casewhen solving the instationary
problem, we introducea pseudotime term, i.e. we obtain an iterativ e processwhereuk+1

and pk+1 satisfy �
A(uk) + � �M B T

B � C

� �
uk+1

pk+1

�
=

�
f + � �M uk

g

�
;

where �M is the massmatrix or (as we are not interestedin the correct reconstructionof a
non-stationary process)a lumped massmatrix and � a (small) parameter.

Besidesthe stabilization of the nonlinear process,this method hasthe nice property of
increasingthe symmetry of the linear systems.

Summing up, the resulting linear saddlepoint systemwhich has to be solved (onceor
for every nonlinear iteration step and/or for every time step) has the generalform (where
we denotethe block matrix with K , the solution block vector with x, and the right hand
sideblock vector with b)

K x :=
�

A(w) B T

B � C

� �
u
p

�
=

�
f
g

�
=: b; (2.29)

with
A(w) = c1M + AD + c2AC (w) + c3AS(w) + c4AR (w); (2.30)

with massmatrix M , symmetric positive de�nite LaplacianAD , non-symmetricconvection
AC and reaction AR , symmetric positive semi-de�nite convection stabilization AS and con-
stants c1,. . . ,c4 which may be zero,and symmetric positive semi-de�nite (or zero) element
stabilization C.

Becauseof (2.28) it may occur that we have no symmetry in the o�-diagonal blocks,
i.e. �

A(w) B T
1

B2 � C

�
;

with B1 6= B2. We will not deal with this situation separately in the remaining of this
thesis, but assumethe form (2.29). Note that the caseB1 6= B2 would not causeany
additional problems,becausethen a dominating non-symmetry is already found in A(w).
Thereforewe have to deal with a (substantial) non-symmetricsystemmatrix anyway.
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2.5 Iterativ e Solvers

In this section we give a brief overview over (non-multigrid) iterativ e solvers which are
applicableto the saddlepoint system(2.29). Of course,there is a great variety of possible
methods, we have only chosensomeprominent examples.

2.5.1 Krylo v Space Metho ds

A �rst possiblefamily of solvers are those (preconditioned) Krylov spacemethods which
are capableof solving inde�nite and (in the non-Stokes case)non-symmetric problems.
Examples thereof are GMRES and the BiCGstab. An overview of more Krylov space
methods can be found for examplein [Vos93]or [Meu99].

2.5.1.1 GMRES

The generalized minimal residualmethod (GMRES), introducedin [SS86],is a generaliza-
tion of the MINRES method to the non-symmetriccase. The idea is to solve in the k-th
iteration step the least squaresproblem: Find y 2 Rk such that

kb � K (x0 + Qky)k`2 ! min;

where the column vectorsof Qk build an orthonormal (w.r.t. the `2-scalarproduct) basis
of the k-th Krylov space

Kk(b; K ) = spanf b; K b; : : : ; K k� 1bg:

Thus, it could be seenasan exact method, which stopsat the solution after �nitely many
steps,but which usesan increasingamount of memory in each step. Thereforein practice
we usethe GMRES(m) method, i.e. GMRES restarted periodically after m steps.

Algorithm 2.11. Preconditioned GMRES(m). Iterativ e Solution of K x = b, with
preconditioner K̂ .

Choosestarting solution x0;
q1 = K̂ � 1(b � K x0);
z1 = kq1k;
q1 = (1=z1) � q1;
rep eat

begin
for k = 1 to m do

begin
qk+1 = K̂ � 1K qk ;
for i = 1 to k do

begin
hik = qi � qk+1 ; qk+1 = qk+1 � hik qi ;
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end
hk+1 ;k = kqk+1 k; qk+1 = qk+1 =hk+1 ;k ;

end
for k = 1 to m do

begin

cc=
q

h2
kk + h2

k+1 ;k ;

c = hkk=cc; s = hk+1 ;k=cc; hkk = cc;
for i = k + 1 to m do�

hk;i

hk+1 ;i

�
=

�
c s
s � c

� �
hk;i

hk+1 ;i

�
;

�
zk

zk+1

�
=

�
c s
s � c

� �
zk

0

�
;

end
ym = zm =hmm ;
for i = m down-to 1 do

yi =
�

zi �
P m

j = i+1 hij yj

�
=hii ;

xm = x0 +
P m

i=1 yi qi ;
r m = K̂ � 1(b � K xm );
x0 = xm ; r 0 = r m ;
z1 = kr 0k; q1 = (1=z1) � r 0;

end
until jz1j < tolerance

2.5.1.2 BiCGstab

The stabilized bi-conjugategradient method (BiCGstab) was introducedin [VdV92] (with
slight modi�cations in [SVdV94]). It is not optimal in each step, i.e. it solves the min-
imization problem only approximately, but as it usesa short range recurrencefor the
construction of the orthonormal basisof the Krylov space,it consumesconsiderablyless
computer memory as GMRES.

Algorithm 2.12. BiCGstab. Iterativ e Solution of K x = b, with preconditioner K̂ .

Choosestarting solution x0;
r 0 = K̂ � 1(b � K x0);
Choosearbitrary r̂ 0, such that r̂ 0 � r 0 6= 0, e.g. r̂ 0 = r 0;
� 0 = � = ! 0 = 1;
v0 = p0 = 0;
i  1;
rep eat

begin
� i = r̂ 0 � r i � 1; � = (� i =� i � 1)( � =! i � 1);
p i = r i � 1 + � (p i � 1 � ! i � 1v i � 1);
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y = K p i ; v i = K̂ � 1y;
� = � i =(r̂ 0 � v i );
s = r i � 1 � � v i ;
y = K s; t = K̂ � 1y;
! i = (t � s)=(t � t );
x i = x i � 1 + � p i + ! i s;
if x i is accurateenoughthen quit ;
r i = K̂ � 1(b � K x i );
i  i + 1;

end

2.5.2 SIMPLE

If linear solvers for scalar elliptic equationsare available, a very popular method is SIM-
PLE (Semi-Implicit Method for Pressure-Linked Equations), developed by Patankar and
Spalding [PS72,Pat80], which iterativ ely decouplesthe systemto equationsfor pressure
and for velocity (even for velocity-components in the Oseenor in the Stokescaseas then
A is block-diagonal).

We start with the factorization

K =
�

A 0
B S

� �
I A � 1B T

0 � I

�
; (2.31)

with the Schur complement S = C + BA � 1B T , and then introducepreconditionersÂ for A

in the �rst factor, ^̂A for A in the secondfactor and Ŝ for S. Using this in a preconditioned
Richardsonmethod leadsto the scheme

Â(ûk+1 � uk) = f � Auk � B T pk ; (2.32a)

Ŝ(pk+1 � pk) = B ûk+1 � Cpk � g; (2.32b)
^̂A(uk+1 � ûk+1 ) = � B T (pk+1 � pk); (2.32c)

whereûk+1 is someauxiliary vector. Now in (2.32a) Auk is replacedby Âuk , leading to

Âûk+1 = f � B T pk :

In the classicalSIMPLE algorithm Ŝ is a preconditionerfor the modi�ed Schur complement

C + B ^̂A � 1B T , ^̂A is the diagonalof A, denotedby D, and the pressureupdate is damped.
This leadsto the following algorithm.
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Algorithm 2.13. SIMPLE
ChoosepreconditionersÂ for A and Ŝ for the modi�ed Schur complement C + BD � 1B T ;

choosea starting solution (u0, p0); k  0;
rep eat until convergence

begin
solve Âû = f � B T pk ;
solve Ŝ~p = Bû � Cpk � g;
choosea damping parameter  ;
pk+1 = pk +  ~p;
uk+1 = û � D � 1B T ~p;
k  k + 1;

end

In all our numerical testsweuseAMG methodsfor Â and Ŝ, thereforewewill sometimes
call the method AMG-SIMPLE .

Remark 2.14. Algorithm 2.13 representsa simple version of this classof algorithms. One
can �nd many variants in literature, examplesare SIMPLER, SIMPLEC or SIMPLEV.
Often the nonlinear iteration in the Navier-Stokescaseis also embedded in the SIMPLE-
scheme. For details see e.g. the references above, [GNR98], [AB01] and the references
therein.

2.5.3 Inexact Uzawa Metho ds

Like the SIMPLE algorithm the methods in this section decouplevelocity and pressure
equationsiterativ ely. They are basedon the following factorization of the inverseof the
systemmatrix K ,

K � 1 =
�

A � 1 0
0 I

� �
I � B T

0 I

� �
I 0
0 � S� 1

� �
I 0

� BA � 1 I

�
: (2.33)

An inexact inverseis built by replacingA � 1 and S� 1 in (2.33) by preconditionersÂ � 1 and
Ŝ� 1: �

Â � 1 0
0 I

� �
I � B T

0 I

� �
I 0
0 � Ŝ� 1

� �
I 0

� B Â � 1 I

�
: (2.34)

Now di�erent combinations of these four factors are used to construct a preconditioner
K̂ � 1.

Using all four factors | which would lead to

K̂ =
�

Â B T

B BÂ � 1B T � Ŝ

�
(2.35)
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| for a preconditionedRichardsoniteration weget the inexactsymmetricUzawaalgorithm

Â(ûk+1 � uk) = f � Auk � B T pk ; (2.36a)

Ŝ(pk+1 � pk) = B ûk+1 � Cpk � g; (2.36b)

Â(uk+1 � ûk+1 ) = � B T (pk+1 � pk): (2.36c)

Factorsone,three and four and preconditionedRichardsonresult in the inexact Uzawa
algorithm

Â(uk+1 � uk) = f � Auk � B T pk ; (2.37a)

Ŝ(pk+1 � pk) = Buk+1 � Cpk � g; (2.37b)

which leadsfor Â = A, Ŝ = � I to the classical Uzawaalgorithm, for Â = � I , Ŝ = � I to
the classical Arrow-Hurwiczalgorithm [AHU58, BF91].

Details to thesetwo methods can be found e.g. in [LQ87], [BWY90], or [Zul02] .
The combination of factors one, two and three

K̂ � 1 =
�

Â � 1 Â � 1B T Ŝ� 1

0 � Ŝ� 1

�
(2.38)

is studied e.g. in [SEKW01] and [MGW00], the useof the preconditioner

K̂ � 1 =
�

Â � 1 0
0 Ŝ� 1

�
(2.39)

in [SW94]and [IRT93].
The preconditioner (2.39) can also be motivated by the following observation for its

exact version

K̂ =
�

A 0
0 S

�
:

We want to have an h-independent upper bound for the condition number of the precon-
ditioned system

condK̂

�
K̂ � 1K

�
;

wherethe condition number for a matrix Y with respect to a matrix norm k:k� is de�ned
as

cond� (Y) := kYk� � kY � 1k� :

For this purposewe needthe following result.
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Lemma 2.15. Assumethat A is positive de�nite, C positive semi-de�nite, and that if B
doesnot possessfull row-rank then C is positive de�nite. Then the generalized eigenvalues
� of �

A B T

B � C

� �
u
p

�
= �

�
A 0
0 S

� �
u
p

�

are contained in the set "

� 1;
1 �

p
5

2

#

[

"

1;
1 +

p
5

2

#

:

Proof. To solve the problem

�A u = Au + B T p (2.40a)

�S p = Bu � Cp (2.40b)

we distinguish two cases.
First if � = 1 then (2.40a)canbe ful�lled with p = 0 and (2.40a)by any u with Bu = 0.
Now for � 6= 1 we get u = 1

� � 1A � 1B T p from (2.40a), insert this in (2.40b) and get
 

� �
1 +

p
5

2

!  

� �
1 �

p
5

2

!

BA � 1B T p + (� + 1)(� � 1)Cp = 0: (2.41)

As both BA � 1B T and C are positive semi-de�nite and at least one of them is positive
de�nite, (2.41) can only be ful�lled for

� 2

"

� 1;
1 �

p
5

2

#

[

 

1;
1 +

p
5

2

#

;

which completesthe proof.

Remark 2.16. If C � 0 then one can evenshowthat � 2 f 1; (1 �
p

5=2g. Similar and more
general resultscan be found e.g. in [RW92], [IRT93], or [SW94].

Now we can easily calculate that

kK̂ � 1K kK̂ = kK 1=2K̂ � 1K 1=2k`2

and
kK � 1K̂ kK̂ = kK̂ 1=2K � 1K̂ 1=2k`2 ;

and deducefrom Lemma 2.15that

kK 1=2K̂ � 1K 1=2k`2 �
1 +

p
5

2
;

and
kK̂ 1=2K � 1K̂ 1=2k`2 �

2
p

5 � 1
:

Thus we can estimate

condK̂

�
K̂ � 1K

�
�

3 +
p

5
2

;

wherethe upper bound is clearly independent of h.
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2.5.3.1 \Blac k-Bo x"-Preconditioners

This classof preconditioners| it hasbeenintroducedin [SEKW01], [LW02] and [ESW02]
for the Oseenproblem and earlier for examplein [SW94]for the Stokesproblem| is based
on two ideas.

First, oneof the preconditioners(2.38), (2.39) is usedfor a preconditionedKrylov space
method (Section2.5.1).

Remark 2.17. If we consider the stationary Stokesproblemand the exactversion of (2.38)
(i.e. Â = A, Ŝ = S) then the eigenvaluesof K̂ � 1K are contained in the set f� 1; 1g, which
would cause a Krylov space method to converge to the exact solution in two steps. We
havealready mentioned in Remark 2.16 that a similar result appliesto the exactversion of
(2.39) if C � 0, here the set is

�
1; (1 �

p
5)=2

	
and the solution is reached in three steps

(see [MGW00, Ips01]).

The secondkey point (in the Oseencaseand for C � 0, i.e. LBB-stable elements) is
the following heuristic commutativit y relation

r (� � � + (w � r )) s � (� � � + (w � r ))r ; (2.42)

wherethe s-index of the convection di�usion operator indicates its scalarversion. Thereof
we can deduce

(� � � + (w � r )) � 1r � r (� � � + (w � r )) � 1
s :

Applying the divergenceon both sidesleadsto

div(� � � + (w � r )) � 1r � � s(� � � + (w � r )) � 1
s ;

and inverting gives
�
div(� � � + (w � r )) � 1r

� � 1
� (� � � + (w � r )) s� � 1

s ; (2.43)

i.e. the inverseof the Schur complement could be approximated by an inverse(pressure)
Laplacian and a (pressure!)convection di�usion operator.

For the Stokes problem the scaledpressuremass matrix 1
� Mp is an optimal Schur-

complement-preconditioner, i.e.  1 and  2 in

 1 �
� qT Sq
qT Mpq

�  2 8q 2 Rm

are h-independent, wherethe lower bound is valid becauseof the inf-sup-condition (2.16),
the upper bound becauseof the continuity of b(:; :)

jb(v ; q)j �
p

 2kvkA kqkM p

(seealso [LQ86, LQ87]). Thereforealso in the caseof Oseenequationsit is suggestednot
to usejust the two factors indicated by (2.43) but

Ŝ� 1 = M̂ � 1
p A(w)sÂ � 1

D s
; (2.44)

whereM̂p is a preconditioner for the pressuremassmatrix (e.g. the lumped massmatrix),
A(w)s the scalarvariant of A(w) and ÂD s a preconditioner for the (pressure)Laplacian.
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Remark 2.18. Two possibleproblemsof this preconditioner can arise of the assumption
(2.42). First, the commutativity

r [(w � r )] � (w � r )r ;

is not ful�l led in general (except for somespecial situation, e.g. constant w), what poses
problemsif this term dominates(for small � 's).

Second, for non-constant � (e.g. dueto a k-� turbulence model, c.f. [MP94] or [RW99])
eventhe �rst part of (2.42) would be violated, as in this case

r � � 6= � � r :



Chapter 3

Multigrid Metho ds

In the previous chapter we have introduced someiterativ e methods for the solution of
saddle point systems,most of them having in common that (without preconditioning)
they are not optimal, i.e. the number of arithmetical operationsQ(") for a reduction of the
residualby a factor " is considerablylarger than O(n), wheren is the number of unknowns
of the system.

Multigrid methods, which will be the main topic in the remainingof this thesis,possess
this optimalit y-property Q(") = O(n) (at least geometric multigrid methods), therefore
we want to apply them as solvers (or preconditioners)for our system.

First we will describe a general algebraic multigrid (AMG) method, introduce the
notation and pinpoint somedi�erences to geometricmultigrid (GMG) methods. Then we
will give someconcreteexamplesof methods for scalarelliptic equations.

3.1 A General Algebraic Multigrid Metho d

We want to construct a generalAMG method for a set of linear equations

K 1x = b1;

whereK 1 is a regular n1 � n1 matrix. The index indicates the level, 1 is the �nest level, L
will be the coarsest.For AMG methods, which will be the main focus of this thesis, this
numbering is natural, but note that it is the reverseof the natural numbering for GMG
methods.

The �rst step in this method is to create a full rank prolongation matrix P 1
2 based

on somecoarsening(seelater, Section 3.2.2), with P 1
2 : Rn2 ! Rn1 and n2 < n1. For

this purpose(almost) only information from someauxiliary matrix H 1 is used. Normally
one usesthe information from the matrix K 1, but the utilization of an auxiliary matrix
(which is suggestedfor examplein [Rei01])enhancesthe exibilit y of the method. In AMG
methods the sizeof the (negative) matrix entries is related to the strength of the coupling
of two unknowns, thus di�erent notions of `strength' canbe introducedfor di�erent choices

35
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of H1. One could usee.g.

(H1) i;j =

8
><

>:

� 1=kei;j k if i 6= j and vertex i and j are connected,
P

k6= i 1=kei;k k if i = j ,

0 otherwise,

(3.1)

wherekei;j k is the length of the edgeconnectingthe nodesi and j , to represent a virtual
FE-mesh. For convection di�usion equations, this could be modi�ed for regions with
dominating convection, which causesa faster \transp ort of information". More choices
seemconceivable, but will not be dealt with in this thesis.

We alsoneeda restriction matrix R2
1 : Rn1 ! Rn2 , for which we useR2

1 = (P1
2 )T . Now

we can build the Galerkin projected matrix

K 2 = R2
1K 1P1

2 ;

and the auxiliary matrix on this level

H2 = R2
1H1P1

2 :

Repeating this stepwe endup with a setof prolongationmatricesP l
l+1 , l = 1; : : : ; L � 1,

where P l
l+1 : Rn l +1 ! Rn l , n1 > n2 > : : : > nL , a set of restriction matrices Rl+1

l , and a
set of coarselevel matrices K l and auxiliary matrices H l with

K l+1 = Rl+1
l K lP l

l+1 (3.2)

and
H l+1 = Rl+1

l H lP l
l+1 :

Completing the AMG method we needon each level l = 1; : : : ; L � 1 an iterativ e method
for the problem K lx l = bl ,

x j +1
l = Sl (x

j
l ; bl );

the smoothing operator.
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Algorithm 3.1. Basic multigrid iteration for the systemK lx l = bl .
Let mpre be the number of presmoothing steps,mpost of postsmoothing steps. Supposewe
have chosena starting solution x0

l on level l .

for k  1 to mpre do xk
l = Sl (xk� 1

l ; bl ); (presmoothing)
bl+1  Rl+1

l (bl � K lx
mpre

l ); (restriction)
if l + 1 = L

Compute the exact solution �xL of K L �xL = bL ;
else

begin
Apply Algorithm 3.1 (� times) on

K l+1 x l+1 = bl+1

(with starting solution x0
l+1 = 0)

and get �x l+1 ;
end

xmpre +1
l  xmpre

l + P l
l+1 �x l+1 ; (prolongation and correction)

for k  1 to mpost do xmpre + k+1
l = Sl (x

pre+ k
l ; bl ); (postsmoothing)

return �x l  xmpre + mp ost +1
l ;

The part from (restriction) to (prolongation and correction) will be referred to as \ coarse
grid correction".

Repeated application of this algorithm until ful�llmen t of someconvergencecriterion
yields a basic AMG method. For � = 1 the iteration is called a `V-cycle', for � = 2 `W-
cycle'. We usethe abbreviations V-mpre-mpost resp. W-mpre-mpost for a V- resp. W-cycle
with mpre presmoothing and mpost postsmoothing steps.

Geometric Multigrid. The basefor GMG methods is a hierarchical sequenceof �ner
and �ner meshes.Each level hasan associated grid, thus P l

l+1 and Rl+1
l canbe constructed

using geometricinformation of two consecutive meshes,the auxiliary matrices H l are not
needed.

The coarsesystemmatricesneednot be built using the Galerkin approach (3.2), direct
discretization of the di�erential operator on the speci�c meshcan be performed. For non-
nested FE spaces(e.g. velocity components of the Crouzeix-Raviart element in Section
2.2.1.3)thesetwo approachesdi�er, the direct discretization seemsto be more natural.

3.1.1 Basic Convergence Analysis

The commondenominator and key point of all multigrid methods is the splitting of the
error components in two classes.One that can be reproducedon coarserlevels/grids and
thereforecan be reducedby the coarsegrid correction and one that has to be reducedby
the smoother. For the geometricmultigrid method the �rst group consiststypically of low
frequencyparts the secondof high frequencyparts of the error. The abilit y to cope with
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the �rst group is called approximation property, with the secondsmoothing property. The
(optimal) convergenceof the multigrid method is the consequenceof their combination.

The Geometric Multigrid Case. Two classicaltechniquesof proo�ng the convergence
of geometricmultigrid methods assuretwo-grid convergence(which can be shown to imply
W-cycle convergence)by di�erent splittings of the two-grid iteration operator (without
postsmoothing)

M l+1
l := (I � P i

l+1 K � 1
l+1 Rl+1

l K l )Sm
l ;

wherem is the number of smoothing steps(i.e. m = mpre in Algorithm 3.1) and Sl the itera-
tion matrix of the smoother (for a preconditionedRichardsoniteration with preconditioner
K̂ l we have Sl = I � K̂ � 1

l K l ).
The �rst technique, which was mainly developed by the Russianschool [Bac66,Ast71,

Kor77, Lan82] is basedon a sum splitting. Here the projections P low and Phigh (which
project on the subspacesspannedby the low and high frequencyeigenvectorsof the system
matrix) are introduced, and the identit y, decomposedinto I = P low � Phigh , is inserted
into M l+1

l (left of Sm
l ) to get the estimate

kM l+1
l k � k(I � P i

l+1 K � 1
l+1 Rl+1

l K l )P lowkkSlkm

+ k(I � P i
l+1 K � 1

l+1 Rl+1
l K l )kkPhighSm

l k:

Two-grid convergenceis then provenby showing that the term k(I � P i
l+1 K � 1

l+1 Rl+1
l K l )P lowk

is small (the approximation property) and that kP highSm
l k is arbitrary small for su�cien tly

many smoothing stepsm (the smoothing property).
The other classical technique can be found in Hackbusch [Hac85]. Here a product

splitting is constructed after inserting the identit y I = K � 1
l K l into M l+1

l (left of Sm
l ).

Then again two properties have to be shown. One is the approximation property which
herereadsas

kK � 1
l � P l

l+1 K � 1
l+1 Rl+1

l k`2 � c=kK lk`2 (3.3)

the other the smoothing property

kK lSm
l k`2 � � (m)kK lk`2 (3.4)

wherec is a positive constant and � (m) the socalled smoothing rate (independent of level
l) with

� (m) ! 0 for m ! 1 :

They together imply the convergenceof the two-grid method if m is large enough.

Remark 3.2. Instead of (3.3) and (3.4) the approximation and smoothing properties are
often formulated directly using the h-scaling induced by K l , i.e.

kK � 1
l � P l

l+1 K � 1
l+1 Rl+1

l k � ch�
l

and
kK lSm

l k � � (m)h� �
l ;

with appropriate � and k:k.
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The Algebraic Multigrid Case. Convergenceanalysis for algebraic multigrid meth-
ods has beenmostly restricted to the symmetric positive de�nite caseup to now. For a
symmetric positive de�nite systemmatrix K l the smoothing property (according to Ruge
and St•uben [RS86]) takesthe form

kSlek2
K l

� kek2
K l

� c1kK lek2
D � 1

l
for all e, (3.5)

with c1 > 0 independent of e and D l the diagonal of K l . This implies that the smoother
has to reducean error e strongly if kK lekD � 1

l
is large (comparedto kekK l ). If additionally

the approximation property

k(I � P l
l+1 K � 1

l+1 Rl+1
l K l )ek2

K l
� c2kK l (I � P l

l+1 K � 1
l+1 Rl+1

l K l )ek2
D � 1

l
(3.6)

is ful�lled with c2 independent of e then

kSl (I � P i
l+1 K � 1

l+1 Rl+1
i K l )ek2

K l
� k(I � P i

l+1 K � 1
l+1 Rl+1

l K l )ek2
K l

� c1kK l (I � P l
l+1 K � 1

l+1 Rl+1
l K l )ekD � 1

l

� (1 �
c1

c2
)k(I � P l

l+1 K � 1
l+1 Rl+1

l K l )ek2
K l

� (1 �
c1

c2
)kek2

K l
;

i.e. the two-grid algorithm with onepostsmoothing step converges.

3.2 Examples in the Scalar Elliptic Case

Assumefor this section,that the systemwe want to solve results from a FE approximation
of the scalarelliptic model problem: Find u : G ! R such that

� u(x) = b(x) for x 2 G;

u(x) = 0 for x 2 @G;

which leadsto the linear system
K 1u = b1:

3.2.1 Geometric Multigrid

Basic point wise iterations like the ! -Jacobi or the Gauss-Seidelmethod can be usedas
smoothers in the caseof our model problem.

For nestedFE spacesX 1 � X 2 � : : : (again the index indicatesthe level) the construc-
tion of the prolongation is straight-forward, it only has to reproduce identit y.
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In the caseof non-nestedspacesdi�erent strategiesare needed.For the exampleof P nc
1

�nite elements (e.g. the velocity components of the Crouzeix-Raviart element) one could
use

�
P l

l+1 uh

�
e

=

(
uh(e) if e is a �ne grid edgeinside a coarsegrid element,
1
2 [uh j � 1 (e) + uh j � 2 (e)] if e = � 1 \ � 2 for two coarsegrid elements � 1, � 2

(3.7)
(c.f. [BV90] or [Bre93]).

3.2.2 Algebraic Multigrid

We assumenow that the discretization of our model problem is nodal based, i.e. each
unknown is associated with a unique meshnode.

The smoother can again consist of ! -Jacobi or Gauss-Seideliterations. For the con-
struction of the coarselevels, i.e. the assembling of the prolongation matrices there are
various possibilities,we will describe thosewhich will be important later in this theses.

3.2.2.1 AMG Based on C/F-Splitting

The classicalAMG methods usea splitting of the set of nodesinto a set of coarsenodes
(C) which will alsobe usedon the coarselevel, and a set of �ne nodes(F) which `live' only
on the �ne level, details can be found in [BMR84], [RS86]or [St•u01a].

Suppose that | after such a splitting has been chosen| the unknowns are sorted
F-unknowns (living on F-nodes)�rst, then C-unknowns (living on C-nodes). This induces
a block structuring of the linear system

K lu =
�

K l
F F K l

F C
K l

CF K l
CC

� �
uF

uC

�
=

�
bF

bC

�
= b

(and the samestructuring for H l and P l
l+1 ). Now for the prolongation it is obviously a

good choice to leave the C-unknowns unchanged,i.e. to use

P l
l+1 =

�
PF

C
I

�
(3.8)

(omitting the level index l in PF
C ), where again there are many variants for P F

C , someof
them will be described in what follows. All of them have in commonthat each coarsenode
prolongatesonly to a very restricted set of �ne nodesto prevent �ll-in in the coarselevel
matrices and a resulting explosionof complexity.

One possibility is to do averagingon the F nodes,i.e. we could de�ne

(PF
C ) j;k =

(
1

m j
if k is a neighboring C node of a F node j ,

0 otherwise,
(3.9)

wheremj is the number of neighboring C nodesof the F node j , and the neighbor-relation
is induced by non-zeroentries in the auxiliary matrix H l .
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Remark 3.3. If the �ne levelmeshwasconstructed by a hierarchical re�nement of a coarse
mesh, the C and F nodesare chosenaccordingly, and the underlying discretization is the
P1 element,then this strategy reproduces the geometric multigrid method.

A more sophisticatedprolongation can be found in [St•u01a]. Before presenting it we
needthe conceptsof M-matrices and of essentially positive type matrices.

De�nition 3.4. A matrix H = (hij ) is called M-matrix if

1. hii > 0 for all i ,

2. hij � 0 for all i 6= j ,

3. H is regular, and H � 1 � 0 (where here �̀ ' is meant component-wise).

(Onecanskip the �rst requirement becauseit is a consequenceof 2. and3., seee.g.[Hac93].)

De�nition 3.5. A matrix H = (hij ) is said to be of essentially positive type if it is positive
de�nite and there exists a constant ! > 0 such that for all e,

X

i;j

(� hij )(ei � ej )2 � !
X

i;j

(� h�
ij )(ei � ej )2; (3.10)

with

h�
ij =

(
hij if hij < 0,

0 otherwise

(and h+
ij = hij � h�

ij ).

Remark 3.6. If H is a M-matrix than condition (3.10) is ful�l led with ! = 1. The class
of essentially positive type matrices was intr oduced to capture \almost M"-matric es with
small positive o�-diagonal entries which can be `repaired' (see [Bra86]).

Lemma 3.7. If a matrix H is of essentially positive type with ! as in (3.10) then for all e

2
!

eT DH e � eT H e; (3.11)

where DH is the diagonalof H .

Proof. It is easyto check that

2
!

eT DH e � eT H e�
1
2

X

j

X

k6= j

hj k

� �
2
!

� 1
�

e2
j + 2ej ek +

�
2
!

� 1
�

e2
k

�

| {z }
=:�

and that
�

2
!

� 2
�

(e2
j + e2

k) �
�

2
!

� 1
�

e2
j + 2ej ek +

�
2
!

� 1
�

e2
k �

2
!

(e2
j + e2

k):
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Thus
� �

2
!

X

j;k
j 6= k

hj k(e2
j + e2

k) � 2
X

j;k
j 6= k

h�
j k(e2

j + e2
k): (3.12)

With e = (0; : : : ; 0; 1; 0; : : : ; 0)T , the i -th unit vector, we get from (3.10)
X

j
j 6= i

hij � !
X

j
j 6= i

h�
ij ;

which together with (3.12) gives
� � 0

and thereforecompletesthe proof.

From now on we will write
A � B

for two matrices A and B if A � B is positive semi-de�nite (or A > B if it is positive
de�nite), e.g.we can express(3.11) as 2

! DH � H .
We shortly sketch the construction of a reasonableP F

C for an essentially positive type
matrix H l = (hij ) ij according to [St•u01a]. The construction is done in a way that for a
coarselevel vector eC the interpolation PF

C eC \�ts smoothly" to eC , i.e. that if we set

e =
�

PF
C
I

�
eC

then
hii ei +

X

j 2 N i

hij ej � 0; for i 2 F , (3.13)

whereN i is the set of neighboring F- and C-nodesof F-node i , i.e.

N i := f j : j 6= i; hij 6= 0g

the direct neighborhood. We will denotethe subsetof N i with negative matrix connections
with N �

i , and Pi � C \ N �
i will be the set of interpolatory nodes, i.e. the set of C-nodes

which prolongateto F-node i . If we assumethat for smooth error e

1
P

j 2 Pi
hij

X

j 2 Pi

hij ej �
1

P
j 2 N i

hij

X

j 2 N i

hij ej

we could approximate (3.13) by

hii ei + � i

X

j 2 Pi

hij ej = 0;
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with

� i =

P
j 2 N i

hij
P

j 2 Pi
hij

:

But for practical reasons(details can be found in [St•u01a]) we add all positive entries to
the diagonal, i.e. we use

~hii ei + ~� i

X

j 2 Pi

h�
ij ej = 0;

with
~hii = hii +

X

j 2 N i

h+
ij

and

~� i =

P
j 2 N i

h�
ijP

j 2 Pi
h�

ij

:

Thus we set
(PF

C ) j;l = � � j h�
j l=~hj j : (3.14)

If P l
l+1 is of the form (3.8) a su�cien t condition for the approximation property (3.6)

is given by the following theorem (without proof).

Theorem 3.8. [RS86] If for all e =
�

eF

eC

�

keF � PF
C eC k2

D l ;F � ckek2
K l

; (3.15)

where c is independentof e, and D l denotesthe diagonalof K l , then (3.6) is satis�ed (here
k:kD l ;F denotesthe `F-part' of the norm).

For the prolongation (3.14) with H l � K l wecan�nd anothersu�cien t condition, again
without proof.

Theorem 3.9. [St•u01a, Theorem A.4.5] Let K l = (hj;k ) j;k > 0 be of essentially positive-
type with

P
k hj k � 0 for all k. With �xed � � 1, select a C/F-splitting suchthat, for each

j 2 F , there is a set Pj � C \ N �
j satisfying

X

k2 Pj

jh�
j k j �

1
�

X

k2 N j

jh�
j k j: (3.16)

Then the interpolation (3.14) satis�es for all e

keF � PF
C eCk2

D l ;F �
�
!

kek2
K l

; (3.17)

with ! from (3.10).
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Choice of C nodes. What still hasto be �xed is a concreteC/F-splitting. A very easy
to implement algorithm for this purposeis the red-black-coloring method [Kic98].

Algorithm 3.10. Red-Blac k Coloring

rep eat until all the nodesare colored
begin

step 1: choosean uncolorednode (e.g. with minimal node number);
step 2: this node is coloredblack;
step 3: all uncoloredneighbors are coloredred;

end

The black nodesare then usedas C nodes.

A �rst variation of this algorithm is to usea di�erent notion of `neighboring' in step 3,
to color only the strongly negatively coupled (snc) nodes,wherea node j is said to be snc
to a node k if

� hj k � " str max
i

jh�
j i j; (3.18)

with �xed parameter " str 2 (0; 1] (typically " str = 0:25). We denote the set of strongly
negative couplingsof a node j by

Sj = f k 2 N j : j is snc to kg (3.19)

and the set of transposedstrongly negative couplingsby

ST
j = f k : j 2 Skg: (3.20)

Now step 3 can be replacedby

\all uncolorednodeswhich are snc to the black node are coloredred". (3.21)

Another variant concernsstep 1. The order in which the C nodesare chosenmay be
crucial if we want to obtain a uniform distribution of C and F nodes. One suggestionin
this direction in [RS86] is to introduce a \measure of importance" � j for each node j in
the set of `undecided'nodesU, and to choosea node with maximal � j as next C node.
One possibility for this measureis

� j = jST
j \ Uj + 2jST

j \ F j; (3.22)

which canbe evaluated for all nodesin a preprocessingstep and updated locally after each
iteration step.



CHAPTER 3. MULTIGRID METHODS 45

3.2.2.2 Elemen t Agglomerating AMGe

The algorithms in the previous section were basedon heuristics for M-matrices (or `al-
most' M-matrices, like the classof essentially positive type matrices). AMGe (AMG using
element sti�ness matrices)wasdevelopedto obtain moregeneralmethodsfor FEM systems,
where it takes advantage of the element matrices. In [BCF+ 00] AMGe was introduced,
the coarsegrid construction, i.e. the C/F-splitting was adopted from standard AMG, the
interpolation was built using the new technique.

An approach which combined the AMGe ideawith a method yielding detailed topologic
information on coarselevels (i.e. elements, faces,edges,nodes) was presented in [JV01],
we will show the basic ideasand algorithms.

Assumethat on onelevel (e.g.on the discretization level) we know the element-to-node
connectivity, i.e. which nodesare part of a given element. Assumefurther that a method
for the agglomerationof elements is known, satisfying the requirements that each element
is part of oneunique agglomerateand that each agglomerateis a connectedset, meaning
that for any two elements part of the the sameagglomeratethere existsa connectedpath of
elements of this agglomerateconnectingthe two elements. Then wecanapply the following
algorithm for the creation of the coarselevel topology.

Algorithm 3.11. [JV01] AMGe coarse level top ology

1. Agglomeratethe �ne elements to coarseelements E j (with the above properties).

2. Consider all intersectionsE j \ Ek for all pairs of di�erent agglomeratedelements
E j and Ek . If such an intersection is maximal, i.e. is not contained in any other
intersection, then it is called a face.

3. Consider the faces as sets of nodes. For each node n compute the intersectionT
f all faceswhich contain ng. Now the set of minimal, nonempty intersectionsde-

�nes the vertices.

We have formulated the algorithm for the 3D case,but it can be directly applied to 2D
problems(then the `faces'correspond to edges).If (in the 3D case)oneadditionally wants
to construct edges,then this can be done in step 3 using the set of minimal, nonempty
intersectionswhich are not already vertices.

For the construction of the interpolation we �rst de�ne the neighborhood of a (�ne-
level) node n by


( n) :=
[

f all agglomeratedelements that contain ng

and the minimal set

�( n) :=
\

f all agglomeratedelements that contain ng

(�( n) can be a node, edge, face or element). For the coarse-level nodes we use again
identit y prolongation (they are the C-nodesof standard AMG) and for the edges,faces,
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cells we proceedrecursively as follows. Assumefor a set �( n) that the interpolation on
the unknowns in @�( n) hasbeen�xed, 1 and we want to calculate the interpolation on the
nodes in �( n) n @�( n). For that we build the local sti�ness matrix of 
( n) (consisting
of the element sti�ness matrices of elements in 
( n)) with the underlying partitioning
(
( n) n @�( n)) [ @�( n)

K 
( n) =
�

K ii K ib

K bi K bb

�
g 
( n) n @�( n)
g @�( n)

(i standsfor interior, b for boundary) and perform local energyminimization:

�nd ui such that (uT
i uT

b )
�

K ii K ib

K bi K bb

� �
ui

ub

�
is minimized, with given ub;

with the result (for symmetric, positive de�nite K 
( n) )

ui = � K � 1
ii K ibub:

Now we can set

(PF
C ) j;k =

"

� K � 1
ii K ib

�
~Pj

�
0
1

�
 vertices of �( j ) n f kg

 k :

�

@�( j )

#

j

;

where ~Pj is the localizedversionof P l
l+1 .

Remark 3.12. The drawback of this method is a possiblyexpensiveset-up phase,as many
local minimization problemshaveto be solved and one has to saveall the elementsti�ness
matrices. Approachesto overcome this di�culty can be found in [HV01].

Remark 3.13. A very nice property of elementagglomerating AMGe is the completeinfor-
mation about grid topology on the coarse levels. This could be utilized in various ways,so
e.g. stability analysis for saddle point problemscan be performed nearly as in a geomet-
ric context (c.f. Section 4.1.3) or as another exampleone could use the information to
construct someFAS-like schemes2 for nonlinear problems,which is done in [JVW02].

What we have not speci�ed yet is how to construct the coarseagglomerates. One
possibility for that is the following algorithm.

1The `boundary' @�( n) is de�ned straightforward: if �( n) is a facethen @�( n) are those nodesof �( n)
which belong to more than one face, if �( n) is an agglomeratedelement then @�( n) is the union of faces
of this element.

2FAS . . . ful l approximation storage, a multigrid method which is capableof solving nonlinear problems,
developed by Brandt [Bra77].
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Algorithm 3.14. [JV01] Jones-V assilevski element agglomeration
Assumewe have a set of �ner level elements f ej g and facesf f j g, and introducean integer
weight w(f j ) for each facef j .

� initiate. Set w(f )  0 for all facesf ;

� global search. Find a face f with maximal w(f ), if w(f ) = � 1 we are done; set
E  ; ;

1. Set E  E [ e1 [ e2, wheree1 \ e2 = f and set wmax  w(f ), w(f )  � 1

2. Increment w(f 1)  w(f 1) + 1 for all facesf 1 such that w(f 1) 6= � 1 and f 1 is a
neighbor of f ;

3. Increment w(f 2)  w(f 2) + 1 for all facesf 2 such that w(f 2) 6= � 1, f 2 is a
neighbor of f , and f 2 and f are facesof a commonelement;

4. From the neighbors of f , choosea face g with maximal w(g); if w(g) � wmax

set f  g and go to step 1.;

5. If all neighbors of f have smaller weight than wmax , the agglomeratedelement
E is complete;set w(g)  � 1 for all facesof the elements e contained in E;
go to global search;

Remark 3.15. In [JV01] alsomodi�c ations to this algorithm are presented whichallow some
kind of semi-coarsening,i.e. coarseningwith the focusin onespeci�c direction (for example
determined by convection).

For the 2D casethis algorithm mostly producesnice agglomeratedelements, in the 3D
casesomestrangeshapesmay occur, thereforesomeadjustments of the algorithm seemto
be necessary.

A secondmethod which producesgood agglomerates,but often leadsto a too strong
coarsening(what hasa disadvantageousinuence on the h-independence)is the following.

Algorithm 3.16. Red-grey-blac k element agglomeration

rep eat until all elements are colored
begin

choosean uncoloredelement, this is coloredblack;
color all uncoloredor grey neighboring elements red

(where `neighboring' could be induced by faces,edgesor nodes);
color all uncoloredelements neighbored to red elements grey;

end
the black elements plus surrounding red elements build the agglomeratedelements;
each grey element is appendedto the agglomeratewhereit \�ts best"

(e.g. to the agglomerateit sharesthe largest facewith);
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AMG Metho ds for the Mixed
Problem

We now comeback to the original problem, i.e. to solve the saddlepoint system(2.29)
�

A(w) B T

B � C

� �
u
p

�
=

�
f
g

�
;

using algebraicmultigrid methods.

The Segregated Approac h. A �rst possibility is the segregated approach. One could
use an outer solver which iterativ ely decouplesthe equations | for example SIMPLE
(Section 2.5.2), Uzawa (Section 2.5.3), or the preconditioner in Section2.5.3.1combined
with a Krylov spacemethod (section 2.5.1) | and then use an AMG method for the
resulting scalar elliptic problems. This direction is followed e.g. in [GNR98], [St•u01a] or
[SEKW01] and related publications.

A very nice property of this approach is the simplicity of its realization in a concrete
computer program. If components like scalar solvers are available they are easily assem-
bled to a full solver for saddle point problems. One important subproblem here is the
development of a fast and robust (multigrid-) solver for convection di�usion problems. We
will not go into detail about that but refer to the literature, for example(without claiming
completeness)[Reu95,BW97, OGWW98, YVB98, PTV00, DMS01, Reu02].

Unfortunately, sometimes(especially for Navier-Stokesresp.Oseenequations)the seg-
regatedapproach has the drawback of a lossof optimalit y, i.e. an asymptotic complexity
considerablylarger than O(n) (n being the number of unknowns).

This is one of the reasonswhy we want to follow a di�erent way. We will develop
AMG methods for the coupledproblem. As the techniquesof the previouschapter mostly
require positive de�nite systems,we have to adapt the ingredients to �t to our problem
and develop somenew methods.

48
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4.1 Construction of the Coarse Lev el Systems

The �rst important part of our strategy is to avoid a mixture of velocity components and
pressureon the coarselevels (which could occur if one just applies some\o�-the-shelf "
solver to the whole saddlepoint system), thus we choosea prolongation

P l
l+1 =

�
~I l
l+1

J l
l+1

�
;

with
~I l
l+1 =

�
I l

l+1
I l

l+1

�
in 2D

resp.

~I l
l+1 =

0

@
I l

l+1
I l

l+1
I l

l+1

1

A in 3D,

where
I l

l+1 : Rn l +1 ! Rn l

is the prolongation matrix for onevelocity component,

J l
l+1 : Rm l +1 ! Rm l

for pressure.We denotethe corresponding restriction matrices by ~I l+1
l , I l+1

l , J l+1
l and use

~I l+1
l = ( ~I l

l+1 )T ; I l+1
l = (I l

l+1 )T ; J l+1
l = (J l

l+1 )T :

The systemmatrix on level l is denotedby
�

A l B T
l

B l � Cl

�
:

the spacesfor velocity and pressureunknown vectorsby U l := (Rn l )d and Q
l

:= Rm l and
the coarsefunction spacesby

U l :=
n

v : 9w 2 U l such that v = ~I 1
2

~I 2
3 : : : ~I l � 1

l w
o

;

Ql :=
n

p : 9q 2 Q
l

such that p = J 1
2 J 2

3 : : : J l � 1
l q

o
:

Analogous to (2.19) we introduce the FE-AMG-isomorphisms � l
U : U l ! U l and � l

Q :
Q

l
! Ql , and we will often identify elements of U l and U l , and Q

l
and Ql (seealsoFigure

4.1). In situations where it is not obvious which level the underline notation refersto, we
will usethe operators � l

U
� 1 and � l

Q
� 1 explicitly.

The systemmatrix on level l is constructedby Galerkin projection from the �ner level
l � 1 as described in Section3.1, we only have to take extra care of the stabilizing terms
for unstable elements as in Section2.2.1.2or convection as in Section2.4.1.
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Figure 4.1 Using the FE-AMG-isomorphism we can associate coarsebasisfunctions with
basisvectorsof Rm l . Here we have three basisfunctions for a certain Ql .

Both are especially delicate in the multigrid setting, becauseif the modesillustrated in
Figures2.1 and 2.4 occur on a coarselevel, then the smoother on the �ner level might not
damp them (they have lower frequencythan the modesthe smoother is intendedto reduce)
and the whole iteration might fail. As both terms have a non-standardh-dependencewe
try to reproducethis on coarserlevelsto avoid a `attening' of the stabilization. Numerical
tests show that for the SUPG term aS in (2.27) it is su�cien t to do a simple scaling,i.e.

ASl +1 = d

r
nl

nl+1

~I l+1
l ASi

~I l
l+1 : (4.1)

The scalingof the element stabilization will be dealt with later (Section 4.1.2).
Another major part of our strategy is to somehow project the relation of the velocity

and pressureunknowns, which is indicated by the speci�c �nite element, to the coarser
levels. This makes it obvious that we will not construct a \black box" method, i.e. a
method wherethe user just hasto feedin the matrix, and the solution is found in optimal
computation time. We try to exploit more information and hope that this will pay o�.

We will now construct coarselevel systems,which comply with this strategy, for the
conforming linear elements of Section 2.2.1, namely the modi�ed Taylor-Hood element
P1isoP2-P1, the P1-P1-stab element, and the Crouzeix-Raviart element P nc

1 -P0.
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Figure 4.2 Motivation for the construction of the coarselevel hierarchy for the modi�ed
Taylor-Hood element. Red dots indicate velocity nodes, blue dots (partially behind the
red dots) pressurenodes.
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4.1.1 The P1isoP2-P1 Hierarc hy

The motivation for the construction of the hierarchy is basedon the GMG method for this
element. If we look at Figure 4.2 we seethat the velocity nodeson one level are exactly
the pressurenodes of the next �ner level. In the AMG casewe use this observation for
reversingthe construction.

We start with the pressureunknowns on a given mesh. We take a method of Chapter
3 with auxiliary matrices as in (3.1) or equal to a (pressure)Laplacian, and construct a
hierarchy with prolongation matricesJ l

l+1 .
The given \v elocity mesh" for the P1isoP2-P1 element is the once re�ned (pressure)

mesh. Thus, the �rst coarseningstep for the velocities can be performedpurely geomet-
rically, the prolongation is simply the interpolation from one (pressure)grid to the once
re�ned (velocity) grid. For the coarserpart of the velocity hierarchy we then take the
shifted pressurehierarchy, i.e. I l

l+1 = J l � 1
l for l � 2.

Remark 4.1. A discretization using the P1isoP2-P1 elementrequiresa re�nement of a given
mesh(for the velocities). If we want to avoid this (e.g. becauseof limitations of computer
memory), then we could use the given meshas \velocity mesh", construct the hierarchy
based on the velocity nodes,and take the �rst coarsened levelas �rst pressure `mesh'.



CHAPTER 4. AMG METHODS FOR THE MIXED PROBLEM 52

Figure 4.3 In the original approach, which is sketched in the upper part of the �gure,
the pressurenodesof one level are the velocity nodesof the coarsernodes. In the 2-shift
strategy (lower part of the �gure) there is a gap in between(except for the �nest level).
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Note that in this case the discretization and the solution processare no longer fully
separated, the pressure unknownshaveno direct interpretation in a �nite elementcontext,
only their interpolation to the velocity mesh.

A problem which now turns up again is the ful�llmen t of the inf-sup condition. If the
coarselevel systemsget unstablethen this will inuence the approximation property badly,
and that they can get unstable can easilybe seenby a (we admit pathological) example.

Take at one coarseningstep J l
l+1 = I , the identit y matrix. Then the velocity and

pressureunknowns will collapseto an (unstabilized!) P1-P1 situation.
It is clear that this exampleis too extreme,neverthelessoneobserves(especially in the

3D case)problemsin the numerical tests. It seemsasif somemethods for the construction
of the hierarchy are lessprone to thesestabilit y problemsthan others, but up to now we
have found no generalcriterion, which could for exampleguarantee the inf-sup condition
on the coarserlevels.

A �rst (purely heuristical) way out is the following. The inf-sup condition requires
roughly spoken, that there are enoughvelocity unknowns per pressureunknown to get a
big enoughquotient. We could satisfy this by a larger shift betweenvelocity and pressure
nodes,for examplea 2-shift (illustrated in Figure 4.3), i.e. I l

l+1 = J l � 2
l � 1 .

A better way (with analytical background) was found for the P1-P1-stab element.
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4.1.2 The P1-P1-stab Hierarc hy

Here the unknowns for the velocity components and for the pressureunknowns `live' on
the samepositionsof the element, on the nodes. Thus it seemsto be a good choiceto take
an arbitrary strategy from Chapter 3 for the construction of say I l

l+1 and useJ l
l+1 = I l

l+1
for the pressure.

With someweakassumptionson I l
l+1 it will be possibleto show stabilit y of the coarser

levels, what has to be speci�ed �rst is the construction of the coarselevel stabilizing
matricesCl . For reasonswhich will becomeapparent in the proof of Lemma4.3we propose
the following. Set

~C1 = C1; ~Cl+1 = J l+1
l

~ClJ l
l+1 ; for l � 1 (4.2)

and

Cl+1 =
� max (D � 1

l M l )
h2

~Cl+1 ; for l � 1, (4.3)

where h is the discretization parameter of the �nest level, M l the Galerkin projection of
the massmatrix M 1 to level l , D l the diagonal of one(component-) block of the Galerkin
projection of the vector-LaplacianAD l , and � max(D � 1

l M l ) denotesthe largesteigenvalue of
D � 1

l M l . For practical computation we will usevery rough estimatesfor � max(D � 1
l M l ).

Now we will show stabilit y of the coarselevel systemsin the form

sup
06= v 2 U l
06= q2 Q

l

Bl (u; p; v ; q)
kvkA D l

+ kqkM l

� � (kukA D l
+ kpkM l ) 8(u; p) 2 U l � Q

l
; (4.4)

with a constant � and

Bl (u; p; v ; q) = uT AD l v + pT B lv + uT B T
l q � pT Clq:

For this we usethe ideasgiven in [FS91, FHS93] and just `translate' them to our algebraic
setting.

Remark 4.2. Condition (4.4) is the inf-sup condition needed by the theorem of Babu�skaand
Aziz [BA72], [Bra97, theorem 3.6]. It wouldbe a consequence of the LBB condition needed
by Theorem 2.2, the reversedoesobviouslynot hold.

The main point of the stabilit y analysiswill be the following lemma, which has been
proven in [Ver84a]for the geometriccase.
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Lemma 4.3. Assumethat for all elements� j 2 Th the diameter h� j ful�l ls

� h � h� j � �� h; (4.5)

with positive constants � and �� and the discretization parameter h, and assumefurther
that AD l is symmetric and of essentially positive type (see De�nition 3.5) and that for all
v l 2 U l we can �nd � l+1

l v l 2 U l+1 suchthat

kv l � ~I l
l+1 � l+1

l v l k2
D l

� � 1kv lk2
A D l

; (4.6)

with someconstant � 1.
Then for all levelsl 2 f 1; : : : ; Lg there exist positive cl and dl suchthat

sup
06= v 2 U l

vB T
l p

kvkA D l

� clkpkM l � dl
�
pT Clp

� 1
2 8p 2 Ql : (4.7)

Proof. Sincein the courseof this proof we will have to distinguish betweenthe elements
of U l , Q

l
and their representativ es in U l , Ql we will again usethe \underline-notation".

Obviously
kx lk

2
M l

� � max(D � 1
l M l )kx lk

2
D l

for any x l , hence
kv l � ~I l

l+1 � l+1
l v lk

2
M l

� � max(D � 1
l M l )� 1kv lk

2
A D l

;

thereforethere exists � l+1
l v l 2 U l+1 , such that

kv l � � l+1
l v lk2

0 � � max(D � 1
l M l )� 1kv lk2

1: (4.8)

BecauseAD l is essentially positive de�nite we know from Lemma 3.7 that

2
!

xT D lx � xT AD l x: (4.9)

Becauseof

k~I l
l+1 � l+1

l v lkA D l
� kv lkA D l

� k~I l
l+1 � l+1

l v l � v lkA D l

�

r
2
!

k~I l
l+1 � l+1

l v l � v lkD l

�

r
2� 1

!
kv lkA D l

we seethat

k~I l
l+1 � l+1

l v lkA D l
�

 

1 +

r
2� 1

!

!

| {z }
=: � 2

kv lkA D l
: (4.10)
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We will now show by induction that on all levels l we can estimate

(div w l ; pl ) � clkw lk1kplk0 � dlkw lk1

�
pT

l
Clpl

� 1=2
for all pl 2 Ql . (4.11)

For that we assumethat (4.11) is valid on somelevel l (for l = 1 it is valid becausethere
we are in the geometriccase).Set w l+1 = � l+1

l w l . Then

(div w l+1 ; pl+1 ) = (div (w l+1 � w l ); pl+1 ) + (div w l ; pl+1 )

= (w l � w l+1 ; r pl+1 ) + (div w l ; pl+1 )

� �

 
X

j

h� 2
� j

kw l � w l+1 k2
0;� j

! 1=2

�

 
X

j

h2
� j

kr pl+1 k2
0;� j

! 1=2

+ (div w l ; pl+1 ):

(4.12)

We will now derive estimatesfor the terms in the last inequality. Becauseof (4.5) and
(4.8) we know that

X

j

h� 2
� j

kw l � w l+1 k2
0;� j

� (� h) � 2kw l � w l+1 k2
0

�
� 1

� 2

� max(D � 1
l M l )

h2
kw lk2

1;

with the de�nition of C1, ~Cl+1 , and Cl+1 we get

X

j

h2
� j

kr pl+1 k2
0;� j

= pT
l+1

~Cl+1 p
l+1

=
h2

� max (D � 1
l M l )

pT
l+1

Cl+1 p
l+1

;

and becauseof (4.11) we can derive that

(div w l ; pl+1 ) � clkw lk1kpl+1 k0 � dlkw lk1

�
pT

l+1
J l+1

l ClJ l
l+1 p

l+1

� 1=2

= clkw lk1kpl+1 k0 � dl

s
� max (D � 1

l M l )
� max(D � 1

l � 1M l � 1)
kw lk1

�
pT

l+1
Cl+1 p

l+1

� 1=2
:

Combining theseresults with (4.12) gives

(div w l+1 ; pl+1 ) � �
p

� 1

�
kw lk1

�
pT

l+1
Cl+1 p

l+1

� 1=2
+ (div w l ; pl+1 )

� �

 p
� 1

�
+ dl

s
� max(D � 1

l M l )
� max (D � 1

l � 1M l � 1)

!

� kw lk1

�
pT

l+1
Cl+1 p

l+1

� 1=2

+ clkpl+1 k0kw lk1:
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With (4.10) we get

(div w l+1 ; pl+1 )
kw l+1 k1

� � � 1
2

(div w l+1 ; pl+1 )
kw lk1

� cl=� 2kpl+1 k0

�

 p
� 1

� 2�
+

dl

� 2

s
� max (D � 1

l M l )
� max(D � 1

l � 1M l � 1)

!

�
�

pT
l+1

Cl+1 p
l+1

� 1=2
;

hence,with

cl+1 := cl=� 2 and

dl+1 :=
p

� 1

� 2�
+

dl

� 2

s
� max(D � 1

l M l )
� max(D � 1

l � 1M l � 1)

we completethe proof.

We are now ready to prove stabilit y.

Theorem 4.4. Supposethat the assumptionsof Lemma4.3 hold. Then

sup
06= v 2 U l
06= q2 Q

l

Bl (u; p; v ; q)
kvkA D l

+ kqkM l

� �
�

kukA D l
+ kpkM l

�
8(u; p) 2 U l � Q

l
; (4.13)

with some� > 0 (where � may depend on l).

Proof. Choose (for given u and p) w 2 U l such that the supremum in Lemma 4.3 is
attained and that kwkA D l

= kpkM l . Now

Bl (u; p; w; 0) = uT AD l w + pT B l w
Lemma 4.3

� �k ukA D l
kwkA D l

+ clkwkA D l
kpkM l � dlkwkA D l

�
pT Clp

� 1=2

= �k ukA D l
kpkM l + clkpk2

M l
� dlkpkM l

�
pT Clp

� 1=2

xy �
x 2
" + "y 2

2

� �
1
2"

kuk2
A D l

�
"
2

kpk2
M l

+ clkpk2
M l

�
dl

2"
pT Clp �

dl "
2

kpk2
M l

= � � 1kuk2
A D l

+ � 2kpk2
M l

� � 3pT Clp;

wherecl and dl are the constants given by Lemma 4.3 and � 1 := 1
2� , � 2 := cl � �

2(1 + dl ),
and � 3 := dl

2� are positive constants if we choose0 < " < 2cl
1+ dl

.
We now take (v ; q) = (u + #w; � p) with a parameter# and get

Bl (u; p; v ; q) = Bl (u; p; u + #w; � p)

= Bl (u; p; u; � p) + #Bl (u; p; w; 0)

� kuk2
A D l

+ pT Clp � #� 1kuk2
A D l

+ #� 2kpk2
M l

� #� 3pT Clp:
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We choose0 < # < min
�

1
� 1

; 1
� 3

�
, resulting in

Bl (u; p; v ; q) � � 4

�
kuk2

A D l
+ kpk2

M l

�
;

with someappropriate constant � 4. Since

kvkA D l
+ kqkM l = ku + #wkA D l

+ kpkM l

� kukA D l
+ #kwkA D l

+ kpkM l

� (1 + #)
�

kukA D l
+ kpkM l

�

we can sum up

Bl (u; p; v ; q)
kvkA D l

+ kqkM l

� � 5

kuk2
A D l

+ kpk2
M l

kukA D l
+ kpkM l

�
� 5

2

�
kukA D l

+ kpkM l

�

(where � 5 = � 4=(1 + #)).

Now the question remains, how restrictive assumption(4.6) is. For the Ruge-St•uben
prolongation (3.14) we have discusseda similar property in Theorems3.8 and 3.9. Since
property (3.16) in Theorem 3.9 is ful�lled if every F node is strongly coupled to a C
node (which is the casefor Algorithm 3.10with the modi�cations concerningthe strongly
negative couplings),we get that (3.17) holds, i.e.

keF � PF
C eCk2

D l ;F � ckek2
A D l

:

Thus, (4.6) is ful�lled for

� l+1
l v l = � l+1

l

�
vF

vC

�
= vC :

As the methods presented in Sections4.1.1 and 4.1.2 were more or less tailor-made
for mixed elements constructedfrom linear elements, the questionon generalizationscould
arise. Onepossibility couldbethe strategydevelopedby John, Knobloch, Matthies andTo-
biska in [JKMT02] for geometricmultigrid methods. There the �rst �ne-to-coarsetransfer
is an element-t ype transfer, in their casefrom higher-orderelements (which possessprefer-
ablediscretization properties) to the P nc

1 -P0 element (which possessespreferableproperties
in connectionwith the linear solver). Adapting this idea to our needs,we could discretize
using an arbitrary mixed-element, transfer to the P1-P1-stab element and then use the
hierarchy presented above. To us this seemsto be a good possibility, however we have not
madeany numerical experiencesin this direction up to now.

Another generalmethod is the application of the element agglomeratingAMGe tech-
nique (Section 3.2.2.2)on mixed elements. We exemplarily present this for the Crouzeix-
Raviart element in the following section.
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Figure 4.4 When constructing the coarselevel shape function associated to the dark-
grey edge,we set the �ne (edge-) unknowns which are part of this coarseedgeto 1, the
�ne (edge-) unknowns which are part of the light-grey edgesto 0 and perform energy
minimization in the interior.

4.1.3 The Pnc
1 -P0 Hierarc hy | Applying AMGe

In the previoussectionsthe AMG prolongation wasalways motivated by the prolongation
which would have been constructed in the GMG case. For the P nc

1 -P0 element the geo-
metric hierarchy is non-nested,a property which cannot be achieved by AMG methods (at
least not in a straight-forward manner), as the Galerkin approach here implies that the
constructedhierarchy is nested.Neverthelesswe try to construct a \geometric reasonable"
hierarchy.

Using the element agglomerationapproach of Section3.2.2.2we obtain on each coarse
level a topology of elements, faces,edgesand nodes. Now like in the geometriccasewe
associateeach facewith a velocity `node', i.e. two resp.threevelocity component unknowns,
and each element with a pressureunknown.

The interpolation for pressureis trivial, we do identit y prolongation for all �ne-level
elements which are part of onecoarse-level element. We proposeto useidentit y prolonga-
tion also from each coarse-level faceto the �ne-level faceswhich are part of it and usethe
energyminimization approach in the interior of the element, as illustrated in Figure 4.4.

Remark 4.5. The set-upprocessfor this elementis computationally cheaper as in the case
described in Section 3.2.2.2, becausewe only haveto perform energy minimization in the
interior of each element,not for each elementpairing connected by a face, and we do not
have to save the element sti�ness matrices separately (we do not need any face-to-face
entries, and the interior-to-face and interior-to-interior entries are found explicitly in the
global matrix).

Again we can show the inf-sup condition on all levelsby applying the following lemma
inductively.
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Lemma 4.6. Assumethat there existsa linear Operator � l
l � 1 : U l � 1 ! U l with

b(� l
l � 1v l � 1; ql ) = b(v l � 1; J l � 1

l ql ) for all ql 2 Ql and v l � 1 2 U l � 1 (4.14)

and that
k� l

l � 1v l � 1k1 � � kv l � 1k1 for all v l � 1 2 U l � 1, (4.15)

with � independentof h and l.
Then the inf-sup condition in U l � 1 � Ql � 1 implies the inf-sup condition in U l � Ql .

Proof.

inf
06= ql 2 Q l

sup
06= v l 2 U l

b(v l ; ql )
kvlk1kqlk0

� inf
06= ql 2 Q l

sup
06= v l � 12 U l � 1

b(� l
l � 1v l � 1; ql )

k� l
l � 1v lk1kqlk0

= inf
06= ql 2 Q l

sup
06= v l � 12 U l � 1

b(v l � 1; J l � 1
l ql )

kv l � 1k1kqlk0
�

kv l � 1k1

k� l
l � 1v l � 1k1

� ~�

The proof of the following theoremis rather technical asweoften haveto switch between
two consecutive levels and the �nest level.

Theorem 4.7. Assumethat
hmax

hmin
�  ; (4.16)

where hmax is the maximal elementdiameter and hmin the minimal diameter (at the �nest
level), and  is a positive constant, and assumethat the coarse levelsare built as described
above.

Then the inf-sup condition holdson all levels.

Proof. For the proof we will construct an operator � l
l � 1 with properties (4.14), (4.15).

We considerthe 2D case�rst (illustrated in Figure 4.5). De�ne on level l the index
setsEl

j of all (l � 1)-level edgeswhich are part of l-level edgej . We de�ne the length of a
l-level edgerecursively by

el
j :=

X

k2E l
j

el � 1
k (for l > 1),

for l = 1 it is determinedby the mesh.
Wenow construct � l

l � 1 asfollows. For some(l � 1)-level function vl � 1 the l-level function
� l

l � 1vl � 1 is determinedby its valueson the (l-level) edges.We set the value on a certain
l-level edgeto the weighted meanof the valuesof vl � 1 on the (l � 1)-level edgeswhich are
part of the edge,i.e. �

� l
l � 1vl � 1

�

j
=

1
el

j

X

k2E l
j

el � 1
k

�
vl � 1

�
k

:
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Figure 4.5 The solid thick black lines describe two level l elements, the dashedlines level
l � 1 elements and the solid thin lines the �nest level elements. For edgej this �gure shows
the setsEl

j and ~El
j , for edgek the tube � k .
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j � k

edgek

For a vector valued function v l � 1 the term � l
l � 1v l � 1 will denotethe application of � l

l � 1 to
the components.

The fact that � l
l � 1 ful�lls (4.14) is seenas follows. We want to show that

X

j

Z

� j

div(� l
l � 1v l � 1) � ql dx =

X

j

Z

� j

div v l � 1 � (J l � 1
l ql ) dx:

Becauseql = J l � 1
l ql (in functional notation), becauseql is piecewiseconstant on the l-

level agglomeratesE j , and becauseboth v l � 1 and � l
l � 1v l � 1 are piecewiselinear on the

(�nest level) elements � j and continuousat the midpoints of their edges,we canusepartial
integration to derive

X

j

Z

� j

div(� l
l � 1v l � 1) � ql dx =

X

j

ql (E j )
Z

@E j

(� l
l � 1v l � 1) � n

and X

j

Z

� j

div v l � 1 � (J l � 1
l ql ) dx =

X

j

ql (E j )
Z

@E j

v l � 1 � n:

By the de�nition of � l
l � 1 we seethat

Z

@E j

(� l
l � 1v l � 1) � n =

Z

@E j

v l � 1 � n for all agglomeratesE j ,

therefore(4.14) is shown to be true.
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What remainsto show is (4.15). This will be doneby the introduction of an auxiliary
operator ~� l

l � 1 on the �ner level U l � 1, which ful�lls (4.15) and which is identical to � l
l � 1 on

the coarseedges.Becausewe useenergyminimization for the interpolation in the interior
of agglomerateswe will then be able to estimate � l

l � 1 by ~� l
l � 1 which will complete the

proof.
We de�ne ~� l

l � 1 : U l � 1 ! U l � 1 by

~�
l
l � 1(vl � 1) j :=

(
(vl � 1) j if j =2 El

k for all k,�
� l

l � 1vl � 1

�

k
if j 2 El

k for a certain k.

Note that ~� l
l � 1vl � 1 still `lives'on level l � 1, only the valuesat the l-level facesareaveraged.

We try to �nd an upper bound for
�
�
�vl � 1 � ~� l

l � 1vl � 1

�
�
�
1
. De�ne ~El

j the index set of all

�nest -level edgeswhich lie on coarseedgej . Set ~v1 (component of �nest-level function
~v1 2 U 1) equal to vl � 1 � ~� l

l � 1vl � 1 on all (�nest level) degreesof freedomin
S

j
~El
j and zero

on all other (�nest level) degreesof freedom. Then becauseof the energyminimization in
the prolongation

Z

G
r

�
vl � 1 � ~� l

l � 1vl � 1

�
r

�
vl � 1 � ~� l

l � 1vl � 1

�
dx �

Z

G
r ~v1r ~v1 dx

�
X

l -level
edges j

Z

� j

r ~v1r ~v1 dx;
(4.17)

where� j is the tube of (�nest level) elements which sharea point or edgewith l-level edge
number j .

For a (�nest level) triangle PQR and the basisfunction ' P Q, which is equal to 1 at the
midpoint of PQ and zeroat the midpoints of QR and RP onecan easilycalculate

Z

P QR
r ' P Qr ' P Q dx =

jPQj2

A(PQR)
;

whereA(PQR) denotesthe areaof the triangle PQR. Now with

c1 := max
� j

(length of longestedgeof � j )2

A(� j )
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Figure 4.6 Detail of Figure 4.5, the set Sl � 1
m .

PSfrag replacements

(� 1
U

� 1vl � 1) j (� 1
U

� 1vl � 1)k

vl � 1(a1)

vl � 1(a2)
r 1

r 2

r 3

we get
Z

� j

r ~v1r ~v1 dx � c1

X

s2 ~El
j

((~v1)s)
2

= c1

X

s2 ~El
j

2

6
4

1
P

k2 ~El
j
ek

X

k2 ~El
j

ek

��
� 1

U
� 1

vl � 1

�

s
�

�
� 1

U
� 1

vl � 1

�

k

�
3

7
5

2

� c1

P
k2 ~El

j
e2

k
� P

k2 ~El
j
ek

� 2

X

s2 ~El
j ;

k2 ~El
j

��
� 1

U
� 1

vl � 1

�

s
�

�
� 1

U
� 1

vl � 1

�

k

� 2

� c1

X

s2 ~El
j ;

k2 ~El
j

� �
� 1

U
� 1

vl � 1

�

s
�

�
� 1

U
� 1

vl � 1

�

k

� 2

� �c1

X

s2E l
j ;

k2E l
j

��
vl � 1

�
s

�
�
vl � 1

�
k

� 2
;

(4.18)

where� 1
U

� 1v is the representation of a coarsefunction v on U 1 as in Section4.1.
We note that r vl � 1 is constant on each �nest level element. Thereforewe can derive

the following estimate(illustrated in Figure 4.6). Assumethat the (l � 1)-level edgesj and
k sharethe node m. We denote the set of all �nest level elements which sharethe node
m with Sl � 1

m , its index set with Sl � 1
m (where we assumew.l.o.g. Sl � 1

m = f 1; 2; : : : ; i + 1g).
For each element � e in Sl � 1

m we denotethe edge-vector of the edgenot connectedto m (\in
direction" j ! k) with r e.
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Then

(vl � 1)k � (vl � 1) j = ((vl � 1)k � vl � 1(a1)) + (vl � 1(a1) � vl � 1(a2)) + : : : + (vl � 1(ai ) � (vl � 1) j )

=
1
2

�
r vl � 1j � 1 � r 1 + : : : + r vl � 1j � i +1 � r i +1

�

�
1
2

� p
r vl � 1j � 1 � r vl � 1j � 1 jr 1j + : : : +

q
r vl � 1j � i +1 � r vl � 1j � i +1 jr i +1 j

�
;

wherea1,. . . ,ai are �nest level edgemidpoints as in Figure 4.6, thus (using the algebraic-
geometricmeaninequality)

�
(vl � 1)k � (vl � 1) j

� 2
�

i + 1
4

h
jr 1j2 (r vl � 1j � 1 )2 + : : : + jr i +1 j2

�
r vl � 1j � i +1

� 2
i

� c2

Z

S l � 1
m

r vl � 1r vl � 1 dx:
(4.19)

We apply this estimate to the last term in (4.18), which is donedirectly for those(l � 1)-
level edgess and k which sharea node. For all otherswehave to build a chain of connecting
edges.

This leadsto Z

� l

r ~v1r ~v1 dx � c3

Z

� l

r vl � 1r vl � 1 dx:

Now becauseof (4.17) we get


 vl � 1 � ~� l

l � 1vl � 1





1
� c4kvl � 1k1;

thus 

 ~� l

l � 1vl � 1





1
� (1 + c4)kvl � 1k1:

Becausewe useenergyminimization for the interpolation in the interior of coarseagglom-
erates,~I l � 1

l � l
l � 1vl � 1 hasminimal energyamongstall l � 1-level functions which are identical

to it on the l-level edges,therefore


 � l

l � 1vl � 1




1
� c5



 ~� l

l � 1vl � 1





1
� c5(1 + c4)kvl � 1k1: (4.20)

3D case. For 3D tetrahedral elements we replacec1 in (4.18) by c1hj; max , where hj; max

is the maximal element height in tube � j , and c2 in (4.19) by c2=hj; min , wherehj; min is the
minimal element height in this tube. Then becauseof (4.16) the argumentation remains
unchanged,only the scalingargument is basedon the (�nest level) tetrahedron PQRS

Z

P QRS
r ' P QR r ' P QR dx =

A(PQR)2

V(PQRS)
;

whereV(PQRS) is the volume of the tetrahedron.
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4.2 Smoothers

Now that the coarselevels are constructedwe needsmoothers for the coupledsystemson
all levels. We will give a short overview of somepossibilities thereof, and then go into
detail for the two methods we primarily use,namelyBraess-Sarazinand Vanka smoothers.

To the author's knowledgethere is no smoothing-theory for algebraicmultigrid methods
for fundamentally inde�nite systems,i.e. not just disturbed positive de�nite systems.We
admit that wehaveno contributions in this direction either, thuswewill apply the following
heuristic.

Hyp othesis 4.8. If a smoother for a saddlepoint problemperforms`well' in the geometric
multigrid situation, then it will alsodo so in the algebraicmultigrid situation.

In the light of this heuristic an important quality factor for the smoothersis the smooth-
ing rate, which we introducedin Section3.1.1.

Note that the parts of the following sectionswhich concernthe analysisof the smoothers
all baseon geometricmultigrid and on a symmetric systemmatrix, i.e. the Stokes case.
As the smoothers (mostly) operate on onesingle level, we will drop the level index in the
following sections.

4.2.1 Standard Smoothers for the Squared System

As the systemwe are interestedin is inde�nite, it is not possibleto apply standardsmooth-
ing methods (e.g. Richardson, Jacobi, Gauss-Seidel)at �rst. This could be overcomeby
applying thosesmoothers to the squared(and thus symmetric, positive de�nite) system

�
A B T

B � C

� T �
A B T

B � C

� �
u
p

�
=

�
A B T

B � C

� T �
f
g

�
:

This idea is usedfor examplein [Ver84b] (here the secondblock row is scaledby 1=h2) or
[Bre93],both useRichardsoniterations on the squaredsystemwhich can be shown to lead

to a (geometric) smoothing rate � (m) of order O
�

1p
m

�
.

4.2.2 Transforming Smoothers

This classof smoothers was introduced by Wittum in [Wit89, Wit90] and is basedon a
generalizationof the factorization for the SIMPLE scheme(2.31), namely

K =
�

A 0
B E

�

| {z }
=: K 1

�
I A � 1B T

0 � E � 1S

�

| {z }
=: K 2

with an arbitrary positive de�nite matrix E (in (2.31) we had E = S). The idea is
to transform K by a multiplication from the right with K � 1

2 to K 1, and then to �nd
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smoothers for the block-triangular K 1 (in [Wit89] it is shown that they only have to ful�ll
the smoothing property for the diagonal blocks A and E). Suggestedchoicesfor E are
S or As (the scalar, i.e. pressurevariant of A). The latter doesnot lead to a practicable
method at �rst, (heuristic) considerationsabout commuting operators (similarly as in
Section2.5.3.1)are needed,but we will not go into detail here.

In [Wit90] damped Jacobi, Gauss-Seideland ILU smoothers are used for the trans-

formed system. For damped Jacobi a smoothing rate of order O
�

1p
m

�
is shown, for the

other two only O
�

ln mp
m

�
, but it is stated that in numerical practice a rate of order O

�
1
m

�

is observed for the ILU transforming smoother.

4.2.3 Braess-Sarazin Smoother

This smoother consistsof the application of the inexactsymmetric Uzawaalgorithm (2.36),
which we repeat here for convenienceof reading:

Â(ûk+1 � uk) = f � Auk � B T pk ; (4.21a)

Ŝ(pk+1 � pk) = B ûk+1 � Cpk � g; (4.21b)

Â(uk+1 � ûk+1 ) = � B T (pk+1 � pk); (4.21c)

wherenow Ŝ is a preconditioner for the inexact Schur-complement C + B Â � 1B T .
The smoothing property with a rate of O

�
1
m

�
for this method was shown in [BS97]

under the assumptionthat the pressureupdate (4.21b) is done (almost) exactly, i.e. Ŝ �
C + BÂ � 1B T . In [Zul00] we �nd that the samebehavior can be obtained under weaker
assumptions.

Theorem 4.9. [Zul00, theorem 2] Let A and C be symmetric positive semi-de�nite ma-
trices, Â and Ŝ symmetric positive de�nite matrices, satisfying

Â � A; (4.22a)

Ŝ � C + BÂ � 1B T ; (4.22b)

C + BÂ � 1B T � (1 + � )Ŝ; (4.22c)

and
kÂk`2 � c1h� 2; kÂ � 1k`2 � c2h2; kBk`2 � c3h� 2; kCk`2 � c4h� 2:

Then the smoothing property
kK Sm k`2 � � (m)h� 2

is satis�ed with

� (m) = max
�
(1 + � )� m� 1;

(m � 1)m� 1

mm

�
; with � = � +

p
� 2 + � :
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For � < 1=3 we get � < 1, thus the secondterm in the maximum will dominate for m
large enough.As this term can be boundedby

(m � 1)m� 1

mm
=

�
1 � 1

m

� m

(m � 1)
�

1
e(m � 1)

for m > 1

we get the smoothing rate O( 1
m ) mentioned above.

We usean (inner) AMG method for C + B ^̂A � 1B T as Ŝ� 1, where ^̂A = � � D , with the
diagonal D of A, (damped Jacobi iteration; thus we are able to explicitly construct the
matrix, what is neededfor the AMG method). For Â we want to usesomedamped SSOR
(or SSUR) iteration, i.e.

Â = � (D +  E)D � 1(D +  F );

where E is the lower left triangular part (with zero diagonal), and F the upper right
triangular part (with zerodiagonal) of A, and � and  are someparameters.The following
corollary shows the impact of (4.22) on the choiceof the parameters� , � and  , under the
assumptionthat A is an M-matrix. For essentially positive type matricessimilar resultsas
the following could be shown, for simplicity of presentation we will not go into the details
but restrict ourselvesto the M-matrix case.

Corollary 4.10. Assumethat

� A is an M-matrix, that

� Â and Ŝ are constructed as indicate above, and that

� the estimate
(1 � � k)Ŝ � C +

1
�

BD � 1B T � Ŝ; (4.23)

where � < 1 is the convergence rate of the multigrid method and k the number of
iterations, is valid,

and de�ne

! := sup
06= p2

� m

pT Cp
pT BD � 1B T p

:

Then (4.22) is ful�l led if

� (1 �  ) � 2; (4.24a)

� (1 +  + � 2 2) � �
1 � � k

1 + ! � k
; and (4.24b)

(1 + � )� (1 �  ) � � (4.24c)

hold, where
� :=

maxi aii

mini aii
:
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Proof. It is easily seenthat

� D � (1 + � )� (D +  F +  E +  2ED � 1F )

is a su�cien t condition for (4.22c), which is certainly ful�lled for (4.24c).
Analogouslyonecan show that (4.24a) is su�cien t for (4.22a).
What remainsis (4.22b), a su�cien t condition would be

� (D +  E +  F +  2ED � 1F ) � �
1 � � k

1 + ! � k
D:

To estimate the last term on the left hand sidewe split as follows

xT ED � 1F x
xT x

� kED � 1=2k1 kD � 1=2F k1

and calculate

kED � 1=2k1 = max
i

 
i � 1X

j =1

jaij j
p

aj j

!

� � max
i

 
i � 1X

j =1

jaij j
p

aii

!

� � kD 1=2k1

and similarly
kD � 1=2F k1 � kD 1=2k1 :

Now we get for all x
xT ED � 1F x

xT x
� � kDk1 � � 2 xT Dx

xT x
and summingup

D +  E +  F +  2ED � 1F = (1 �  )D +  A +  2ED � 1F

� (1 +  + � 2 2)D :

Thus we get the su�cien t condition for (4.22b)

� (1 +  + � 2 2) � �
1 � � k

1 + ! � k
:

Remark 4.11. Condition (4.23) is ful�l led e.g. if Ŝ originates in a convergent, symmetric
multigrid method and someadditional (but weak) assumptionhold (for examplethat the
coarse level systemsare constructed with the Galerkin approach), for details we refer e.g.
to [Hac93].
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Figure 4.7 If we useGalerkin projections for the inner AMG, we have to build and keep
all the matrices Ŝi;j

PSfrag replacements
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! Ŝ2
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Ŝ1;3
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Equations (4.24a){(4.24c) provide a set of su�cien t conditions for (4.22) but are for
 > 0 very pessimisticas we will show in the numeric results. If we assumefor example
that k is large enoughand therefore

1 � � k

1 + ! � k
� 1;

and further that � = 1, which corresponds to a uniform mesh,then we can only calculate
a maximal admissible = 0:135 and � � 2:32, � � 2:68. For  = 0, i.e. Jacobi iteration
for Â, we get a minimal allowed � = 2 and then � = 2, which is also the choice for the
numerical tests in [Zul00].

Remark 4.12. It seems to be a good idea (at least from the point of view of computer-
memory consumption) to build the coarse matrices for the (inner) Ŝ-AMG method using
the coarse level versionsof the matrices C, B and A. Instinctively one may think that it
doesnot makea big di�er ence that this doesnot correspond to the Galerkin approach. But
especially for complex 3D problemswe run into convergence problems,which we do not
haveif we useGalerkin projected matrices.

Unfortunately the plain Galerkin approachcausesan increaseof memory-usagebecause
we haveto perform the coarseningsfor Ŝ on each level, il lustrated in Figure 4.7.

4.2.4 Vanka Smoothers

The discretization of the Navier-Stokesequationswhich wasusedby Vanka whenhe intro-
ducedthis method [Van86]was a �nite volume method on a staggeredgrid with pressure
nodesat the cell-centers and velocity nodesat the cell-faces.Small subproblemsare set up
cell by cell | i.e. with onepressuredegreeof freedomand the connectedvelocity unknowns
| and the solutionsarecombined usinga multiplicativ e Schwarz iteration. The smoothing
property of this method in a �nite element context wasanalyzed(for the additive Schwarz
case)in [SZ03]. We will sketch shortly the prerequisitesneededtherein.

The local sub-problemsare set up using the (local) prolongators(on a �xed multigrid-
level l)

� j : Rn l;j ! Rn l ; � j : Rm l;j ! Rm l ;
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wherej is the index of the sub-problemand nl ;j and ml ;j determineits dimension,and we
assume X

j

� j � T
j = I (4.25)

and that X

j

� j � T
j is nonsingular. (4.26)

The small problemsare now constructedas
 

Â j B T
j

B j
1
�

h
(� � 1)B j Â � 1

j B T
j � Cj

i
! �

v j

qj

�
=

�
� T

j r
� T

j s

�
;

where r and s are the global residuals, � somerelaxation parameter, and the following
relations have to be ful�lled for all j

� T
j Â = Â j � T

j ; (4.27a)

� T
j B = B j � T

j ; (4.27b)

Cj = � T
j C� j ; (4.27c)

whereÂ is a preconditioner for A.

Remark 4.13. In [SZ03, theorem 1] we �nd that for the additive Schwarzcasethe method
can again be represented as preconditioned Richardson iteration with preconditioner

K̂ =
�

Â B T

B BÂ � 1B T � Ŝ

�
; (4.28)

with Ŝ =
� P

j � j Ŝ� 1
j � T

j

� � 1
and Ŝj = 1

� (Cj + B j Â � 1
j B T

j ), and is therefore contained in the

classof inexact symmetric Uzawaalgorithms (compare with (2.35)).
The smoothing result obtained in this situation is summarized in the following theorem

(without proof).

Theorem 4.14. [SZ03, theorem 4] For K̂ as in (4.28) with Â and Ŝ symmetric positive
de�nite,

Â � A; (4.29)

Ŝ � C + BÂ � 1B T ; (4.30)

and
kK̂ � K k`2 � ckK k`2

we get that the smoothing property

kK Sm k`2 � � (m)kK k`2

is satis�ed with � (m) = O(1=
p

m).
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We will now present one possibility of constructing the small systemsmeeting the
requirements (4.25), (4.26) and (4.27) on a speci�c level. Choosea partitioning of the set
of pressureunknowns

S
j Pj (with Pj \ Pk = ; for j 6= k) and build corresponding setsof

velocity nodesVj , wherea velocity node is contained in Vj if and only if it is connectedto
a pressurenode in Pj via an entry in the matrix B .

The matrix Â is now constructedby setting thoseentries aij of A to zero where i 6= j
and i 2 V{̂, j 2 V|̂ for some{̂, |̂ with {̂ 6= |̂ . This can be interpreted as the application of
a Jacobi method on the boundary of the setsVj and using the full matrix information in
the interior. Somescalingmay be neededbecauseof (4.29).

Then � j canbe chosenasthe canonicalembeddingfrom Rm l;j into Rm l . For � j we start
with the canonicalembedding from Rn l;j into Rn l , which we denotewith �̂ j and then scale
each row with 1=

p
s, wheres is the number of setsVk that the node associated to the row

is part of, to ful�ll (4.25).
Now Â j is extracted from the matrix Â asonemight expect, with the full block for the

interior unknownsand the diagonalfor the boundariesof the patch. The local matrix B j is
directly extracted directly from B but with a scalingaccordingto the above construction
of � j and (4.27b). Finally � has to be chosensuch that (4.30) is ful�lled.

Computationally cheaper versionsof Â can be built by using only the diagonal of the
interior-unknown-blocks, the upper triangle (correspondsto Gauss-Seidel),or by applying
somesort of lumping.

Remark 4.15. If one wants to useinformation of the wholepatch blocksof A but wants the
matricesÂ j to be diagonal(becausethen the small problemscan be solved faster), numerical
experiments haveshownthat they shouldbe constructed based on the following heuristics.

We �rst build the full local matrix ~A j = (~akl ) which we want to approximate by a
diagonalmatrix Â j . Assumethat for given f j the vectors ~x and x̂ are the solutions of

~A j ~x = f j and Â j x̂ = f j :

Now we want x̂ to ful�l l
~A j x̂ � f j ;

thus we try to minimize
k ~A j x̂ � ~A j ~xk`2 :

Now

k ~A j x̂ � ~A j ~xk`2 = k(I � ~A j Â � 1
j )f j k`2

� k(I � ~A j Â � 1
j )kF kf j k`2 ;

where k:kF is the Frobenius norm. If we determine Â = diagf â1; : : : ; ân l;j g such that
k(I � ~A j Â � 1

j )kF is minimal, then this leads to

âk =
1

~akk

X

l

~a2
lk :



Chapter 5

Soft ware and Numerical Studies

Now we �ll the methodsof the previouschapterswith life, which meansthat weapply them
to problemswith various levels of complexity. But before that, we give a short overview
of the software developed in the courseof the working on this thesis.

5.1 The Soft ware Package AMuSE

All the numerical tests in this thesis were performed using the software packageAMuSE
| Algebraic Multigrid for Stokes-type Equations | which was developed by the author.
It is basedon the meshgeneratorand AMG solver for potential equation and plain strain
elasticity problemsNAOMI by Ferdinand Kickinger1 [Kic96, Kic97a, Kic97b, Kic98] and
was alsocontributed to by Christoph Reisinger2.

Apart from this thesis AMuSE or its earlier incarnation NAOMI have been used as
solvers for mixed problemsin several projects [RW99, Him02, Bec02, P•onng].

It is mostly written in C++ and takesadvantage of the object oriented capabilities of
this programminglanguage(we will not go into detail about that but refer to the standard
literature, e.g. [Str97]). We want to emphasizethat there may be faster codesthan ours
for someof the methods mentioned in this thesis(in fact, the author is very surethat there
are), many modern and e�cien t programmingtechniques(e.g.expressiontemplates,cache
aware programming, etc.) or parallelization were not applied. But the aim was not to
develop a code which is the fastest for onemethod, but to have a tool to comparevarious
methods using the samebasic programming environment. Thus, we do not to compare
di�erent implementations but really di�erent methods. Therefore it may not be sensible
to look at the absolutetimings presented in the sectionswith numerical results, but only
to comparedi�erent timings for di�erent methods.

We will now shortly sketch the structure of AMuSE, where we will use typewriter
font for expressionsdirectly related to the sourcecode of the package.

1now at AVL List GmbH, Graz, Austria
2now at University of Heidelberg, Germany

71
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Figure 5.1 The general structure of AMuSE. More complex dependencies(e.g. due to
moving meshes,etc.) were omitted in this �gure.
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5.1.1 Structure

The structure of the programis sketchedin Figure 5.1. The central part (at leastconcerning
this thesis) is the block-systemsolver, its components are described in Figure 5.2.

The following external libraries and packagesare usedin parts of the program:

� TemplateNumerical Toolkit (TNT) , Mathematical and Computational SciencesDivi-
sion, National Institute of Standardsand Technology, Gaithersburg,MD USA. Used
for the direct solution of the coarselevel systems.

� General Mesh Viewer (gmv), Applied PhysicsDivision, Los Alamos National Labo-
ratory, CA USA. Usedfor the visualization of the numerical results.

Figure 5.2 The block-system-solvers are implemented as derived classesof the base
AMuSEBlockSolver . Each one (except the direct solvers) can use a preconditioner, i.e.
an object which is derived from AMuSEBlockPrecond. And the preconditioners(which use
someAMG solver) can useand manipulate the structures neededfor an AMG method.

AMuSEBlockSolver
� Richardson,
� GMRES,
� BiCGstab,
� SIMPLE,
� direct,. . .

AMuSEBlockPrecond
� CoupledAMG,
� \Black-Box"

(sec.2.5.3.1)

AMG `tools'
� AMuSEGridTransfer
� AMuSEBlockSmoother
� AMuSEEllipticSmoother
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� gzstream, DeepakBandyopadhay and Lutz Kettner, and zlib, Jean-LoupGailly and
Mark Adler. Usedfor the compressedoutput of solutions.

� Linuxthreads, Xavier Leroy. Usedfor the sharedmemory parallelization of the FEM
matrix generation.

5.1.2 Matrices

AMuSE provides several sparsematrix classeswhich are substantial for the components
describedabove. As somenon-standardideasareusedfor their construction,wewill sketch
them in this section.

The basic(templated) classis AMuSESparseMatrixData< T >, whereelements of type
T are stored in a similar way ascompressedrow storage(CRS) format, the only di�erence
is, that we useseparatearrays for the element and index data of each singlerow, not one
long array for all elements. The template parameter T could be a scalar type like float
or double or again a small matrix (classAMuSESmallMatrix< T, m, n >, whereT is the
type of the entries and mand n are the row and column dimensions).This is usedto store
block matrices like 0

B
B
@

A1;1 A1;2 � � � A1;j

A2;1 A2;2 � � � A2;j

� � � � � � � � � � � �
A j; 1 A j; 2 � � � A j;j

1

C
C
A ;

with k � k blocks A l ;m (k � j ) with similar sparsity pattern, e�cien tly as
0

B
B
@

a1;1 a1;2 � � � a1;k

a2;1 a2;2 � � � a2;k

� � � � � � � � � � � �
ak;1 ak;2 � � � ak;k

1

C
C
A ;

with small j � j matricesal ;m , where

(al ;m )a;b = (Aa;b) l ;m :

The AMuSESparseMatrixData< T > classis only usedfor the storageof sparsematrices.
The `mathematical' objects (which can be multiplied with vectors, `inverted', etc.) are of
type AMuSESparseMatrix< T >.

The next generalizationAMuSEMaskedSparseMatrix< T > can be understood in the
following way. Assumewe want to store the matrix A of the Oseenlinearized problem,
which for examplein 3D in generalhas the form

0

@
�A

�A
�A

1

A : (5.1)
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Saving it as AMuSESparseMatrix< AMuSESmallMatrix< double, 3, 3 > > would be a
wasteof computer memory, thus it is saved as AMuSESparseMatrix< double >. For cer-
tain types of boundary conditions, e.g. symmetry planes, matrix A does not totally �t
structure (5.1), some entries di�er in the three diagonal blocks but most do not. Us-
ing for example AMuSEMaskedSparseMatrix< AMuSESmallMatrix< double, 3, 3 > >
hides this problem from the user. From outside it behaves like AMuSESparseMatrix<
AMuSESmallMatrix< double, 3, 3 > >, but internally it tries to use and save only
double instead of AMuSESmallMatrix< double, 3, 3 > elements.

5.2 Numerical results

All the rates which will be stated in this sectionare basedon the `2 norm of the residual
after the i -th iteration step, i.e. on

kr i k`2 = kb � K x i k`2 :

Becausewe comparemethods with di�erent costsper iteration stepwe prefer the following
two measuresfor e�ciency:

� the averagereduction of the norm of the residual per minute CPU time (which will
be abbreviatedby \red./min." in the tables below, \asympt. red./min." will be the
averagereduction per minute in an asymptotic region of the convergencehistory)
and

� the measure

T0:1 :=

�
averageCPU time in minutes for the reduction
of the norm of the residual by a factor of 0:1

�

number of unknowns
:

This number would be constant for di�erent levelsof re�nement if we had an optimal
method, i.e. if the work for a given reduction of the residual is O(n), wheren is the
number of unknowns.

Not all testshavebeencarriedout on the samecomputers,thusa cross-comparisonof those
valuesfor di�erent tests may not be sensible.In all caseswe usedstandard Linux-PCs.

If not stated di�erently the results for the Oseenproblems are always basedon the
linear problem with w near the solution of the corresponding Navier-Stokesequations.

The geometriesin Figures5.4, 5.11,and 5.12wereprovided by AVL List GmbH, Graz,
Austria.

5.2.1 2D Test Cases

We have stated to show how the methods behave for complex 3D problems,nevertheless
we start with 2D problemswith moderately complex geometry. The reasonis, that here
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Figure 5.3 The initial meshand the numericalsolution of the drivencavit y Stokesproblem
(lighter grey indicateshigher velocities)

we can carry out parameter-studiesfor various methods on di�erent levels in a reasonable
period of time, which would not be possibleotherwise.

Our two model problemsare the following:

� Driv en cavit y. The initial grid (and the numerical solution of the Stokesproblem)
canbe found in Figure 5.3. The problem is easilydescribed, on a unit squarewe pose
a Dirichlet condition with velocity (1; 0) on the upper boundary and homogeneous
Dirichlet conditions on the rest of the boundary (the walls). The �ner levels were
generatedby a hierarchical re�nement of the coarsegrid.

� 2D valve. Here the geometry is onehalf of the region round a valve with inlet-size
0.03 and the distance between the walls at the narrowest part 0.003. The meshes
were generatedusing Ferdinand Kickinger's NAOMI.

We posetwo problems,onewith symmetry boundary conditionsalongthe symmetry
plane, the other one with homogeneousDirichlet conditions there. In both cases
we set Dirichlet condition with quadratic pro�le (with maximum velocity 1) on the
upper boundary, natural outo w conditions on the lower boundary. The geometry
and the solutions for the two problems(Navier-Stokes, � = 5 � 10� 4) are illustrated
in Figure 5.4.

Dep endence on Mesh Width

In the �rst set of testswe want to check the \ h-independence"of the methods, i.e. we solve
the sameStokes problem on di�erent levels of re�nement and compare the e�ciencies.
We solve the driven cavit y problem with modi�ed Taylor-Hood-discretization and the red-
black coloring algorithm with averaging for the coarselevel construction. Just doing this
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Figure 5.4 Valve problems. The upper part shows the absolute values of the velocity-
solution of the problem with symmetry boundary condition, the lower part of the problem
with homogeneousDirichlet conditions at the symmetry plane (in both casesonly the
problem on onehalf of the geometryshown was solved).

on the �ne level leadsto a geometricmultigrid method (as mentioned in Remark 3.3), the
results can be found in Table 5.1 and Figure 5.5(a) (there `BBPre' denotesthe \black-
box" preconditioner of Section 2.5.3.1and `MSM' the Vanka smoother of Section 4.2.4,
where the patchesconsistof onepressureunknown and the connectedvelocity degreesof
freedom). If we randomly mix the numbering of the �ne level nodes, then the red-black
algorithm is not able to reproduce the hierarchy, thus we have a real AMG method, for
which we show the results in Table 5.2 and Figure 5.5(b). One can also apply the idea of
Remark 4.1, i.e. to usethe given meshas \v elocity-mesh" and to do one coarseningstep
to get the �rst pressurelevel, which leadsto the results in Figure 5.5(c). For all tests the
linear solver was stopped after a reduction of the residual by a factor of 10� 5.

The corresponding results for di�erent AMG methods for the P1-P1-stab-discretized
driven cavit y problem can be found in Table 5.3 and Figure 5.6.

In both cases,for the P1isoP2-P1 and the P1-P1-stab element, we seecommonbehaviors
of the solvers. First, for the GMG situation T0:1 is (nearly) constant for the coupled
methods, aspredictedby theory. For the AMG situation this getsa little worse,but is still
acceptable. The e�ciency of the AMG-SIMPLE method su�ers if h gets small, which is
not surprising. The \black-box" preconditioner for BiCGstab performsbest, which also is
not surprisingasit is cheapand at the sametime optimal (i.e. the ratesareh-independent)
for the Stokescase,accordingto theory (c.f. Section2.5.3.1).

Dep endence on Convection

Now we take a singlemeshand check how the methods perform whenwe want to solve the
Oseenproblem for di�erent intensities of convection. For each Oseenproblem we take the
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Table 5.1 The results for driven cavit y Stokes o w with hierarchically re�ned grid (!
GMG) and modi�ed Taylor-Hood discretization.

re�nement-level 5 6 7 8 9
total number of unknowns 10,571 52,446 166,691 665,155 2,657,411
on �nest level
Coupled,Braess red./min 8.6e-41 4.0e-8 0.03 0.47 0.84
SSUR0.8, W-6-6 T0:1 2.4e-6 3.2e-6 3.9e-6 4.6e-6 4.9e-6
Coupled,Braess red./min 1.6e-8 0.043 0.36 0.80 0.95
Jacobi, W-12-12 T0:1 1.2e-5 1.7e-5 1.4e-5 1.6e-5 1.7e-5
Coupled,MSM red./min 2.8e-33 3.3e-6 0.2 0.72 0.92
W-11-11 T0:1 2.9e-6 3.5e-6 8.6e-6 1.1e-5 9.9e-6
BiCGstab + red./min 1.3e-163 5.1e-35 2.4e-9 6.6e-3 0.33
Black-Box Prec. T0:1 5.8e-7 5.6e-7 7.0e-7 1.7e-7 7.8e-7
AMG-SIMPLE red./min 0.044 0.842 0.9869 0.9986 |

T0:1 7.0e-5 2.6e-4 1e-3 2.5e-3 |

Table 5.2 The results for driven cavit y Stokes o w with hierarchically re�ned grid and
renumbering (! AMG) and modi�ed Taylor-Hood discretization.

re�nement-level 5 6 7 8 9
total number of unknowns 10,571 52,446 166,691 665,155 2,657,411
on �nest level

Coupled,Braess red./min 1.8e-27 1.2e-4 0.26 0.79 0.94
SSUR0.8, W-6-6 T0:1 3.5e-6 4.9e-6 1.0e-5 1.5e-5 1.4e-5
Coupled,Braess red./min 4.6e-9 0.028 0.59 0.89 0.97
Jacobi, W-12-12 T0:1 1.1e-5 1.2e-5 2.6e-5 3.0e-5 2.8e-5
Coupled,MSM red./min 2.3e-26 3.7e-5 0.24 0.76 0.94
W-15-15 T0:1 3.7e-6 4.3e-6 9.7e-6 1.2e-5 1.3e-5
BiCGstab + red./min 6.1e-128 7.1e-31 1.6e-6 0.068 0.51
Black-Box Prec. T0:1 7.4e-7 6.3e-7 1.0e-6 1.3e-6 1.3e-6
AMG-SIMPLE red./min 0.049 0.82 0.98 0.998 |

T0:1 7.2e-5 2.2e-4 7.6e-4 1.8e-3 |
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Figure 5.5 The e�ciencies of the methods for driven cavit y Stokes o w with modi�ed
Taylor-Hood discretization.
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Table 5.3 The results for driven cavit y Stokes o w with hierarchically re�ned grid and
renumbering (! AMG) and P1-P1-stab discretization. (mp. . . memory problems, i.e. the
solver ran out of computer memory)

re�nement-level 5 6 7 8 9
total number of unknowns 14,067 55,779 222,147 886,659 3,542,787
on �nest level
Coupled,Braess red./min 0.048 0.55 0.89 0.97 mp
SSUR0.8, W-6-6 T0:1 5.4e-5 6.9e-5 8.9e-5 8.4e-5 mp
Coupled,Braess red./min 0.084 0.70 0.94 0.99 mp
Jacobi, W-12-12 T0:1 6.6e-5 1.2e-4 1.7e-4 2.0e-4 mp
Coupled,MSM red./min 1.6e-11 0.021 0.56 0.90 0.96
W-15-15 T0:1 6.6e-6 1.1e-5 1.8e-5 2.4e-5 2.6e-5
BiCGstab + red./min 1.0e-100 2.3e-10 0.0016 0.17 0.67
Black-Box Prec. T0:1 7.1e-7 1.9e-6 1.6e-6 1.5e-5 1.6e-6
AMG-SIMPLE red./min 0.089 0.88 0.99 1.0 |

T0:1 6.8e-5 3.1e-4 1.3e-3 2.7e-3 |

Figure 5.6 The e�ciencies of the (AMG) methods for driven cavit y Stokes o w with
P1-P1-stab discretization.
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Table 5.4 Dependenceof the e�ciency of the methods on varying strength of convection
for the two-dimensionalvalve problem.

� 1 0.1 3.2e-3 1e-3 7e-4 5e-4 4.2e-4

Coupled,Braess red./min 3.8e-8 1.4e-3 1.9e-3 5.1e-3 0.019 0.06 0.087
SSUR0.8, W-4-4 T0:1 1.3e-6 3.4e-6 3.6e-6 4.2e-6 5.6e-6 7.9e-6 9.1e-6
Coupled,Braess red./min 2.8e-5 0.19 0.19 0.21 0.28 0.40 0.48
Jacobi, W-10-10 T0:1 2.1e-6 1.3e-5 1.3e-5 1.4e-5 1.8e-5 2.4e-5 3.0e-5
Coupled,MSM red./min 3.1e-6 1.8e-5 0.080 0.042 5.8e-4 4.7e-4 1.4e-3
W-8-8 T0:1 1.8e-6 2.0e-6 8.8e-6 7.0e-6 3.0e-6 2.9e-6 3.4e-6
BiCGstab+ red./min 8.4e-7 3.1e-4 8.3e-4 4.8e-4 2.8e-3 0.023 0.042
Black-Box Prec. T0:1 1.6e-6 2.8e-6 3.1e-6 2.9e-6 3.8e-6 5.9e-6 7.0e-6
AMG-SIMPLE red./min 0.51 0.51 0.39 0.38 0.38 0.37 0.39

T0:1 3.3e-5 3.3e-5 2.4e-5 2.3e-5 2.3e-5 2.2e-5 2.4e-5

convection speedw near the solution of the Navier-Stokesproblem with given � (therefore
the dependenceof the linear problem on � is twofold, via � itself and via w(� )), and we
stop the linear iteration after a reduction of the residual by a factor of 10� 3.

The �rst geometryhereis the two-dimensionalvalve, it is discretizedwith the modi�ed
Taylor-Hood element with 103,351unknowns (in total) on the discretization level. The
results can be found in Figure 5.7(a) and Table 5.4. In Figure 5.8 we plot residualsvs.
CPU-time for the nonlinear iteration for � = 8 � 10� 4, wherewe usedi�erent methods for
the solution of the linear problems,and the linear iterations are stopped after a reduction
of the residualby a factor of 10� 2. There, we alsoput a comparisonof the Oseeniterations
and this variant of Newton's method, wherethe linear problemsare solved by (in this case
three steps of) a \Oseen-preconditioned" Richardson iteration, as suggestedin Section
2.4.2.

The sametest (Oseenproblem, �xed h, varying � and w(� )) was carried out for the
driven cavit y problem, again with modi�ed Taylor-Hood discretization and 166,691un-
knowns. The dependenceon � is plotted in Figure 5.7(b).

We seethat for moderate convection again the \black-box" preconditioner performs
well, although it is not as cheap as in the Stokes case(an additional pressure-Laplace-
AMG has to be performed). For smaller � the coupledmethod (especially with the local
smoother) is preferable (at least in these examples). It is remarkable that the AMG-
SIMPLE method is robust in � over a large interval, in the valve-exampleits rates start
to get worseonly shortly beforethe whole nonlinear iteration breaksdown. In the driven
cavit y examplethe AMG method (with red-black coarseningand simple averagingas in-
terpolation) for the A-problem was divergent for � < 8 � 10� 4, thus we have no results for
the AMG-SIMPLE method and the \black-box" preconditioner for smaller � .

The comparisonof the Oseeniteration with the \Oseen-preconditionedRichardson"-
Newton iteration givesno clear result. Asymptotically the secondmethod performsbetter
| the asymptotic reduction of the residual per minute is 0.42 comparedto 0.54 for the
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Figure 5.7 T0:1 for the Oseenproblem on one�xed grid with di�erent � and with w near
the solution of the Navier-Stokesproblem, for di�erent methods, for the 2D valve and the
driven cavit y problem.
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Figure 5.8 Residual-historiesfor the nonlinear iteration. The linear iterations weresolved
with the di�erent methods until a mild reduction (factor 10� 2) of the (linear) residualwas
reached. The secondBiCGstab result (\hi.-pr") was reached with a stronger reduction
(factor 10� 3) of the (linear) residual.
proThe secondpicture comparesthe Oseeniterations (\Coupled,MSM" from the �rst
picture) with the Newton method, where the linear problem is solved with Oseen-
preconditionedRichardsoniterations.
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Table 5.5 Di�eren t methods for the coarselevel construction in the coupledmethod (with
local smoother) for the P1-P1-stab discretized valve problem. \Ruge-St•uben splitting"
meansthe modi�cation (3.21) of the red-black algorithm, \Ruge-St•uben interpolation"
the method (3.14).

asympt. red./min T0:1

reduction/step
systemmatrix, 0.24 0.00286 1.1e-5
red-black splitting, averaging
systemmatrix, 0.13 0.127 3.2e-5
Ruge-St•uben splitting, averaging
systemmatrix, 0.18 0.0453 2.1e-5
Ruge-St•uben splitting and interpolation
distancematrix, 0.15 0.0475 2.2e-5
Ruge-St•uben splitting, averaging
distancematrix, 0.13 0.00975 1.4e-5
Ruge-St•uben splitting and interpolation

Oseeniteration. But in practice one is not interested in a solution of the problem up
to a very strong reduction of the residual, the �rst three or four powers of ten are more
important, and in this initial phasethe standard Oseeniteration is faster.

Inuence of C/F-Splitting and In terp olation

In Section 3.2.2.1 we have presented di�erent possibilities for the C/F-splitting and for
the prolongator. In Table 5.5 we comparethe standard red-black coloring Algorithm 3.10,
the modi�cation (3.21), and the interpolation by averagingand (3.14), all applied to the
systemmatrix and to the distancematrix (3.1). Thesesmethods are usedfor the coarse
level construction of a coupled AMG method with the local smoother (W-15-15) for the
Oseenproblem (� = 5 � 10� 4) on the P1-P1-stab discretizedvalve (with 34,863unknowns).

It seemsclear that the advancedmethods result in better convergencerates than the
simple red-black coloring with averaging. What is a bit surprising at �rst glanceis that
the situation is the other way round when we look at the e�ciencies. The reasonthereof
are slightly densercoarselevel matricesgeneratedby the modi�ed red-black splitting, but
this could be repaired in various ways (some can be found e.g. in [St•u01a]). Thus, the
better rates indicate that somemore thoughts in this direction could pay o�.

AMGe for the Crouzeix-Ra viart Elemen t

AMuSE is not yet capableof solving Crouzeix-Raviart-discretized problems in any other
way than with the coupledAMGe method, presented in Section4.1.3. Therefore,we are
not able to present comparisonsof di�erent solvers, but only to show how the method
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Figure 5.9 The agglomeratesof onecoarselevel of the valve problem.

Figure 5.10 The e�ciency of the coupledAMGe method with Braess-Sarazinand local
smoother for di�erent levels of re�nement. The �gure on the left comesfrom the driven
cavit y problem, on the right from the 2D valve.
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performsfor the two test problems. There are alsono 3D tests for AMGe in this thesis,as
our experiencesthere are still at a very basic level.

In Figure 5.9 we illustrate the formation of agglomerateson a coarselevel for the valve
problem. The results for the solution of the driven cavit y and the valve problem, both with
Stokeso w, for increasingly�ner grids canbe found in Table5.6and Figure 5.10. For both
smoothers we applied, the level dependenceof our versionof the AMGe method is surely
improvable, especially the Braess-Sarazinsmoother seemsto barely �t to the rest of the
algorithm. The local smoother performs all right for the driven cavit y problem, but also
deterioratesfor the valve. What we have observed is, that up to a certain number of coarse
levelsthe method behavesnicely and then suddenlygetsworse(note for examplethe jump
in the convergencerates of the valve problem from two to three re�nement levels), which
we assumeis related to ill shaped agglomerateson the coarserlevels. Thus, we think that
improvement is possibleif a more sophisticatedagglomerationalgorithm is used.
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Table 5.6 The e�ciency of the coupledmethod with Braess-Sarazinand local smoother
for di�erent levels of re�nement.

Driv en Cavit y
re�nement-level 5 6 7 8
total number of unknowns 37,024 147,776 590,464 2,360,576
on �nest level
Coupled,Braess asympt.red./step 0.39 0.45 0.43 0.52
SSUR0.8, W-6-6 T0:1 1.1e-5 1.4e-5 1.9e-5 2.7e-5
Coupled,MSM asympt.red./step 0.11 0.26 0.23 0.29
W-10-10 T0:1 2.9e-6 4.2e-6 4.6e-6 5.3e-6

2D Valve
re�nement-level 1 2 3 4
total number of unknowns 22,932 91,112 363,216 1,450,400
on �nest level

Coupled,MSM asympt.red./step 0.046 0.098 0.30 0.40
W-10-10 T0:1 3.0e-6 3.7e-6 6.3e-6 8.5e-6

5.2.2 3D Problems

The two three-dimensionalgeometrieswe usein this thesisare the following:

� 3D valves. In Figure 5.11 we show this geometrywith two valves. We prescribe a
velocity of 0.5 at the inlets, the distancebetweenthe walls at the narrowest part is
0.03. The meshwas generatedwith Joachim Sch•oberl's `netgen' [Sch97].

� For the so called rotax (illustrated in Figure 5.12) a multi-element mesh is used,
which was provided by the AVL List GmbH and which consistsof 302 tetrahedra,
142,339hexahedra,5095pyramids, and 10019prisms with triangular basis. Thus,
we apply the strategy explainedin Section2.2.2.

We prescribe a velocity of 0.05at the inlets, the outlets have a diameter of 0.045.

Mo di�ed Taylor-Ho od Elemen t

We want to solve the problem obtained by a modi�ed Taylor-Hood discretization of the
valve, which has a total number of unknowns of 2,092,418.For the coupledmethod with
Braesssmoother and standard, single-shiftedred-black coarseningwe observe a poor per-
formance(seeFigure 5.13) as neither for the Stokesproblem, nor for the Oseenproblem
it is clearly faster than the AMG-SIMPLE method. If we usethe local smoother the situ-
ation is even worse,it is hardly possibleto obtain a converging method with a reasonable
number of smoothing steps. Here the stabilit y problemsmentioned in Section4.1.1strike,
therefore we apply the 2-shift strategy and get slightly better (at least better than with
AMG-SIMPLE) but not satisfactory results.
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Figure 5.11 The 3D valve problem. The uid enters at the two inlets on the right, passes
the valves,enters the wider area and leaves it again via two holeson the left (which can
not be recognizedin this picture).

Figure 5.12 The socalledrotax. It hastwo inlet ports in an angleof � =2 and two smaller
outlets. The lower part of the �gure providesa view inside the geometry, with a viewpoint
indicated by the arrow.



CHAPTER 5. SOFTWARE AND NUMERICAL STUDIES 87

Figure 5.13 Convergencebehavior of the Stokes(on the left) and the Oseenproblem with
� = 10� 3 (on the right) for the P1isoP2-P1 discretized3D valves.
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One could supposethat the better performanceof the 2-shift strategy originatesin the
increaseof smoothing stepson the �ne (velocity-) level. Thereforewe have included the
results for the 1-shift method with a doublednumber of smoothing stepson the �nest level,
to show that this is not the case.

An illustration of the solution of the Navier-Stokes problem can be found in Figure
5.14.

P1-P1-stab Elemen t

As indicated by the resultsof Section4.1.2the results for the P1-P1-stab discretization are
morepromising. Weuseit on the rotax problemand get a total number of 658,528(visible)
unknowns. Becauseof the strategy of Section2.2.2our problemhasimplicitly moredegrees
of freedom,but they are locally eliminated (which results in a densermatrix). For example
for a hexahedronwe needseven auxiliary nodeswhich nearly doublesthe number of the
eight `real' nodes.

In Figure 5.15and Table 5.8 we comparethe e�ciencies of the AMG-SIMPLE method
and the coupledAMG method (with Braess-Sarazinsmoother) andseethat in this situation
again the coupledmethod has to be preferred.

In Figure 5.16we show the solution of the Navier-Stokesproblem with � = 5 � 10� 4.
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Table 5.7 E�ciencies for the Stokesand the Oseenproblemwith � = 10� 3 for the P1isoP2-
P1 discretized3D valves. For the coupledmethod for the Stokesproblemweusedthe Braess
smoother and a W-11-11cycle, for the Oseenproblem a W-14-13cycle.

Stok es problem
asympt. red./min. asympt. T0:1

AMG-SIMPLE 0.85 6.9e-6
Coupled,standard red-black 0.84 6.2e-6
Coupled,2-shift 0.82 5.7e-6
Coupled,doubled number of 0.88 8.3e-6
smooth. stepson �nest lev.

Oseen problem
asympt. red./min. asympt. T0:1

AMG-SIMPLE 0.82 5.5e-6
Coupled,standard red-black 0.84 6.4e-6
Coupled,2-shift 0.79 4.8e-6

Figure 5.14 Pressuredistribution on the boundary and o w around the valvesfor the 3D
valve problem with � = 10� 3.
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Figure 5.15 Comparisonof the AMG-SIMPLE method and the coupledapproach for the
P1-P1-stab discretization of the rotax (Oseenproblem, � = 5 � 10� 4).
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Table 5.8 E�ciencies of the AMG-SIMPLE method and the coupled approach for the
P1-P1-stab discretization of the rotax (Oseenproblem, � = 5 � 10� 4).

asympt. red./min. asympt. T0:1

AMG-SIMPLE 0.97 1.0e-4
Coupled 0.95 6.4e-4

5.3 Conclusions and Outlo ok

In this thesis we have investigated the application of several possiblecomponents for the
AMG solution of the saddlepoint problem arising in the �nite element discretization of
the Oseenequations.

Our main achievements lie in the development of coupled algebraic multigrid solvers
for such problems,to be concrete

� we have found a technique for the construction of coarsegrid hierarchiesfor problems
discretizedwith the modi�e d Taylor-Hood element, and we havegivensomeheuristics
for their stabilization,

� we have developed an AMG method for the P1-P1-stabelementand have proven that
the coarselevel systemsthere are stable,

� we have made �rst steps in the application of AMGe to the coupled problem and
have shown exemplarily, that if it is usedin a certain way for the Crouzeix-Raviart
element, then again oneobtains stablecoarselevel systems,

� we have shown how to apply smoothers known from geometricmultigrid methods in
a purely algebraic context, and
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Figure 5.16 Pressureon the surfaceand main o w of the solution of the rotax problem
with � = 5 � 10� 4.

� we have developed a software packagewhich is capableof most of the techniquesde-
scribed in this thesis(and somemore) and which hasprovided us with the possibility
of

� applying the methods to \r eal-life" industrial problemsand of

� comparing our approach with methods using the segregated approach (e.g. AMG-
SIMPE or the \black-box" preconditioner).

We have seenthat if AMG is applied using the segregatedapproach, then this hasclear
advantageswith respect to the simplicity of development. One just needs\o� the shelf"
AMG solvers for elliptic problemsand can plug them in somerelatively easyto implement
method, and that is it.

Most of this \black-box" character is lost for the coupled method on which we have
focused,as the behavior of the solver depends for examplestrongly on the chosen�nite
element pairing and its stabilit y properties. But, as the numerical experiments indicate,
if the coarsegrid is constructed carefully and if the smoother �ts, then the method can
becomepowerful and can outperform solvers using the segregatedapproach.

Of course,much morework canbe investedin di�erent aspectsof thesemethods,on the
practical and on the theoretical side. One question is the possibility of generalizationsto
arbitrary �nite elements. We have shortly discussedthis in Chapter 4, but our numerical
experiencesin this direction are still very rudimentary.
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Other questionsariseon the analytic side. We have proven (in somecases)the stabilit y
of the coarselevel system,but what about convergence?What about stabilit y results for
a more generalclassof elements?

If the methods presented hereshouldbe usedin an industrial context, then somemore
thought should also be spent on an e�cien t implementation, on modern programming
techniques,on parallelization aspects,etc.

Nevertheless,we have developed a coupled method which can compete with classical
approaches,and which hasan areaof application beyond unit squareproblemswith weak
convection.
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restriction matrix, 36

segregatedapproach, 48
SIMPLE, 29, 64
smoother

Braess-Sarazin,65
squaredsystem,64
transforming, 64
Vanka, 68

smoothing operator, 36
smoothing property, 38, 39
smoothing rate, 38
stabilit y function, 23
Stokesequations,13
streamlineupwinding Petrov Galerkin scheme,

25
strongly negatively coupled,44

transposed,44

T0:1, 74
Taylor-Hood element, 19

modi�ed, 19
transforming smoother, see smoother
two-grid operator, 38

Uzawa method
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inexact, 31
inexact symmetric, 31, 65

Vanka smoother, see smoother

weak formulation, 14
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