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Abstract

If the Navier-Stokes equationsfor incompressible uids are linearized using xed point
iterations, the Oseenequationsarise. In this thesis we provide conceptsfor the coupled
algebraic multigrid (AMG) solution of this saddle point system, where “coupled' here is
meart in cortrast to methods, where pressureand velocity equationsare iterativ ely decou-
pled, and "standard' AMG is usedfor the solution of the resulting scalarproblems.

We showv how the coarselevelscanbe constructed(wheretheir stability is animportant
issue) and which smoothers (known from geometric multigrid methods for saddle point
systems)can be used.

To prove the e ciency of our methods experimertally, we apply them to nite eleme
discretizations of various problems (model problems and also more complex industrial
settings) and comparethem with classicalapproades.

Zusammenfassung

Durch die Fixpunkt-Linearisierung der Navier-Stokes Gleichungenfur inkompressibleFlu-
ide erhalt man die sogenanten OseenGleichungen. In der vorliegendenArb eit entwick-
eln wir Konzepte fur die numerisdhe LosungdiesesSattelpunktsystemsdurch geloppelte
algebraistie Mehrgittermethoden (AMG), wobei \gekoppelt" im Gegensatzzu Vefahren
steht, bei denenDruck- und Gesd&windigkeitsgleitungen iterativ ertkoppelt werdenund
“Standard'-AMG zur Lesungder ertstehendenskalaren Probleme angevandt wird.

Wir prasenieren Moglichkeiten der Konstruktion der Grobgittersysteme (wobei ins-
besondereauf deren Stabilitat geatitet wird) und der Anwendung von Glattern, weldce
von geometristen Mehrgittermethoden fur Sattelpunktgleichungen her bekannt sind.

Die E zienz der entwickelten Methoden wird sdlie lic h experimertell gezeigt,indem
sie savohl fur einfachere Modellproblemeals auch fur durchaus komplexeindustrielle An-
wendungengetestetund mit den klassisben Methoden verglichen werden.
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Notation

We generally use standard charactersfor scalarvaluesand scalarfunctions (p, g,...) and
boldface characters for vectors and vector valued functions (u, v,...). We will usethe
underline notation (which will be introduced in detail in section 2.2) for nite-element
vectors asseiated to scalar or vector valued functions (p, g,..., resp.u, v, ...). The
componerts of vectors are denoted by (us;:::;u,)" = u. For matrices we use capital
letters (A,...), or componert-notation A = (& );; .

G is an open, connectedsubsetof RY with spacedimensiond (generallyd = 2 or 3),
@5 its boundary.

Op erators

u v Idl ujVv; (scalarproduct).

u v (u Vj)ij =14 (tensor product).

@p = @ (partlal derivative of p with respect to x; ).
@Qu = (@u )i=1;:;

@p = (partlal derivative of p with respectto t) .
@J = (@J )i-l;:::;d-

rp = (@D)i=1;::d (gradlert of p).

ru = @JJ)U =150

divu =p -1 @Qu; (dlvergenceofu)

(u r)':leuj@.

(U I’)V:( Jlu]@vl)ll .....

Function spaces

C(G) spaceof cortinuous functions on G.

CX(G) spaceof functions with cortinuousk-th derivative on G.

Ci (G) spaceofin nitely smooth functions with compactsupport in G.
C! (G) spaceof in nitely smooth functions on G.

R 1
LP(G)  Lebesguespaceof measurablefunctions g with nite norm koko, = 5jqP °.



NOTATION

Wé‘(G) Sololev spaceof functions with k-th derivativesin LP(G).
HYG = W(G).

H3(G) the closureof C} (G) in HY(G).

H 1(G) the dual spaceof H3(G).

N The natural numbers.
Z The integer numbers.
R The real numbers.
Norms
kako = kako for g2 L2(G).
jdi1 = kr gko for g2 H(G).
kak = kak3 + kr gk3 for g2 H(G).
kv kx = _vTXv for v 2 R" and a symmetric positive de nite matrix X 2 R" .
kvk, = vTvforv2R",
KYK = SUpgyp n v for Y 2 R? "
(&onsistem matrix norm to the vector norm k:k ).
P ,
KY ke = i =1 yij2 forY 2 R" " (Frobeniusnorm).

Often used Indices, etc.

Spacedimension.
Total number of multigrid levels.

Index indicating a di usiv e term or Laplacian.

Index indicating a corvective term.

Index indicating a reaction term.

Index indicating a stabilization term.

Index usedif we want to emphasizethat someoperator is scalar.

"I OOUTra



Chapter 1

Intro duction

A very important set of partial dierential equationsin the eld of computational uid
dynamicsare the Navier-Stokesequations. They are capableof describingvarious phenom-
enaof (in our caseincompressible)Newtonian uid ow, but give rise to many nortrivial
mathematical problemsdespite of their relatively simple outer form. So, for example,the
existenceand smoothnessof solutions of their non-stationary form are currertly the topic
of one of the prominert one-million-dollar-problems[Fef0Q Dic00]. This thesis will un-
fortunately make no cortribution to that aspect (in all probability), but to an e cient
numerical solution of the equations.

After decidingwhich kind of nonlineariteration to use(in our case xed point iteration,
which leadsto the Oseenequations)and which discretization to choose (in our casethe
nite elemem method) one obtains an (inde nite) saddlepoint problem, which hasto be
solved. Classicaliterative methodsfor that are variants of SIMPLE schemes(asintroduced
by Patankar and Spalding [PS73) or Uzawa's algorithm [AHUS58], having in commonan
iterative decoupling of the saddle point systeminto separateequationsfor pressureand
velocity, which then can be solved with methods known for the solution of positive de nite
systems.

A milestonefor the e cient solution of scalar, elliptic problemswas set with the de-
velopmen of geometric multigrid (GMG) methods, for example by Federenk [Fed61],
Badhvalov [Bac66], Astrachancev[Ast71], Brandt [Bra73], or Hadkbust [Hac76]to name
but a few (seealsothe monographse.g.by Korneev[Kor77], Hadkbusd [Hac85],Wesseling
[Wes92, Bramble [Bra93], or Trottenberg et.al. [TOS01]). The idea of these methods is
to split the processinto two parts, a smaothing of the error (i.e. a reduction of its high
frequencycomponerts) and a correction step on a coarsergrid.

First stepsin the application of multigrid algorithmsto saddlepoint systemsweremade
by Verfurth [Ver84b]and Wittum [Wit89]. Further important work in this direction was
done by Braessand Sarazin, who showved that it is possibleto use the classicalUzava
method as smaothing iteration [BS97].

When confrorted with \real life" applications with complexthree dimensionalgeome-
tries, a hierarchical re nement of a "coarse'initial mesh| which is neededby geometric
multigrid methods | would be impossiblewith respect to the limitations on computer
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memory and CPU speed of today's generationof computer hardware. A solution to this
problem are the algebraic multigrid (AMG) methods, where the initial meshis used as
nest level, and the coarserlevels are generatedusing (almost) only information of the
algebraicsystem.

A secondreasonfor the popularity of AMG methods is their \black-box" character. In
an ideal situation the userdoesnot needto construct any hierarcy, the method operates
on onesinglealgebraicsystemand canthereforebe usede.g.asa replacemen for the direct
solver on the coarsestlevel of a geometricmultigrid algorithm.

Since the pioneering work of Ruge and Steben [RS86] and Brandt et al. [BMR84]
these methods have beenapplied to a wide classof linear systemsarising (mostly) from
scalar partial di erential equations. For an overview of the technique itself and various
applications we refer for exampleto Stuben [Stu01h.

For the application of AMG to saddle point problemsone has the sametwo general
possibilitiesasin the geometricmultigrid case.The rst is the segregatedapproad, i.e. to
usea classicalmethod (Uzawa, SIMPLE,. ..) for an outer iteration and to apply AMG to
the resulting elliptic problems. This approad is descrited e.g. by Griebel et al. [GNR9§|
or Stuben [Sta01d. Another ideain this classis to usea Krylov spacemethod sud as
GMRES or BiCGstab with a special preconditioner which again decouplesvelocity and
pressureequations. This was donefor exampleby Silvesteret al. rst for the Stokescase
[SW94]and later for the Navier-Stokes problem [SEKWO1].

The focus of our work lies on the secondpossibility, on the coupled approat where
an AMG method for the whole saddlepoint systemis dewloped (as mertioned above for
GMG methods). Work in this direction hasbeendonefor exampleby Webster[Web94]and
Raw [Raw95] for nite volume discretizationsof the Navier-Stokes equations,by Bertling
[BerO2]for a nite elemen discretization of the Stokes equations, by Adams for cortact
problemsin solid medanics[Ada03], and by Bungartz for constrainedoptimization (with
a small number of constrains) [Bun88].

This thesisis structured asfollows. The secondchapter cortains the preliminarieswhich
are neededfor a numerical solution of the Navier-Stokesequations. We start with the prob-
lem statemen, cortinue with the weak formulation and the nite elemen discretization,
sketch the analysisof the assaiated Stokes problem, merntion someproblemsinduced by
the corvection, and nally discussclassicalsolution methods for the linear system.

In the third chapter we introduce algebraicmultigrid methods. In this chapter we will
apply it only to scalarequations,but the underlying ideaswill be important for the saddle
point case,too.

The certral part of this work is chapter four, wherewe dewelop methods for the coupled
application of AMG methodsto saddlepoint systems.We provide ideasfor the construction
of multigrid hierarchies for di erent typesof mixed nite elemens, and we will deal with
stability problemswhich may occur on coarselevels. Unfortunately (but not surprisingly)
we were not able to construct a \black box method" capableof any saddlepoint problem,
with whatewer choice of discretization on an arbitrary mesh. All our methods depend for
exampleon the concretechoice of the nite elemer.

Finally, chapter v e is dewted to the presertation of numerical results. After a short
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overview of the software padkagewhich wasdeweloped during the working on this thesis,we
comparedi erent aspects of the methods preseited in the rst three chapters for various
problems,up to owsin fairly complexthree dimensionalgeometries.

In most of the tests we obsene advantages of the coupled approad, it seemsasif it
pays o to keepthe structure of the problem on the coarserlevels. Although there is still
work to be done, the results we have are really promising.



Chapter 2

Preliminaries

The classicalprocessfor the numerical solution of partial di erential equations(describing
a physical phenomenon,in our casethe Navier-Stokes equations describingthe ow of
an incompressible uid, or the related Oseenor Stokes equations) is to derive a weak
formulation, provide analysis,discretizethe system(in our casewith nite elemerts), and
nally to solve the resulting linear algebraproblems.

This rst chapter cortains the parts of this process,from the problem formulation to
(non-multigrid) solution methods for the arising linear systems.

2.1 Navier-Stok es Equations

Our main point of investigation will be the Navier-Stokesequationsfor incompressibleo w
(Claude Navier, 1785{1836,and George Stokes, 1819{1903). A mathematically rigorous
derivation from fundamenal physical principles and conseration laws can be found in
[Fei93].

We denote by u the velocity of the uid, p the static pressure, the densily of the
uid, its viscosily and f someouter force. Then the instationary o w of incompressible
Newtonian uids in a domain G (where Gis an open, connectedsubsetof R with Lipschitz
continuous boundary @) is governed by

@

—u u+ (U r)u+rp

@

f (2.1a)
0: (2.1b)

divu

Equation (2.1a) expressedNewton's law of motion, (2.1b) the conseration of mass.
The underlying physical assumptionfor these equationsto hold are incompressibility
and Stokes' hypothesisfor the stresstensor

T(u:pp= pl+ ru+ru’ ; (2.2)

for incompressibleNewtonian uids.

12
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Physical similarit y

With the choiceof scalesu = Vu , x = Lx , t = L=Vt, p= V2p andf = V2=Lf
(with a characteristic velocity V and a characteristic length L) we get the dimensionless
formulation

@

—u u-+(u rju+rp

@

f; (2.3a)
0; (2.3b)

div u

where

- 1 .

" Re LV’
with the dimensionlesRReynoldsnumber Re (Osborne Reynolds,1842{1912).For simplic-
ity in notation we will omit the starsin the following.

We primarily considertwo types of boundary conditions (more can be found e.g. in
[Tur99)). Let @ = [ 2. On ; we prescribe Dirichlet conditions

uj , = ug;
on , natural out o w conditions of the form
( pl+ ru’) n=0:
In the non-stationary casewe alsoneeda pair of initial conditions
Uji=o = Uo, Pl=o0 = Po:

If we linearizethe systemby xed point iteration we get the so called Oseen equations
(Carl Wilhelm Oseen,1879{1944)

@

@u u+(w r)u+rp=f; (2.4a)
divu = Q; (2.4b)

wherew is the old appraximation of the velocity, sometimesalso called the wind.
Dropping the corvection term leadsto the Stokesequations

gu u+rp=f; (2.5a)
divu = O: (2.5b)

Setting @@u 0 givesthe stationary versionsof (2.3), (2.4), and (2.5).
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2.1.0.1 Weak Formulation of the Stationary Problem

Assumefor now that we want to solwe the stationary problem, we will return to the time
dependert problemin Section2.3.

Assumption. There existst; 2 H(G)¢ with

dive; = 0 in G, (2.6)
By = U; on 1. (2.7)
Now let
U:= HYG %

U () :

v2H1(62d:v 2 U ;
Q:= qg2L?%: qdx=0
G

Then one can derive the weak formulation of the Navier-Stokes equations: Find u 2
U(t) and p 2 Q sud that

a(u;u;v) + b(v;p) = hF;vi 8v2U; (2.8a)
b(u; g =0 892 Q; (2.8b)
where
a(w;u;Vv) = ap(u;Vv) + ac(w;u;v);
and

ap(u;v)= (ru;rv);
ac(w;u;v) = ((w r)u;v);
b(u;g) = (div u;0);

t, asin (2.6), (2.7) and
hE; i = (f;)o:

2.1.1 Analysis of the Associated Stokes Problem | the Inf-Sup
Condition

We sketch the analysis of the assaiated stationary Stokes problem with homogeneous

Dirichlet boundary conditions, becausénereonecangeta rst impressionof the importance

of amajor criterion for stability | the inf-sup condition | which appearsagainand again

in the analysisand numerical solution of mixed problems. The ass@iated Stokesproblem
readsas: Find (u;p) 2 U Q sud that

ap(u;v)+ b(v;p) = hF;vi 8v 2 U; (2.9a)
b(u; g) 0 892 Q: (2.9b)
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De ne
V =fv2U:bv;q = 0forall g2 Qg:

The rst stepisto shav existenceand uniquenessf solutions of the following subproblem:
Find u 2 V sud that for allv 2 V

ap(u;v) = hF;vi: (2.10)
Theorem 2.1. Problem(2.10) hasa unique solution.

proof (sketch). ap is a bilinearform, and becauseone can show that ap is V -elliptic and
cortinuous and that F = (f;:)o is cortained in the dual spaceof V, the theorem of Lax
and Milgram completesthe proof (c.f. [BF91]). O

What remainsisto nd a unique p 2 Q solving the problem
b(v;p) = hF;vi ap(u;v) 8v2U; (2.11)

whereu is the solution of (2.10). Wedene B :Q! U ,B p= k(:;p), whereU denotes
the dual spaceof U, and rewrite (2.11) as

B p=nHF:i ap(u;); (2.12)
with the right hand side being elemen of the polar set
v%:=fl2U :I(v)=0foralv2Vg:

The following theorem introducesthe already mentioned criterion for the sohability of
(2.11) resp.(2.12).

Theorem 2.2. Theoperator B : Q! VP9 is anisomorphismif and only if there existsa
constant ¢y > 0 suchthat
inf _Bvia)

: 2.13
0692Q ggv2U kaU kCIkQ G ( )

The proof is basedon the closed-ranggheorem (seee.g.[Yos80])and can be found for
examplein [GR86] or [Bra97]. Condition (2.13) is called LBB condition (after Ladyzhen-
skaya, Babuska, and Brezzi) or inf-sup condition.

For instancein [GR86 it is shavn that in our concretecasel(:;:) ful lls the inf-sup
condition, thus we can conbine the theoremsabove to the following.

Theorem 2.3. Problem(2.9) is uniquely solvable.
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2.2 Finite Element Discretization

We will briey introduce the conceptof mixed Finite Elemert Methods (FEM). Details
can be found e.g.in [Pir89] or [Bra97].

We assumefrom now on, that G is a polygonal resp. polyhedral domain.

Let Uy and Q;, be nite-dimensional subspace®f U and Q, respectively, and let

Un(tr) :
Vi

V2HYOY:v w2U, ;
fvh2 Uy i b(vh; ) = Ofor all g, 2 Qnhg:

Now we can formulate a discrete version of problem (2.8): Find a couple (un;pn) 2
Un(t1n) Qp sud that

a(Un; Un; V) + B(vh;pn) = HESvi 8vp 2 Up; (2.14a)
b(un; oh) =0 80h 2 Qn; (2.14b)
where tt;, is a reasonableapproximation of ;.
For reasonswhich will becomeobvious later we extend problem (2.14) to
a(Un; Un;Vp) + B(vh;pn) = hF;vpi 8y 2 Uy;
b(un;h)  c(Pnith) = MG chi 80k 2 Qn;
where c(:;:) is a positive semi-de nite bilinearform and G 2 Q (both may be idertical
zero).

The following theorem shows that again the inf-sup condition is of major importance
(for the proof we refer to [GR86]).

(2.15)

Theorem 2.4. Assumethat ap is V-elliptic (with h independent ellipticity constant)
and that there exists a constant ¢y > 0 (independent of h) suchthat the discrete inf-sup

condition .
inf Sup M

; 2.16
08d2Qn psv2U}, kaU kQKQ C ( )

holds.
Then the asseiated (discretized, stationary) Stokes problem has a unique solution
(un; pn), and there existsa constant ¢; suchthat

ku upky +kp piko o inf ku vpky + i% kp ohko ; (2.17)
Gh h

vh2Up

wheee (u; p) is the solution of (2.9).

Remark 2.5. In literature (e.g. [GR86], [BF91], or [Bra97]) onecan nd prominent exam-
plesof what can gowrongwith elementsnot ful | ling the inf-sup condition ("checkerloard'-
instabilities, spurious pressue modes, etc.). The discrete solution may contain unphysial
oscillations and may for h ! 0 not converge to the solution of the continuous problem,
what s il lustrated in Figure 2.1
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Figure 2.1 Part of the discrete pressuresolution for a driven cavity problem discretized
with an unstable elemen (unstabilized P,-P; elemen, seeSection2.2.1.2). Oscillationsin
the pressurecan be obsened (light-grey indicates high pressure,dark-grey low pressure)

(where we usethe notation ( 1;:::; m) g, = P m (Qh)i i), and analogouslythe com-
ponerts of an elemen vy, = Vpl;iii v T2 Un(ttin) by
0 1
Vhy
Vhi = (131100 ) Mgy with vy, = %D : X 2U, = (R
Vhy

Then we can write (2.15) in matrix form

T
A(Hh) B gh — f_h . (218)

B C P, 9,

Here A(u,) is de ned as
Aup)tt Aup)t?

Alln) = A(Hh)z;l A(Hh)z;2
in 2D resp. 0 1
A(Hh)l;l A(Hh)l;z A(Hh)l;3
A(up) = @A(Up)>t A(up)®? Au,)*3A
A(Hh)?’;1 A(Qh)g;z A(Hh)g;g
in 3D, with

A(up)™ = (@(up;'j ek €s)jks
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wheree; is the r-th unity vector in RY. For a(:;:;:) asde ned above we get
A(u,)"™ 0 ifrés.

AnalogouslyB is de ned by the relation

B= B! B2
in 2D resp.
B= B! B2 B3
in 3D, with
B"=0("; e: «)jk;
and C by
C=(c i k)jk:
In the samemannerwe de ne the massmatrix
M= (("j:" o)k

the pressue massmatrix
Mp=(( j; ®oik;

and the Laplacian

Ap = (ap (' j:' k)jks
which we will needlater in this thesis.

We denotethe FE-isomorphismsbetweenthe discrete spacesand the spacesof coe -

ciert vectorsby y :(R")9! Up(thn) and o :R™ ! Qp. The underline notation is used
to indicate their inverses,i.e.

uVh = Vh; uVp = Vi, (2.19)
4, = Q4 = 4. (2.20)

If it is clear from the context we omit the underlinesand 's and identify vy, 2 Up(ttn)
and the asseiated v, 2 (R")9 and analogouslyg, and q,-

2.2.1 Examples of Mixed Elements

We preseit somepopular choicesof nite elemen pairs U, Qp, in particular those we
will use later for the construction of algebraic multigrid methods and in the numerical
examples,all of them basedon triangular resp. tetrahedral elelgems. Thus, we assume
that somepartitioning of G into triangles resp. tetrahedra G= ; ; is given, we denote
the diameter of an elemen ; by h ,, we assumethat we canidertify sometypical diameter
h (the discretization parameter) with

~h h. h for all i;

where _and are somepositive constaris, and we denote the set of elemens by T, =
f 1; 2;:::9. On ead elemen ; we de ne the spacePy( i) of polynomials of degreeless
than or equalk.
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Figure 2.2 Somemixed nite elemens for triangles (rst row) and tetrahedra (second
row). The circles/spheresindicate degreesof freedomfor velocity-componerts, the boxes
for pressure.

(a) Taylor-Hood - (c) Crouzeix-Raviart

2211 (Mo died) Taylor-Ho od Element

For the Taylor-Hood elemen, or P,-P; elemen, we specify

Up = fvh 2 U tvpj, 2 Po( )9 for all elemens g;

. (2.21)
Qn=Th2Q:hj, 2 Py(;) for all elemerts ;g:

An elemen (vh; ) in U,  Qy is uniquely determined by specifying the valuesof the d
componerts of v, on the nodesand on the midpoints of edgesof the elemens and the
valuesof ¢, on the nodesof the elemeits asillustrated in Figure 2.2(a).

The so called modi ed Taylor-Hood elememn, or P,isoP,-P,, is a mixed elemen with
the samedegreesof freedomas the classicalTaylor-Hood elemen, which is obtained the
following way. We take Qn asin (2.21), and then re ne the meshasindicated in the 2D-
part of Figure 2.2(a): we divide ead triangle into four @btriangles,eam tetrahedron into
eight subtetrahedra,and getthe ner partitioning G= , 5. There we de ne the velocity
space

Unh="Ffvh2 U :vpj, 2 P.(~)¢ for all (sub-) elemets ~g:

Both the classical Taylor-Hood elemen and the modied one fulll the discrete inf-
sup condition as shovn in [BF91]. Thus, their precisioncan be directly estimated using
(2.17) and the well known appraximation resultsfor P; resp.P, elemeits. For the classical
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elemen we get
ku upki+ kp pnko  Ch'(jujess + jpit); fort=1lort= 2,

if (u;p) 2 H*(GY HYG). For the modied elemem, only the estimate with t = 1
remainstrue.

2.2.1.2 Stabilized P;-P; Element

If we usepiecewisdinear basisfunctions for both pressureand velocity componerts (Figure
2.2(b)) we obtain an elemem which is very easyto implemert in a concrete computer
program but unfortunately doesnot ful Il the discrete inf-sup condition. As mertioned
in Remark 2.5, numerical solutions computed using this elemen often contain unphysical
pressuremodeswhich prevent convergenceagainstthe solution of the cortinuous problem.
A possibleway out is the introduction of the following stabilizing c(:;:) term in (2.15)

X
cpd)= s M2 (rpir Qo (2.22)

i
and a right hand sideterm to presene consistency

X
hG;gi= s h(f;r g ; (2.23)

where s is a positive parameter (intensive discussionon the correct choice of this param-
eter and the local meshsizeh ; can be found for examplein [Bec95]or [FM93]). We will
refer to this stabilized elemen as P,-P;-stab.

Remark 2.6. Another possibility of stabilizingthe P,-P; elementleadsto the so called MINI-
element. Here the velaity space is extendel by bubblefunctions, i.e. uy, is an elementof
O, with

withw 2 U, and , 2 RY;

wheeb,(x) = ~; j(x), and ;(x) are the barycentric coordinates of x with resgect to ;.
It is possibleto locally eliminate the bubble-variablesywhich leadsto a similar problemas
(2.15),(2.22),(2.23), with slightly more information on the choice of s, e.g.that it should
ke of order O(1=).

Op:=fv2U:vj, =wj, +b,

Although this elemen doesnot ful Il the inf-sup condition, the following result holds
(without proof)

Theorem 2.7. [FS91, theorem 3.1] Suppsethat the solution of the continuous Stokesprob-
lemsatisesu 2 H?(G)Y andp 2 H?(G). Thenfor s > 0 the problem(2.15),(2.22),(2.23)
hasa unique solution, satisfying

ku upki+ kp prnko  C(hjujo + h?jpj2): (2.24)
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2.2.1.3 Crouzeix-Ra viart Element

Here we drop the requiremen that the nite dimensional spaceshave to be subsetsof
the cortinuous spaces,insofar as the functions in Uy will not be continuous. We use
nonconformingP; velocity componerts (P, for short), i.e. we de ne

Up = fvp ivpj, 2 Py( 1)? for all elemens ;;
vy is cortinuous at the midpoints of all elemet-edges/faces(in 2D/3D),

vh(ly) = O for all midpoints of boundary edges/facedy on 1,:9
(2.25)

and
Qn=Th2Q:hj, 2 Py(;) for all elemerts ;g: (2.26)

The elemens in U, Qp are determined by their velocity valuesat the edge-/face-
certers and pressurevaluesat the elemen certers (see2.2(c)).
Detailed analysis for this mixed elemen can be found in [CR73], for example the
corvergenceresult
ku unk; Ch(jujz + jpi1)

for (u;p) 2 H3(GQY HYG).

A nice property of the Crouzeix-Raviart elemen is the elemert-wise massconsenation,
which is enforcedby the piecewiseconstart pressurediscretization.

Note that the term \Crouzeix-Raviart elemen", which we use for P{°-Py, is often
asseiated to di erent elemerts, for example (scalar) P;° or the divergence-freeP° ele-
mert (where a divergence-fredasisfor the velocities is constructed, and the pressurecan
therefore be eliminated from the equations).

In the following we will often drop the h subscriptsif it is obvious from the cortext.

2.2.2 Multi-Elemen t Meshes

All the elemens preseried above are basedon a meshconsisting of triangles resp. tetra-
hedra. We want to mertion that they have counterparts for quadrilateral resp. hexahedral
meshesput we will not gointo detail and referto literature, especially [BF91] and [Tur99].

The following exampledescrikesthe technique we usewhenwe want to generateFEM
matrices for more generalmeshesnamely inner condensation

Example 2.8. Supposewe want to construct an elemem matrix basedon a P; FE-
discretization of a (scalar) equation for a quadrilateral S;S,S3S, asin Figure 2.3. If we
construct the midpoint Ss, then the discretization on the four resulting subtriangleswould
result in an elemen sti ness mgtrix

a1 a, 0 ap ags
a1 a» a3 0 ax

0 a3 ass azs asse:
ay1 0 a3 am ags
51 Asp Asz ds4 Osp
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Figure 2.3 A quadrilateral is discretizedby decompsition into its sub-triangles.

Sy

S,

S,

As the midpoint hasonly connectionsto S;,...,S4 | alsoin the fully asserbled matrix
| there would be a line like

As1X1 + A5pX2 + 853X3 + AsaXa + AssX5 = f5

in the system(where x is the solution vector, f the right hand side). Thus we can locally
eliminate the ertries for Ss and get the resulting elemen matrix

0 1
dy1  Ai5d51=ds5 Ad12  A15A52=s5 A15853=35 d14  A15854=365

dp1  Ap5ds1=ds5 dpp  Apsdsp=dss dp3  dp5ds53=dbs Ap5a54=365
d35as51=365 A3y Azsdspy=dss dzz AzsAs3=ds5 dzq  Azsdsa=dss
g1 Aus5851=3ks5 Au5a52=3k5 g3 Au5a53=dk5 44 Au5854=365

(and additional right hand sidetermsif f 6 0).

This idea can be generalizedto any cell-type (e.g. pertagons, pyramids, hexahedra,
octahedra, or prisms). First, one hasto split the cell into triangles resp. tetrahedra and
then eliminate the auxiliary unknowns locally.

2.3 The Non-Stationary Problem

In the non-stationary casewe usethe method of lines for time integration. First, the weak
formulation and the FEM approximation in the spacevariables (with time dependert
coe cien ts) is performedas shavn above to get the system

d i
a(uhivh)o+ ap (Un;Vh) + ac(Un;up;Vvp) + B(vih;pn) = HF; vl
b(un; o) =0

(plus initial conditions), a systemof ordinary di erential equations,wherestandard meth-
ods of time integration can be applied [HWNOO].

To shav two examplesthereof, we assumethat the k-th time step haslength  and
that the right rlland sideis constart in time, and we seart the discretesolution (u; p*) at
time ty = to+ 1, .
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The rst exampleis the one-step- scheme which takesthe matrix form

Im+ A(UuX) uk+BTpk= Im +( DA@UK Y uk T+
k k
But Cp* =g

The parameter canbe chosenin [0;1], = 0 givesthe explicit Euler scheme = 1 the
implicit Euler scheme and = 0:5 the Crank-Nicolson schemesdeme.
As secondexample we presen the fractional-step- -scheme where ead time step is

divided into three substeps(ty 1! tx 1+ ! tx ! ty):
1) IM+ AW T ) Uk BT = LM AUk Y uk e
k k
Buk 1+ Cpk 1+ _ g,
1 1
2) —oM + A(Uk ) uk +BTpk - —OM A(uk 1+ ) uk 1+ 4 f;
k k
Bu* cpt =g
1 Ky ok T K 1 k k
3.) —M+ AU u +B'p = —M A(u® ) u* +f;
k k
Bu cp* =g

with =1 % 0=1 2, 2(;11and =1 (where the choice = % is
corvenient for implemertation, becausehen = 9.

In Table 2.1 we list corvergenceand stability properties of this schemeswithout going
into the details and without giving any motivation for this properties (what can be found
in [Ran0Q or [HWO02]). The terms usedare descriked in the following de nition.

De nition  2.9. Assumethat the discretesolution (with constart time steplength) of the
test-problem
yi) = y (1); y(0) = yo;
with 2 C hasthe form
y = R( Y H

whereR(z) is called the stability function. A sthemeis saidto be
A-stableif jR(z)] 1forallz2 C :=fz2 C:Rez O0g,
strongly A-stableif it is A-stable and lim,; R(z) < 1, and

L-stableif it is A-stable and lim,; R(z) = 0.
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Table 2.1 Stability and accuracyof sometime stepping methods.
| A-stab. | str. A-stab. | L-stab. || accuracy

explicit Euler no no no 1st order
implicit Euler yes yes yes 1st order
Crank-Nicolson yes no no 2nd order
frac.-step- yes yes no 2nd order

2.4 The Convective Term

The cornvectiveterm (ur )u resp.(wr )u causegwo problemswe have to dealwith. Firstly
instabilities may occur becauseof it, secondlywe have to cope with its nonlinearity.

2.4.1 Instabilit y

The unstable behavior can already be obsened in the following 1D model problem.

Example 2.10. Assumethat we want to solwe the following scalar corvection di usion
equationfor u:

u%x) + wu{x) = f for x 2 (0; 1),
u@ =u(1) = 0,w,f and constart on|[0;1]. A linear nite elemeis discretizationon a
regular grid with mesh-width h leadsto the system

o, 0.1

, o 10,1 0,
RS & Rt % g% E fh
| 2 F5 fh

The correspnding eigervalue problem readsrow-wise

w —_ U =+ 2_ U + w _ Us —_ 0 fOI'I_ ..... n:
2 h i+1 1 2 h i 1= ’ - gyl

Up = Ups1 = 0

where is the eigervalue we are seardning for. Assumethat n is odd andwh 6 2 , then
onesolution can easilybe found as = h , Uk = 0, Uggsp = m*zz Jfork=0;:::; 0L

Thus, for small this eigervalue tends to zero and the very oscnlatory elgervector
(Figure 2.4) is ampli ed in the solution if h is not small enough.

A solution of this problem is to usea lesscertered discretization, test-functions with
more weight upstream than downstream. In the Streamline Upwinding Petrov Galerkin
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Figure 2.4 Unphysical eigenmale causedby an unstable convection term.

(SUPG) scheme (details e.g. in [Pir89]) this is realized by applying the test-functions
Vh + n(wpr vy instead of vy, for the momenium equation, where | is a parameter of
magnitude O(h) and wy, is a \good guess"for the velocity up, e.g.the solution at the
previoustime-step or the latest iterate of the nonlineariteration (seethe following Section
2.4.2). Amongst the terms introducedthis way, only

h((Wh 1 )un; (Wh T )vp) (2.27)

is of importance for the increaseof stability, thus we want to add it to a(wn;un;Vvp).
Just doing this solves the stability problems, but results in a loss of order of accuracy
becausethe equation is no longer consiste. For examplein the stationary casewith a
modi ed Taylor-Hood discretization we could repair this by adding appropriate terms to
the momentum equation, i.e. by using

(r up;r vy) + (g(wh r Jun;ve)  (pn;divvy)

+ h [((Wh 1 )un;(Wn 1 )ve) + (r pry(Wh 1 )vn) ]

X
= hF;vpi + h b (Wh r)vipi o (2.28)

2.4.2 Nonlinearit y

Becauseof its super-linear convergenceNewton's method is a frequertly usedalgorithm for
solving nonlinear equations. As the (Gateaux-) derivative of the cornvective term calculates
as

((u rHWov=(u r)v+ (v r)u;

this would lead to equationsof the following form (in the stationary case,ignoring for the
momert the stabilizing terms introducedin the previoussection)

(Ap + Ac(u) + AR(U))(Uksr U+ BT (Psr )= d;
B(Uk+1  Uk) C(pksr  P)= &
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whereAr(w)u is the discretizationof (u r )w, (ug; pk) arethe Newtoniteratesand (dy; &)
are somedefectright hand sides.

Unfortunately the zero order reaction term Ar posestwo problems. Firstly it adds
block-o -diagonal ertries to matrix A which increaseits computational complexity, sec-
ondly it hasan uncortrollable e ect on the diagonalof A and could causedivergence.Thus
it is commonpractice to drop this term. This leadsto the xed point method, wherein
ead iteration step the Oseenequationshave to be solved.

A third possibility would be to use(few stepsof) an Oseen-preconditionedRichardson-
iteration for the linear problemin ead Newton-step,which avoidsthe reactionterm in the
systemmatrix but puts it to the right hand side.

In the caseof strongly dominart cornvection and stationary equations, the nonlinear
iteration is often hard to cortrol. As this is lessthe casewhen solving the instationary
problem, we introduce a pseudotime term, i.e. we obtain an iterative processwhere Uy
and py+; satisfy

A(u)+ M BT U1 _ F+ Mug
B C P g

whereM is the massmatrix or (aswe are not interestedin the correct reconstruction of a
non-stationary process)a lumped massmatrix and a (small) parameter.

Besidesthe stabilization of the nonlinear process this method hasthe nice property of
increasingthe symmetry of the linear systems.

Summing up, the resulting linear saddlepoint systemwhich hasto be solved (onceor
for every nonlinear iteration step and/or for every time step) hasthe generalform (where
we denotethe block matrix with K, the solution block vector with x, and the right hand
side block vector with b)

_ Aw) BT u _ f _ .
e (2.29)
with
A(W) = M + Ap + GAc(W) + C3As(W) + CiAR(W); (2.30)

with massmatrix M, symmetric positive de nite LaplacianAp, non-symmetricconvection
Ac andreaction Ar, symmetric positive semi-de nite convection stabilization As and con-
stants c,...,c4 Which may be zero,and symmetric positive semi-de nite (or zero) elemen
stabilization C.
Becauseof (2.28) it may occur that we have no symmetry in the o -diagonal blocks,
ie.
A(w) B
B, c

with B; 6 B,. We will not deal with this situation separatelyin the remaining of this
thesis, but assumethe form (2.29). Note that the caseB; 6 B, would not causeany
additional problems,becausethen a dominating non-symmetry is already found in A(w).
Thereforewe have to deal with a (substartial) non-symmetricsystemmatrix anyway.



CHAPTER 2. PRELIMINARIES 27

2.5 lterativ e Solvers

In this section we give a brief overview over (non-multigrid) iterative solvers which are
applicableto the saddlepoint system(2.29). Of course,there is a great variety of possible
methods, we have only chosensomeprominert examples.

2.5.1 Krylo v Space Metho ds

A rst possiblefamily of solvers are those (preconditioned) Krylov spacemethods which
are capable of solving inde nite and (in the non-Stokes case) non-symmetric problems.
Examples thereof are GMRES and the BiCGstab. An overview of more Krylov space
methods can be found for examplein [Vos93]or [Meu99.

25.1.1 GMRES

The genealized minimal residualmethal (GMRES), introducedin [SS86],is a generaliza-
tion of the MINRES method to the non-symmetric case. The ideais to solwe in the k-th
iteration step the least squaresproblem: Find y 2 R* sud that

kb K(x°+ Quy)k,! min;

wherethe column vectors of Qy build an orthonormal (w.r.t. the ",-scalarproduct) basis
of the k-th Krylov space

Thus, it could be seenas an exact method, which stopsat the solution after nitely many
steps,but which usesan increasingamourt of memoryin ead step. Thereforein practice
we usethe GMRES(m) method, i.e. GMRES restarted periodically after m steps.

Algorithm  2.11. Preconditioned GMRES(m). Iterative Solution of Kx = b, with
preconditionerK .

Choosestarting solution Xo;
9= K b Kxo);
7, = kq:k;
di = (1=z) qs;
rep eat
begin
for k= 1to m do
begin
Qa1 = K K g
for i = 1to k do
begin
hik = 0i Qi+1; Ok+1 = Oke1 D Qi;
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end
his1:k = KOk+1 K; Oke1 = Ques =hier s
end
for k= 1to m do
begin
cc= hEk + hE+1;k;
€= h=cG S = hys1.k=CG hyk = cG
fori=k+ 1to mdo

hk;i - cC S hk;i
hk+1;i S C hk+1;i
Zy _ C S 7y
Z+a1 S ¢ 0
end
Ym = Zm=hmm;
for i = m down-to 1do
P m
Yi= % =i+ DY) =hi;

P m
Xm = Xo+ 21 Yidi;
rm= K b Kxp);
Xo=Xm; o= I'm;
z, = krok; 91 = (1=z) ro;
end
until jz;j < tolerance

2.5.1.2 BIiCGstab

28

The stabilized bi-conjugate gradient methal (BiCGstab) was introducedin [VdV92] (with

slight modi cations in [SVdV94]). It is not optimal in ead step, i.e. it solvesthe min-

imization problem only approximately, but as it usesa short range recurrencefor the
construction of the orthonormal basis of the Krylov space,it consumesconsiderablyless

computer memory as GMRES.

Algorithm  2.12. BiCGstab. Iterativ e Solution of K x = b, with preconditionerK .

Choosestarting solution Xo;
ro=K b Kxo);

Choosearbitrary £y, sudh that f4 ro 6 0, e.9.f9 = ry;

0= =1ly=

Vo= po=0;

i 1;

rep eat
begin

i=fo i == )0 = 1)
Pi=ri 1+ (Pi1 v 1)



CHAPTER 2. PRELIMINARIES 29

y = Kpi;vi =K y;
= i=(fo Vi)
S=1Ti1 Vi,
y=Ks t=K 1y,
Li=(t )=t 1t);

Xi=X; 1+ pi+lis
if x; is accurateenoughthen quit ;
=K Xb Kxp);
[ i+ 1;
end

2.5.2 SIMPLE

If linear solvers for scalar elliptic equationsare available, a very popular method is SIM-
PLE (Semi-Implicit Method for Pressure-Linled Equations), deweloped by Patankar and
Spalding [PS72, Pat80], which iteratively decouplesthe systemto equationsfor pressure
and for velocity (even for velocity-componerts in the Oseenor in the Stokes caseasthen
A is block-diagonal).
We start with the factorization
A0 | ABT

K= 5 ¢ o | (2.31)

with the Schur complemen S = C+ BA BT, and then introducepreconditionersA for A

in the rst factor, AA for A in the secondfactor and 8 for S. Using this in a preconditioned
Richardsonmethod leadsto the scheme

AlGer u)=f Aux BTpg (2.32a)
S(Pke1 P)=BOk1 Cpc g (2.32b)
N

A(Uk+1 Oe1) = BT(Peer  Pu); (2.32¢c)

where 0.1 is someauxiliary vector. Now in (2.32a) Auy is replacedby Auy, leadingto
Aoy = BTpge

In the classicalSIMPLE algorithm S is a preconditionerfor the modi ed Schur compleme

C+ BAA BT, AA is the diagonal of A, denotedby D, and the pressureupdate is damped.
This leadsto the following algorithm.
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Algorithm  2.13. SIMPLE
ChoosepreconditionersA for A and $ for the modi ed Schur complemen C + BD BT;

choosea starting solution (ug, po); kK 0;
rep eat until corvergence
begin
sohve Ao = f BTp;
sohve 8p= B0 Cpc
choosea damping parameter ;

Pe1 = Pkt B
U1 =0 D 'BTp;
k k+ 1;

end

In all our numericaltestswe useAMG methodsfor A and é, thereforewe will sometimes
call the method AMG-SIMPLE .

Remark 2.14 Algorithm 2.13 representsa simple version of this classof algorithms. One
can nd many variants in literature, examplesare SIMPLER, SIMPLEC or SIMPLEV.
Often the nonlinear iteration in the Navier-Stokescaseis also emiedded in the SIMPLE-
scheme. For details see e.g. the references alove, [GNR98], [ABO1] and the referenes
therein.

2.5.3 Inexact Uzawa Metho ds

Like the SIMPLE algorithm the methods in this section decouplevelocity and pressure
equationsiteratively. They are basedon the following factorization of the inverseof the
systemmatrix K,

1 T
A IO I B I 0 | 0 (2.33)

An inexactinverseis built by replacingA *and S ! in (2.33) by preconditionersA * and
s L
Ato I BT 1 0 | 0
o1 0 | o §t BA 1 |

Now di erent combinations of these four factors are usedto construct a preconditioner
K 1L

Using all four factors| which would lead to

(2.34)

a (2.35)
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| for apreconditionedRichardsoniteration we getthe inexactsymmetric Uzawaalgorithm

AOka uw)=f Aux BTpg (2.36a)
S(Pke1 P)=BO1 Cpe g (2.36b)
AUsr  Okin) = BT(Per  Po): (2.36¢)

Factorsone, three and four and preconditionedRichardsonresult in the inexact Uzawa
algorithm

AU u)=f Auc BTpg (2.37a)
S(psr  P)=Buks Cpc G (2.37b)
which leadsfor A = A, S = | to the classi@l Uzawaalgorithm, for A= 1,8= 1 to

the classi@l Arrow-Hurwicz algorithm [AHU58, BF91].
Details to thesetwo methods can be found e.g.in [LQ87], [BWY90], or [Zul02] .
The conbination of factors one,two and three

A1 A1BTS !
K 1= 0 a1 (2.38)

is studied e.g.in [SEKWO01] and [MGWOQO0], the useof the preconditioner

Al 0

K=" &1

(2.39)

in [SW94]and [IRT93].
The preconditioner (2.39) can also be motivated by the following obsenation for its

exact version
@ = A O
0 S

We want to have an h-independent upper bound for the condition nhumber of the precon-
ditioned system

cond, K K ;

wherethe condition number for a matrix Y with respect to a matrix norm k:k is de ned
as
cond (Y) := kYk kY k :

For this purposewe needthe following result.
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Lemma 2.15. Assumethat A is positive de nite, C positive semi-de nite, and that if B
doesnot possesdull row-rank then C is positive de nite. Then the genenlized eigenvalues

of

A B" u_ AO0 wu

B C p 0S p

are contained in the set " p # " p_#

1 1 5 [ 1+ 5

2 T2
Proof. To solve the problem

Au=Au+B'p (2.40a)
Sp=Bu Cp (2.40b)

we distinguish two cases.
First if = 1then(2.40a)canbeful lled with p= 0and(2.40a)by any u with Bu = 0.
Now for 6 1wegetu= —A 'BTpfrom (2.40a),insert this in (2.40b) and get
!

!
1+p§ 1 P

2 2

As both BA BT and C are positive semi-de nite and at least one of them is positive
de nite, (2.41) canonly befullled for

BA BTp+( +1)( 1)Cp=0: (2.41)

# #
1 "5 1_1+'°5

2[,2;

which completesthe proof. O
Remark 2.16 If C 0 thenonecan evenshowthat 2 f1;(1 P 5=2g. Similar and more

geneal resultscan be found e.g. in [RW92], [IRT93], or [SW94].
Now we can easily calculate that
kK Kkp = kk 2R 1K 2k,

and
KK Kkp = KKK K 7k,;

and deducefrom Lemma2.15that

p_
_ _ 1+ 5
kK 172K 1K k., >
and 5
k}e‘ 1=2K 1|€1:2k‘2 pﬁ
Thus we can estimate p_
3+ 5

cond, K 1K

wherethe upper bound is clearly independert of h.
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2.5.3.1 \Blac k-Bo x"-Preconditioners

This classof preconditioners| it hasbeenintroducedin [SEKWO01], [LWO02] and [ESWO0Z
for the Oseenproblem and earlier for examplein [SW94]for the Stokesproblem| is based
on two ideas.

First, oneof the preconditioners(2.38), (2.39) is usedfor a preconditionedKrylov space
method (Section2.5.1).

Remark 2.17. If we consider the stationary Stokesproblemand the exactversion of (2.38)
(i.e. A= A, $= S) thenthe eigenvalueof K K are contained in the setf 1;1g, which
would cause a Krylov space methal to convelge to the exact solution in two steps. We
havealready mentioned in Remark 2.16 tﬁla_t a similar resultappliesto the exactversion of
(2.39) if C 0, here the setis 1;(1 5)=2 and the solution is reachal in three steps
(see [MGWOO, Ips01).

The secondkey point (in the Oseencaseand for C 0, i.e. LBB-stable elemelts) is
the following heuristic comrmutativit y relation

r( +(w r)s ( +(w r)))r; (2.42)

wherethe s-index of the convection di usion operator indicatesits scalarversion. Thereof
we can deduce

( +(wor)troor( + (W or))sn
Applying the divergenceon both sidesleadsto
div( +(w or)) s( + (W or))eh

and inverting gives
div( +wor)tr ot W r))s 5 (2.43)

i.e. the inverseof the Sctur complemem could be appraximated by an inverse(pressure)
Laplacian and a (pressure!) corvection di usion operator.

For the Stokes problem the scaled pressuremass matrix tM, is an optimal Scur-
complemettpreconditioner, i.e. ; and ;in

q' Sq
q"MpQ
are h-independen, wherethe lower bound is valid becauseof the inf-sup-condition (2.16),
the upper bound becauseof the cortinuity of (:;:)

ibvia) P kvkakak,

(seealso[LQ86, LQ8T7]). Thereforealsoin the caseof Oseenequationsit is suggestedot
to usejust the two factors indicated by (2.43) but

S =M, TAW)ALL (2.44)

1 2 8q2Rm

where l\??IO is a preconditionerfor the pressuremassmatrix (e.g.the lumped massmatrix),
A(w)s the scalarvariant of A(w) and Ap, a preconditionerfor the (pressure)Laplacian.
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Remark 2.18 Two possible problemsof this preconditioner can arise of the assumption
(2.42). First, the commutativity

Fliw r)l (w orr;

is not full led in generl (except for somespecial situation, e.g. constant w), what poses
problemsif this term dominates(for smal 's).

Seond, for non-constant  (e.g. dueto a k- turbulene madel, c.f. [MP94] or [RW99])
eventhe rst part of (2.42) would be violated, asin this case

r 6 r:



Chapter 3
Multigrid  Metho ds

In the previous chapter we have introduced someiterative methods for the solution of
saddle point systems, most of them having in common that (without preconditioning)
they are not optimal, i.e. the number of arithmetical operationsQ(") for a reduction of the
residualby a factor " is considerablylarger than O(n), wheren is the number of unknowns
of the system.

Multigrid methods, which will be the main topic in the remaining of this thesis, possess
this optimality-property Q(") = O(n) (at least geometric multigrid methods), therefore
we want to apply them as solvers (or preconditioners)for our system.

First we will descrite a general algebraic multigrid (AMG) method, introduce the
notation and pinpoint somedi erencesto geometricmultigrid (GMG) methods. Then we
will give someconcreteexamplesof methods for scalarelliptic equations.

3.1 A General Algebraic Multigrid Metho d

We warnt to construct a generalAMG method for a set of linear equations

Kix = by;

whereK ; isaregularn; n; matrix. The index indicatesthe level, 1 is the nest level, L
will be the coarsest. For AMG methods, which will be the main focus of this thesis, this
numbering is natural, but note that it is the reverseof the natural numbering for GMG
methods.

The rst step in this method is to create a full rank prolongation matrix P; based
on some coarsening(seelater, Section 3.2.2), with P; : R"2 | R" and n, < n;. For
this purpose(almost) only information from someauxiliary matrix H; is used. Normally
one usesthe information from the matrix K., but the utilization of an auxiliary matrix
(which is suggestedor examplein [Rei01])enhanceghe exibilit y of the method. In AMG
methods the sizeof the (negative) matrix ertries is related to the strength of the coupling
of two unknowns, thus di erent notions of “strength' canbe introducedfor di erent choices

35
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of H;. One could usee.g.

8
2 _1=ke;k if i 6 ) and vertexi and]j are connected,

(Hl)i;j = S k6i 1=keyk ifi=], (3.1)
"0 otherwise,

whereke;; k is the length of the edgeconnectingthe nodesi and j, to represen a virtual
FE-mesh. For corvection diusion equations, this could be modi ed for regions with
dominating corvection, which causesa faster \transp ort of information”. More choices
seemconceiable, but will not be dealt with in this thesis.

We also needa restriction matrix R? : R"* I R"2, for which we useR? = (P1)". Now
we can build the Galerkin projected matrix

K, = RZK,PJ;
and the auxiliary matrix on this level
H, = REH.P;:

Repeating this stepwe end up with a setof prolongation matricesP/,,, 1 = 1;:::;L 1,
whereP!,, :R"1 1 R"™ n;>n,> :::> n_, asetof restriction matrices R|**, and a
set of coarselevel matrices K, and auxiliary matricesH, with

K = RI™K P, (3.2)
and
Hi = R HPL,

Completing the AMG method we needon ead level | = 1;:::;L 1 an iterative method
for the problemKx, = b, _ .
x1™ = §(x;h);

the smaothing operator.
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Algorithm  3.1. Basic multigrid iteration for the systemK x, = h.
Let mye be the number of presmathing steps,myes: 0f postsmadthing steps. Supposewe
have chosena starting solution x° on level I.

for kK 1to mpye do xf = S|(x:‘ Lh); (presmathing)
b R™(b Kix™); (restriction)
if 1+1=1L

Compute the exact solution x, of K x. = Iy ;
else

begin

Apply Algorithm 3.1( times) on
KI.+1XI+1 :. D41 .
(with starting solution x%,; = 0)

and get X1 ;
end
X" XM P X (prolongation and correction)
for k  1to Myes do X[ = g(xPe ¥ hy); (postsmathing)

return X Xr]pre+mpost+l;
The part from (restriction) to (prolongation and correction) will be referredto as\ coarse
grid correction".

Repeated application of this algorithm until ful llment of somecorvergencecriterion
yields a basicAMG method. For = 1 the iteration is calleda "V-cycle', for = 2 "W-
cycle'. We usethe abbreviations V-mpye-Mpest resp. W-mpe-Mpos: for a V- resp. W-cycle
with mye presmathing and my,s: postsmanthing steps.

Geometric Multigrid. The basefor GMG methods is a hierarchical sequenceof ner

and ner meshes.Ead level hasan assaiated grid, thusP/,; and R[** canbe constructed
using geometricinformation of two consecutie meshesthe auxiliary matricesH, are not
needed.

The coarsesystemmatricesneednot be built usingthe Galerkin approad (3.2), direct
discretization of the di erential operator on the speci ¢ meshcan be performed. For non-
nested FE spaces(e.g. velocity componerts of the Crouzeix-Raviart elemen in Section
2.2.1.3)thesetwo approatesdi er, the direct discretization seemso be more natural.

3.1.1 Basic Convergence Analysis

The commondenominator and key point of all multigrid methods is the splitting of the
error componerts in two classes.One that can be reproducedon coarserlevels/grids and
therefore can be reducedby the coarsegrid correction and onethat hasto be reducedby
the smoother. For the geometricmultigrid method the rst group consiststypically of low
frequencyparts the secondof high frequencyparts of the error. The ability to cope with
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the rst groupis called approximation property, with the secondsmathing property. The
(optimal) convergenceof the multigrid method is the consequencef their combination.

The Geometric Multigrid Case. Two classicaltechniquesof proo ng the corvergence
of geometricmultigrid methods assuretwo-grid convergence(which canbe shown to imply
W-cycle corvergence)by di erent splittings of the two-grid iteration operator (without
postsmapthing)

M= (1 PLKLIRM™K)S™,
wherem is the number of smoothing steps(i.e. m = my in Algorithm 3.1) and §; the itera-
tion matrix of the smaother (for a preconditionedRichardsoniteration with preconditioner
KiwehaeS =1 K, K.

The rst technique, which was mainly deweloped by the Russiansdiool [Bac66,Ast71,
Kor77, Lan87] is basedon a sum splitting. Here the projections P'°" and P"9" (which
project on the subspacespannedby the low and high frequencyeigervectorsof the system
matrix) are introduced, and the idertity, decommsedinto | = P'°% PpPhidh is inserted
into M [** (left of S™) to get the estimate

kM |"k k(I P\, K R™K|)P""kksk™
+ k(I Pl K R™ K )kkP " sk

Two-grid corvergences then proven by shoving that the term k(I Pj,; K,,] R K )Pk
is small (the approximation property) and that kP "9"S™k is arbitrary small for su cien tly
many smoothing stepsm (the smaothing property).

The other classicaltechnique can be found in Hadkbusd [Hac85]. Here a product
splitting is constructed after inserting the identity | = K, 'K, into M :*1 (left of §™).
Then again two properties have to be shovn. One is the approximation property which

herereadsas
kK, ' PLKLIRMk, ckKk, (3.3)

the other the smaothing property
kK 5"k, (Mm)kK k-, (3.4)

wherec is a positive constart and (m) the so called smathing rate (independen of level
1) with
(m! O for m! 1:

They together imply the corvergenceof the two-grid method if m is large enough.

Remark 3.2 Instead of (3.3) and (3.4) the approximation and smathing properties are
often formulated directly using the h-saling induced by K, i.e.

kKt PlaKLiRI™ K chy

and
kKiS"k  (m)h, ;

with appropriate and k:k.
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The Algebraic Multigrid Case. Cornvergenceanalysisfor algebraic multigrid meth-
ods has beenmostly restricted to the symmetric positive de nite caseup to now. For a
symmetric positive de nite systemmatrix K, the smathing property (accordingto Ruge
and Stuben [RS86])takesthe form

kSiekg,  kekg, cle|ek2D|1 for all e, (3.5)

with ¢; > 0 independen of e and D, the diagonal of K. This implies that the smoother
hasto reducean error e strongly if kK,ekDI 1 Is large (comparedto kekg ). If additionally
the approximation property

k(I Pl K RIPKDeRE,  GokK (I Py K RI™ K ek] (3.6)
is ful lled with ¢, independen of e then

kSl Pl KL IR™K)ekg, k(I Pl KT R™K)ekg,
CkKi(l Pl K RI™ K )ekp +

1 k(I PLKLIR™K ek,

(1 ke ;

i.e. the two-grid algorithm with one postsmathing step corverges.

3.2 Examples in the Scalar Elliptic Case

Assumefor this section,that the systemwe want to solve resultsfrom a FE approximation
of the scalarelliptic model problem: Find u: G! R sud that

u(x) = b(x) for x 2 G;
u(x) = 0for x 2 @

which leadsto the linear system
Kiu= by:

3.2.1 Geometric Multigrid

Basic point wise iterations like the ! -Jacobi or the Gauss-Seidemethod can be usedas
smoothersin the caseof our model problem.

For nestedFE spacesX; X, :::(againthe index indicatesthe level) the construc-
tion of the prolongation is straight-forward, it only hasto reproduceidertit y.
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In the caseof non-nestedspacedli erent strategiesare needed.For the exampleof P*°
nite elemerns (e.g.the velocity componerts of the Crouzeix-Raviart elemen) one could
use

(

un(e) if eisa ne grid edgeinside a coarsegrid elemer,
%[uhj (&) + uyj,(e)] ife= 1\ ,fortwo coarsegrid elemens i, »
(3.7)

| —
P|+l Hh e -

(c.f. [BV90] or [Bre93]).

3.2.2 Algebraic Multigrid

We assumenow that the discretization of our model problem is nodal based,i.e. eah
unknown is assaiated with a uniqgue meshnode.

The smoother can again consistof ! -Jacobi or Gauss-Seidelterations. For the con-
struction of the coarselewels, i.e. the asserbling of the prolongation matrices there are
various possibilities, we will descrike those which will be important later in this theses.

3.2.2.1 AMG Based on C/F-Splitting

The classicalAMG methods usea splitting of the set of nodesinto a set of coarsenodes
(C) which will alsobe usedon the coarselevel, and a setof ne nodes(F) which “live' only
on the ne level, details can be found in [BMR84], [RS86]or [Stu014.

Supposethat | after sud a splitting has beenchosen| the unknowns are sorted
F-unknowns (living on F-nodes) rst, then C-unknowns (living on C-nodes). This induces
a block structuring of the linear system

KIIZF KIIZC UF — b: =b
Ker Kee Uc e

(and the samestructuring for H; and P/,,). Now for the prolongation it is obviously a
good choiceto leave the C-unknowns unchanged,i.e. to use
P¢

Plha = (3.8)

Kyu=

(omitting the level index | in PE), where again there are mary variants for PZ, someof
them will be described in what follows. All of them have in commonthat ead coarsenode
prolongatesonly to a very restricted set of ne nodesto prevert ll-in in the coarselevel
matrices and a resulting explosionof complexity.

One possibility is to do averagingon the F nodes,i.e. we could de ne

m—lj if k is a neighboring C node of a F nodej,

(PE)jk = (3.9)

0 otherwise,

wherem; is the number of neighboring C nodesof the F nodej, and the neighbor-relation
is induced by non-zeroertries in the auxiliary matrix H.
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Remark 3.3. If the ne levelmeshwasconstructed by a hierarchical re nement of a coarse
mesh,the C and F nodesare chosenaacordingly, and the underlying discretization is the
P, element,then this strategy reproduces the geometric multigrid methal.

A more sophisticated prolongation can be found in [Stu0l1d. Before presering it we
needthe conceptsof M-matrices and of essetally positive type matrices.

De nition  3.4. A matrix H = (h;) is called M-matrix if

1. h; > Oforalli,

2.hj Oforalli6j,

3. H isregular,andH ' 0 (wherehere" 'is meart componen-wise).
(Onecanskipthe rst requiremen becausat is aconsequencef 2. and 3., seee.g.[Hac93].)

De nition  3.5. A matrix H = (h;) is saidto be of essentialy positive type if it is positive
de nite and there existsa constart ! > 0 sud that for all e,

X 2 X 2
( hi)e &) ! ( hj)e )3 (3.10)
i5j i5j
with (
h = hij if hij <0,
"~ 0 otherwise
(and ha- = hij hij ).

Remark 3.6. If H is a M-matrix than condition (3.10) is full led with ! = 1. The class
of essentialy positive type matrices was introduced to capture \almost M"-matric es with
small positive o -diagonal entries which can be ‘repaired’ (see [Bra8q).

Lemma 3.7. If a matrix H is of essentialy positive type with ! asin (3.10) then for all e

2
'—eTDHe e'He; (3.11)
whee Dy is the diagonalof H.
Proof. It is easyto ched that
2 1 X X 2 2
I—eTDHe e'He > hix + 1 e+ 2 g + =1 &
| A ' )

and that
2

T 2 (&+€) 'E 1 &€+ 2gq+ 'E 1 € !g(q2+q§):
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Thus X X
2
TohwE ) 2 (e + &) (3.12)
Cok jik
j8k i6k
With e= (0;:::;0;1;0;:::;0)7, the i-th unit vector, we get from (3.10)
X X
hij ! hij ;
j j
j6i i6i

which together with (3.12) gives

and therefore completesthe proof. O

From now on we will write
A B

for two matrices A and B if A B is positive semi-de nite (or A > B if it is positive
de nite), e.g.we canexpress(3.11)as 2Dy H.

We shortly sketch the construction of a reasonableP{ for an essetially positive type
matrix H, = (h;); accordingto [Stu01g. The construction is donein a way that for a
coarselevel vector ec the interpolation PEec \ts smoothly" to ec, i.e. that if we set

F
e= PIC ec
then X
hie + hjg 0, fori2F, (3.13)
i 2N;j

whereN; is the set of neighboring F- and C-nodesof F-nodei, i.e.
N;:=fj:j6i h; 609

the direct neighlorhood. We will denotethe subsetof N; with negative matrix connections
with N; ,and P; C\ N; will bethe setof interpolatory nodes,i.e. the set of C-nodes
which prolongateto F-nodei. If we assumethat for smaoth error e

1 X 1 X
j2p;i ' i2P; J2N; U i2N;

we could approximate (3.13) by
X
hie + | hjeg = 0
j2Pi
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with P h
= pli2n
j 2P hij
But for practical reasons(details can be found in [Sta01d) we add all positive ertries to
the diagonal,i.e. we use X
mie+~  hjg =0
i 2P
with X
M =hi+  hj
J2N;i
and P .
~ = pi2N i
j2Pi Ui
Thus we set
(PC'::)jil = j hjlzhjj . (314)

If P/,, is of the form (3.8) a su cient condition for the approximation property (3.6)
is given by the following theorem (without proof).

Theorem 3.8. [RS84 If for all e= &

ke, Pleckd r  ckekf ; (3.15)

whee c is independentof e, and D, denotesthe diagonalof K, then (3.6) is satis ed (here
k:kp,.r denotesthe "F-part’ of the norm).

For the prolongation (3.14) with H; K, wecan nd anothersu cient condition, again
without proof.

Theorem p3.9. [Stu01g Theorem A.4.5] Let K| = (hjx)jx > O be of essentialy positive-
type with | h;, O for all k. With xed 1, selet a C/F-splitting suchthat, for each
j 2F, thereis asetP; C\ N; satisfying

X 1 X
ihd = dhyd (3.16)
k2Pj k2N;j
Then the interpolation (3.14) satis es for all e
ke Pleckd ek ; (3.17)

with I from (3.10).
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Choice of C nodes. What still hasto be xed is a concreteC/F-splitting. A very easy
to implemert algorithm for this purposeis the red-black-oloring methal [Kic98].

Algorithm  3.10. Red-Blac k Coloring

rep eat until all the nodesare colored
begin
step 1: choosean uncolorednode (e.g. with minimal node number);
step 2: this node is coloredblack;
step 3: all uncoloredneighbors are coloredred;
end

The black nodesare then usedas C nodes.

A rst variation of this algorithm is to usea di erent notion of "neigtboring' in step 3,
to color only the strongly negatively couplad (snc) nodes,wherea node | is saidto be snc

to a nodek if
hj k "str miaxj hj ij; (318)

with xed parameter"g, 2 (0;1] (typically "g = 0:25). We denote the set of strongly
negative couplingsof a node j by

S =fk2N;: jissncto kg (3.19)
and the set of transposedstrongly negative couplingsby
S'=fk:j2Sg (3.20)
Now step 3 can be replacedby
\all uncolorednodeswhich are sncto the black node are coloredred". (3.22)

Another variant concernsstep 1. The order in which the C nodesare chosenmay be
crucial if we want to obtain a uniform distribution of C and F nodes. One suggestionin
this direction in [RS84 is to introduce a \measure of importance" ; for eat nodej in
the set of "undecided'nodesU, and to choosea node with maximal ; asnext C node.
One possibility for this measureis

=jST\ Uj+ 2S"\ Fj; (3.22)
J J ]

which canbe evaluated for all nodesin a preprocessingstep and updated locally after eat
iteration step.
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3.2.2.2 Element Agglomerating AMGe

The algorithms in the previous section were basedon heuristics for M-matrices (or "al-
most' M-matrices, like the classof essetially positive type matrices). AMGe (AMG using
elemert sti ness matrices)wasdewelopedto obtain moregeneralmethodsfor FEM systems,
where it takes advantage of the elemem matrices. In [BCF*00] AMGe was introduced,
the coarsegrid construction, i.e. the C/F-splitting was adopted from standard AMG, the
interpolation was built using the new technique.

An approad which combined the AMGe ideawith a method yielding detailed topologic
information on coarselevels (i.e. elemelts, faces,edges,nodes) was presened in [JV01],
we will show the basicideasand algorithms.

Assumethat on onelevel (e.g.on the discretization level) we know the elemen-to-node
connectivity, i.e. which nodesare part of a given elemen. Assumefurther that a method
for the agglomerationof elemens is known, satisfying the requiremerns that ead elemen
is part of oneunique agglomerateand that ead agglomerateis a connectedset, meaning
that for any two elemerts part of the the sameagglomeratethere existsa connectedpath of
elemerts of this agglomerateconnectingthe two elemens. Then we canapply the following
algorithm for the creation of the coarselevel topology:.

Algorithm  3.11. [JV01] AMGe coarse level top ology
1. Agglomeratethe ne elemets to coarseelemetts E; (with the above properties).

2. Consider all intersectionsE; \ Ey for all pairs of di erent agglomeratedelemers
E; and Ex. If sud an intersection is maximal, i.e. is not cortained in any other
intersection, then it is called a face.

3. q;onsider the facesas sets of nodes. For eah node n compute the intersection
fall faceswhich cortain ng. Now the set of minimal, nonemply intersectionsde-
nes the vertices.

We have formulated the algorithm for the 3D case,but it can be directly applied to 2D
problems(then the “faces'correspnd to edges).If (in the 3D case)oneadditionally wants
to construct edges,then this can be donein step 3 using the set of minimal, nonempty
intersectionswhich are not already vertices.

For the construction of the interpolation we rst de ne the neighborhood of a ( ne-
level) node n by

( n):= fall agglomeratedelemerts that cortain ng

and the minimal set
\
( n) := fall agglomeratedelemetts that cortain ng

(( n) can be a node, edge, face or elemen). For the coarse-leel nodes we use again
identity prolongation (they are the C-nodes of standard AMG) and for the edges,faces,
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cells we proceedrecursiely as follows. Assumefor a set ( n) that the interpolation on
the unknownsin @ n) hasbeen xed, ! and we want to calculatethe interpolation on the
nodesin ( n) n @ n). For that we build the local sti ness matrix of ( n) (consisting
of the elemen sti ness matrices of elemerts in ( n)) with the underlying partitioning

(Cmnaln)[ @ n)

Ki Kip g (n)n@ n)
Kbi Kpp 0 @ n)

(i standsfor interior, b for boundary) and perform local energy minimization:

Kin =

K. K. U;
. T, T ii ib I
nd u; sud that (u'ul) Ko Koo Us

is minimized, with given uy;
with the result (for symmetric, positive de nite K ( )
u = Kii lKibUb:
Now we can set
0 verticesof ( j)nfkg

Lok ai) |

POk =  Ki'Kip P;

whereP; is the localizedversionof P/, .

Remark 3.12 The drawkack of this methal is a possibly exgensive set-up phase,as many
local minimization problemshaveto be solvel and one hasto saveall the elementsti ness
matrices. Approachesto overcome this di culty can be foundin [HVO1].

Remark 3.13 A very nice property of elementagglomeating AMGe is the completeinfor-
mation alout grid topology on the coarse levels. This could be utilized in various ways, so
e.g. stability analysis for sadde point problemscan be performed nearly as in a geomet-
ric context (c.f. Section 4.1.3) or as another exampleone could use the information to
oonstruct someFAS-like scheme$ for nonlinear problems,which is donein [JVWO02].

What we have not specied yet is how to construct the coarseagglomerates. One
possibility for that is the following algorithm.

1The “boundary' @( n) is de ned straightforward: if ( n) is afacethen @( n) are those nodesof ( n)
which belongto more than oneface,if ( n) is an agglomeratedelemen then @ n) is the union of faces
of this elemer.

2FAS ... full approximation storage a multigrid method which is capableof solving nonlinear problems,
deweloped by Brandt [Bra77].



CHAPTER 3. MULTIGRID METHODS a7

Algorithm  3.14. [JV01] Jones-V assilevski element agglomeration
Assumewe have a setof ner level elemetts f g g and facesf f; g, and introducean integer
weight w(f;) for ead facef;.

initiate. Setw(f) O for all facesf;

global search. Find a facef with maximal w(f), if w(f) = 1 we are done; set
E -

1. SetE E[ e[ e, wheree;\ e =f and setwnax — W(f), w(f) 1

2. Increment w(f;) w(f,) + 1 for all facesf; sud that w(f;) & landf;isa
neighbor of f ;

3. Incremen w(f,) w(f,) + 1 for all facesf, suc that w(f,) 6 1,f,isa
neighbor of f , andf, and f are facesof a commonelemert;

4. From the neighbors of f, choosea face g with maximal w(g); if w(g)  Wmax
setf gandgoto step1.;

5. If all neighbors of f have smaller weight than wp., the agglomeratedelemen
E is complete;setw(Q) 1 for all facesof the elemens e cortained in E;
goto global search;

Remark 3.15 In [JV01] alsomadi ¢ ations to this algorithm are presentel whichallow some
kind of semi-marsening,i.e. coarseningwith the focusin onesgeci ¢ direction (for example
determinead by convection).

For the 2D casethis algorithm mostly producesnice agglomeratedelemerts, in the 3D
casesomestrangeshapesmay occur, thereforesomeadjustmerts of the algorithm seemto
be necessary

A secondmethod which producesgood agglomeratesbut often leadsto a too strong
coarsening(what hasa disadwantageousin uence on the h-independence)is the following.

Algorithm  3.16. Red-grey-blac k element agglomeration

rep eat until all elemens are colored
begin
choosean uncoloredelemer, this is coloredbladk;
color all uncoloredor grey neighboring elemens red
(where "neigtboring' could be induced by faces,edgesor nodes);
color all uncoloredelemets neighboredto red elemens grey;
end
the bladk elemerts plus surrounding red elemeits build the agglomeratedelemetts;
eah grey elemen is appendedto the agglomeratewhereit \ts best"
(e.g.to the agglomerateit sharesthe largestfacewith);
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AMG Metho ds for the Mixed
Problem

We now comebadk to the original problem, i.e. to solve the saddlepoint system(2.29)

Aw) BT u _ f

B C p g;

using algebraicmultigrid methods.

The Segregated Approac h. A rst possibility is the segregated approach One could
use an outer solver which iteratively decouplesthe equations| for example SIMPLE
(Section 2.5.2), Uzawa (Section 2.5.3), or the preconditionerin Section2.5.3.1combined
with a Krylov spacemethod (section 2.5.1) | and then use an AMG method for the
resulting scalar elliptic problems. This direction is followed e.g.in [GNR9§], [Stu014 or
[SEKWO0L1] and related publications.

A very nice property of this approad is the simplicity of its realization in a concrete
computer program. If componerts like scalar solvers are available they are easily assem-
bled to a full solver for saddle point problems. One important subproblem here is the
dewelopmen of a fast and robust (multigrid-) solver for corvection di usion problems. We
will not gointo detail about that but referto the literature, for example(without claiming
completeness]Reu95,BW97, OGWW98, YVB98, PTV00, DMSO01, Reu02].

Unfortunately, sometimes(especially for Navier-Stokesresp. Oseenequations)the seg-
regatedapproad hasthe drawbad of a lossof optimality, i.e. an asymptotic complexity
considerablylarger than O(n) (n being the number of unknowns).

This is one of the reasonswhy we want to follow a dierent way. We will dewlop
AMG methods for the coupledproblem. As the techniquesof the previouschapter mostly
require positive de nite systems,we have to adapt the ingredierts to t to our problem
and dewelop somenew methods.

48
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4.1 Construction of the Coarse Level Systems

The rst important part of our strategy is to avoid a mixture of velocity componerts and
pressureon the coarselevels (which could occur if one just applies some\o -the-shelf "
solver to the whole saddlepoint system),thus we choosea prolongation

.
P|I+1 = I+1 JII+1 :
with |
fa= '™ in2D
II+1
resp. 0 | 1
II+1
N, =@ 1., A'in 3D,
II+1
where
I, :R"™ I RM

is the prolongation matrix for one velocity componen,
Jl,y tRM= 1 R™
for pressure.We denotethe correspnding restriction matrices by r“l, I '*1, Jl'+l and use
r|l+l — (r~|l+l)T; |||+1 — (||+1)T |+l — (‘J|+1)T
The systemmatrix on level | is denotedby

A BJ
Bl G

the spacedor velocity and pressureunknown vectorsby U, := (R")9 and Q =R™and
the coarsefunction spacesby
n 0
U= v:9w?2U suhthatv=rz:::nw ;

n
Qi :

(@)

p: 992 Q sud that p= J3J5:::J/ 'q
Analogousto (2.19) we introduce the FE-AMG-isomorphisms |, : U, ! U, and 'Q
Q! Qn and we will often identify elemeis of U, and U, and Q and Q, (seealsoFigure
4. 1) In situations where |t is not Ob\/IOUS which Ievel the underllne notation refersto, we
will usethe operators 'U and 'Q explicitly.

The systemmatrix on level | is constructedby Galerkin projection from the ner level
| 1 asdescritedin Section3.1, we only have to take extra care of the stabilizing terms
for unstable elemens asin Section2.2.1.2or convection asin Section2.4.1.



CHAPTER 4. AMG METHODS FOR THE MIXED PROBLEM 50

Figure 4.1 Usingthe FE-AMG-isomorphism we can assaiate coarsebasisfunctions with
basisvectorsof R™. Here we have three basisfunctions for a certain Q;.

Both are especially delicatein the multigrid setting, becauseaf the modesillustrated in
Figures2.1 and 2.4 occur on a coarselevel, then the smoother on the ner level might not
dampthem (they have lower frequencythan the modesthe smoother is intendedto reduce)
and the whole iteration might fail. As both terms have a non-standard h-dependencewe
try to reproducethis on coarserevelsto avoid a ~ attening' of the stabilization. Numerical
tests show that for the SUPG term ag in (2.27) it is su cient to do a simple scaling,i.e.

r

n
As., = ¢ . '1 N Ag Iy (4.1)

The scalingof the elemen stabilization will be dealt with later (Section4.1.2).

Another major part of our strategy is to somehav project the relation of the velocity
and pressureunknowns, which is indicated by the specic nite elemem, to the coarser
levels. This makes it obvious that we will not construct a \black box" method, i.e. a
method wherethe userjust hasto feedin the matrix, and the solution is found in optimal
computation time. We try to exploit more information and hope that this will pay o .

We will now construct coarselevel systems,which comply with this strategy, for the
conforming linear elemeits of Section 2.2.1, namely the modi ed Taylor-Hood elemen
P,isoP,-P,, the P;-P;-stab elemen, and the Crouzeix-Raviart elemen P{°-P,.
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Figure 4.2 Motivation for the construction of the coarselevel hierarchy for the modi ed
Taylor-Hood elemen. Red dots indicate velocity nodes, blue dots (partially behind the
red dots) pressurenodes.

Buluasieod (oreiqabie)

(geometric) re nement

4.1.1 The P;isoP,-P; Hierarc hy

The motivation for the construction of the hierardy is basedon the GMG method for this
elemen. If we look at Figure 4.2 we seethat the velocity nodeson one level are exactly
the pressurenodes of the next ner level. In the AMG casewe usethis obsenation for
reversingthe construction.

We start with the pressureunknowns on a given mesh. We take a method of Chapter
3 with auxiliary matricesasin (3.1) or equalto a (pressure)Laplacian, and construct a
hierarchy with prolongation matricesJ,, .

The given \v elocity mesh" for the P,isoP,-P; elemen is the oncere ned (pressure)
mesh. Thus, the rst coarseningstep for the velocities can be performed purely geomet-
rically, the prolongation is simply the interpolation from one (pressure)grid to the once
re ned (velocity) grid. For the coarserpart of the velocity hierardhy we then take the
shifted pressurehierarchy, i.e. l|,; = Jl' Yorl 2.

Remark 4.1 A discretization using the P,isoP,-P; elementrequiresa re nement of a given
mesh(for the velaities). If we want to avoid this (e.g. becauseof limitations of computer
memory), then we could use the given meshas \velocity mesh", construct the hierarchy
basal on the velaity nodes,and take the rst coarseneal levelas rst pressue ‘'mesh'.
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Figure 4.3 In the original approad, which is sketched in the upper part of the gure,
the pressurenodesof onelevel are the velocity nodesof the coarsernodes. In the 2-shift
strategy (lower part of the gure) thereis a gap in between(exceptfor the nest level).
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©
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\ 21 coarse(p) mes&%J 3
N E| ——"8p 2 4 u
e]
3 &
< p Su
o 2
o p Q
=
\J o

Note that in this casethe discretization and the solution processare no longer fully
separated, the pressue unknownshaveno direct interpretation in a nite elementcontext,
only their interpolation to the velaity mesh.

A problem which now turns up againis the ful lment of the inf-sup condition. If the
coarselevel systemsget unstablethen this will in uence the appraximation property badly,
and that they can get unstable can easily be seenby a (we admit pathological) example.

Take at one coarseningstep J/,, = I, the identity matrix. Then the velocity and
pressureunknowns will collapseto an (unstabilized!) P;-P; situation.

It is clearthat this exampleis too extreme, neverthelessone obsenes(especially in the
3D case)problemsin the numericaltests. It seemsasif somemethods for the construction
of the hierarchy are lessprone to thesestability problemsthan others, but up to now we
have found no generalcriterion, which could for exampleguarartee the inf-sup condition
on the coarserlevels.

A rst (purely heuristical) way out is the following. The inf-sup condition requires
roughly spoken, that there are enoughvelocity unknowns per pressureunknown to get a
big enoughquotient. We could satisfy this by a larger shift betweenvelocity and pressure
nodes, for examplea 2-shift (illustrated in Figure 4.3),i.e.1{,; = J,' 2

A better way (with analytical badkground) was found for the P,-P;-stab elemen.
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4.1.2 The P,-P;-stab Hierarc hy

Here the unknowns for the velocity componerts and for the pressureunknowns “live' on
the samepositions of the elemen, on the nodes. Thusit seemgo be a good choiceto take
an arbitrary strategy from Chapter 3 for the construction of say 1/,, and useJ/,; = 1/,;
for the pressure.

With someweak assumptionson I/, it will be possibleto show stability of the coarser
levels, what has to be specied rst is the construction of the coarselevel stabilizing
matricesC,. For reasonswhich will becomeapparert in the proof of Lemma4.3 we propose
the following. Set

Ci=Ci; G =3"CJ),; forl 1 (4.2)
and 5. iy
Cia = %CI{L; for| 1, (4.3)

where h is the discretization parameter of the nest level, M, the Galerkin projection of

the massmatrix M; to level I, D, the diagonal of one (componert-) block of the Galerkin

projection of the vector-LaplacianAp,, and max(D, *M,) denotesthe largesteigervalue of

D, 'M,. For practical computation we will usevery rough estimatesfor (D, *M)).
Now we will shawv stability of the coarselevel systemsin the form

Bi(u;p;v;0)
su kuka. + kpk 8(u;p) 2 U X 4.4
Osvzzl kaADl + quMl ( AD| p MI) ( p) | 9| ( )
08 2Q,

with a constart and
Bi(u;p;vig) = u'Ap v+ p' Biv+u'Bq p'Caq

For this we usethe ideasgivenin [FS91 FHS93 and just ‘translate' them to our algebraic
setting.

Remark 4.2 Condition (4.4) is the inf-sup condition needad by the theorem of Babuskaand
Aziz [BA72], [Bra97, theorem 3.6]. It would be a consguene of the LBB condition nesded
by Theorem 2.2, the reversedoces obviouslynot hold.

The main point of the stability analysiswill be the following lemma, which has been
proven in [Ver84a]for the geometriccase.
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Lemma 4.3. Assumethat for all elements ; 2 Ty, the diameterh , full Is

h h  h (4.5)

— ]

with positive constants  and and the discretization parameter h, and assumefurther
that Ap, is symmetric and of essentialy positive type (see De nition 3.5) and that for all
vi2 U, wecan nd _*v, 2 U,,; suchthat

kvi M "tvikd, 1kv|k,§D|; (4.6)

with someconstant ;.

sup B'p
06v2U, kaADI

1
akpkw, d p'Cp? 8p2 Q: (4.7)

Proof. Sincein the courseof this proof we will have to distinguish betweenthe elemerts
of U,, QI and their represemativesin U, Q; we will again usethe \underline-notation”.
Obviously
kllkﬁ/“ max (D 1Ml)kl|k%,

for any x;, hence
kv, M 7vikG, ma(D) M) akvikg

thereforethere exists |™v; 2 Uj4;, sud that
kv :+1V|k(2) max (D 1MI) 1kV|k§: (4.8)

BecauseAp, is essenally positive de nite we know from Lemma 3.7 that

IEXTD|L xTAp X: (4.9)
Becauseof
krI‘+1_:+lMIkAD| kMIkAD| Il’(rltil—rrl!l MIkAD|
2 +
,—kml vy viko,
r 2_
!—1kv|kAD|
we seethat ro |
2
kr|l+1_:+11|kAD, 1+ ,—1 kv, Kap, : (4.10)
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We will now showv by induction that on all levels| we can estimate

(dIV Wi, p|) C|kW|k1kp|ko d|kW|k1 EITCIEI for all ] 2 Q|. (411)

For that we assumethat (4.11) is valid on somelevel | (for | = 1t is valid becausehere
we are in the geometriccase).Setw,,; = :"1w,. Then

(divwis;pier) = (div(wier W) per) + (divwg; pres)
= (W) Wiy r paa) + (divwy; prer)

©1=2 1=2
X

X
. h J‘2kW| W|+1 k(%’ i . h2J kl’ p|+1 k(z)’ i
j j

+ (divwy; pri+1):

(4.12)

We will now derive estimatesfor the terms in the last inequality. Becauseof (4.5) and
(4.8) we know that

X
h J,2kW| W1 k% j (_h) 2kW| W1 k%
j
1 max(D| 1MI) 2.
_ZTkwlk '

with the de nition of C;, Cj4+;, and Cj;; we get

h2

T .
C+ ’
max(D| 1M|)EI+1 ! 1F_)|+1

2 2 — NI —
) h i kr Pr+1 kO? i EI+1CI+1EI+1 -
J
and becauseof (4.11) we can derive that

1=2
(divwi;piia)  akwikikpaako  dikwiky pfL 3" GNP,
s

max(D| 1MI) T 1:2.
kw, k Ci+
max(D| 11MI 1) S EI+1 ! lEI+1

= gkwkikpiiko d

Combining theseresults with (4.12) gives
| " . S
divwiii;pea) —kwke p,, Cuap,,  + (divwipeg)
_ S |

D, M) 1=2
— 144 max(D) M kwiky p.. Ci
— ! max(D| 1]_MI l) i EI+1 ! 1E|+1

+ G Kpr+1 kokw Ky:
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With (4.10) we get

(div W1 ;pren)
kW|+1 k1

1(diVWi;pr)
2 kW|k1
G= 2Kpi+1 Ko
P— 4 (D, 'M)) | 1=2
1+ | max | | E|T+1C|+1E|+1 :

I 2 max(D| 11MI 1)

2__

hence,with

¢g=, and
p_ S
1 + ﬂ max(D| 1MI)

dy = —
ok 2 2 max(D; 4M; 1)

G+1 -

we completethe proof.

We are now ready to prove stability.

Theorem 4.4. Supmsethat the assumptionsof Lemma4.3 hold. Then

Bi(uip;viQ) kukao, + kpku,  8(U;P)2U, Q; (4.13)

su
06v2U, kaADI + Kok,
06 G2Q,
with some > 0 (where may degendon I).
Proof. Choose (for givenu and p) w 2 U, sud that the suprenum in Lemma 4.3 is

attained and that kaADI = kpkm,. Now

Bi(u;pw;0) = uTAp,w + p'Bjw
Lemma 4.3 T 1=2
k ukAleWkADI + qukAleple d|kaADI p'Cp
- K Uka, kpkw, + Gkpk?,  dikpku, p'Cip
e '- d '-
kUK, Skpkiy, + okpkd, 2,', p'Cip '2 kpkZ,
= ikuki, + okpky,  sp'Cip;
where ¢ and d, are the constaris given by Lemma4.3and ; := Zi 2= 0 51+ d),
and ;:= & are positive constarts if we choose0 < " < ﬁcé.-
We now take (v;q) = (u + #w; p) with a parameter# and get
Bi(u;p;v;d) = Bi(u;p;u + #w; p)
= Bi(u;p;u; p) + #Bi(u;p;w; 0)
# 3p' Cip:

kuki, +p'Cip # 1kuky =+ # okpkf,
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We choose0 < # < min ;% | resulting in

Bi(u;p;v;a) 4 kuk,iDI + kpkfy,
with someappropriate constart 4. Since

kaADI + quM| = ku + #WkAD| + kple
kUkAD| + #kaADl + kple

(1+#) Kuka, + kpk,

we cansumup

Bi(u;p;Vv;Qq) kUkiDl + kpkf,h 5
kvkao, + kakw,  “kuka, + kpky, 2

ku kAD| + kple

(where 5= 4=1+ #)). O

Now the question remains, how restrictive assumption (4.6) is. For the Ruge-Stiben
prolongation (3.14) we have discusseda similar property in Theorems3.8 and 3.9. Since
property (3.16) in Theorem 3.9 is fullled if every F node is strongly coupledto a C
node (which is the casefor Algorithm 3.10with the modi cations concerningthe strongly
negative couplings), we get that (3.17) holds, i.e.

ker  PCeckpr  ckeky, :

Thus, (4.6) is ful lled for

I+1  VF
— Ve

+1

v = = V¢!

As the methods presened in Sections4.1.1 and 4.1.2 were more or lesstailor-made
for mixed elemerts constructedfrom linear elemetts, the questionon generalizationscould
arise. Onepossibility could be the strategy deweloped by John, Knobloch, Matthies and To-
biska in [JKMTO02] for geometricmultigrid methods. There the rst ne-to-coarsetransfer
is an elemert-t ype transfer, in their casefrom higher-orderelemeits (which possesgprefer-
able discretization properties) to the P{°-Py elemen (which possessegreferableproperties
in connectionwith the linear solver). Adapting this ideato our needs,we could discretize
using an arbitrary mixed-elemeh transfer to the P,-P;-stab elemen and then use the
hierarchy presertied above. To usthis seemdo be a good possibility, however we have not
made any numerical experiencesin this direction up to now.

Another generalmethod is the application of the elemen agglomeratingAMGe tech-
nique (Section 3.2.2.2)on mixed elemeits. We exemplarily presen this for the Crouzeix-
Raviart elemen in the following section.
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Figure 4.4 When constructing the coarselevel shape function asseiated to the dark-
grey edge,we set the ne (edge-)unknowns which are part of this coarseedgeto 1, the
ne (edge-) unknowns which are part of the light-grey edgesto 0 and perform energy
minimization in the interior.

4.1.3 The P{°-Po Hierarc hy | Applying AMGe

In the previoussectionsthe AMG prolongation was always motivated by the prolongation
which would have been constructedin the GMG case. For the P°-P, elemen the geo-
metric hierardy is non-nested,a property which cannot be achieved by AMG methods (at
least not in a straight-forward manner), as the Galerkin approad here implies that the
constructedhierarcdy is nested. Newverthelesswe try to construct a \geometric reasonable”
hierarchy.

Using the elemen agglomerationapproad of Section3.2.2.2we obtain on ead coarse
level a topology of elemetts, faces,edgesand nodes. Now like in the geometric casewe
assiate ead facewith avelocity "node', i.e. two resp.three velocity componert unknowns,
and ead elemen with a pressureunknown.

The interpolation for pressureis trivial, we do idertity prolongation for all ne-level
elemerts which are part of one coarse-leel elemen. We proposeto useidertity prolonga-
tion alsofrom ead coarse-leel faceto the ne-level faceswhich are part of it and usethe
energyminimization approad in the interior of the elemen, asillustrated in Figure 4.4.

Remark 4.5. The set-up processfor this elementis computationally cheaper asin the case
descriled in Section 3.2.2.2, becausewe only haveto perform enerlgy minimization in the
interior of each element, not for each elementpairing connected by a face, and we do not
have to savethe elementsti ness matrices se@rately (we do not need any face-to-fae
entries, and the interior-to-face and interior-to-interior entries are found explicitly in the
glokal matrix).

Again we can show the inf-sup condition on all levels by applying the following lemma
inductively.
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Lemma 4.6. Assumethat there existsa linear Operator } 1 U1 Uy with

b | vi 1;9)=Db(v, 1;J] 'g) forallg2Qandv, 12U, ; (4.14)
and that
k : 1Vi 1k1 kV| 1k1 for all Vi 12 U 4, (415)

with  independentof h and I.
Then the inf-sup condition in U, ; Q; ; implies the inf-sup condition in U, Q.

Proof.

- bvia) e gy, B ua)
06G2Qi osv,2u;, KViKikgko  0642Qi0sv, j2u, , K | Vikikgke
. (v, 1;J|| 9) kv, 1kg -
= inf su
0802Qi o v, 12pU| 1 kV| 1k1kao k I 1Vi 1kl

O

The proof of the following theoremis rather technical aswe often have to switch between
two consecutie levelsand the nest level.

Theorem 4.7. Assumethat

Mina . (4.16)
hmin
whee hnx is the maximal elementdiameter and hy,, the minimal diameter (at the nest
level), and is a positive constant, and assumethat the coarse levelsare built as descriled
alove.
Then the inf-sup condition holdson all levels.

Proof. For the proof we will construct an operator | , with properties (4.14), (4.15).
We considerthe 2D case rst (illustrated in Figure 4.5). De ne on level | the index
setsE]-' of all (I 1)-level edgeswhich are part of |-level edgej. We de ne the length of a

I-level edgerecursiwely by X
d = g ! (for > 1),

szj'

for | = 1it is determined by the mesh.

Wenow construct | , asfollows. For some(l  1)-level function v; ; the I-level function

| Vi 1 is determined by its valueson the (I-level) edges.We set the value on a certain

I-level edgeto the weighted meanof the valuesof v, ; onthe (I 1)-level edgeswhich are
part of the edge,i.e.

1 X | 1

| _
A €
— i 9,
k2E|

vi 1k:



CHAPTER 4. AMG METHODS FOR THE MIXED PROBLEM 60

Figure 4.5 The solid thick black lines descrike two level | elements, the dashedlines level
| 1 elemernts and the solid thin linesthe nest level elemelts. For edgej this gure shows
the setsE' and E/, for edgek the tube .

edgek

| =<
edgej

E 3 K

For a vector valued function v, ; the term { Vi 1 will denotethe application of { , to

the componerts.
The factthat | ; fullls (4.14)is seenasfollows. We want to show that

x £ x Z
div( | ,vi 1) gdx = divv, 1 (J! 'g)dx:
j i i j

Becauseq = J,' g (in functional notation), becauseq is piecewiseconstart on the I-
level agglomeratesE;, and becauseboth v, ; and | V| 1 are piecewiselinear on the
(nest level) elemens ; and cortinuousat the midpoints of their edgeswe can usepartial
integration to derive

x £ X Z

div( | ;vi 1) gdx= " qg(E) (| qvi2) N

j j j @

and x Z | X Z
divv, 1 (J) 'g)dx = q(E)) Vi 1 N
i i i @;

By the de nition of | ; we seethat

Z Z
( { Vi 1) n= vi 1 n for all agglomeratest;,
@E; @;

therefore (4.14) is shown to be true.
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What remainsto show is (4.15). This will be done by the introduction of an auxiliary
operator ~| , onthe ner level U, 1, which ful lls (4.15) and which is idertical to | ; on
the coarseedges.Becausewe useenergyminimization for the interpolation in the interior
of agglomerateswe will then be able to estimate | ; by ~! ;, which will complete the
proof.

Wedene ~| ;:U; 1! U by

( v, 1) if j 2 g, for all k,

~ —
Ty )y i ) if j 2 E. for a certain k.

Note that ~} Wi 1 still “lives'onlevell 1, only the valuesat the I-level facesare averaged.
We try to nd an upper bound for vy 1  ~! vy 1 . Dene E: the index set of all
1

nest -level edgeswhich lie on coarseedgej. Setw, (componert of nestéevel function
v 2 Uy) equalto v, ¢ ~} Vi 1onall (nest level) degreesof freedomin j E,* and zero
on all other ( nest level) degreesof freedom. Then becauseof the energyminimization in
the prolongation

Z Z
~| ~I
rvia FiVia I v AL dx r Wr \7‘1dX

G G 7

X (4.17)
r wr v dx;

I-level j
edgesj

where ; isthe tube of ( nest level) elemets which sharea point or edgewith I-level edge
number j .

For a ( nest level) triangle PQR and the basisfunction ' pq, which is equalto 1 at the
midpoint of PQ and zeroat the midpoints of QR and RP one can easily calculate

Z
iPQj?
r' por dx = ———;
pr 0 T2 T A(PQR)

where A(P QR) denotesthe areaof the triangle PQR. Now with

)2
o = max (length of longestedgeof ;)
| A(j)
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Figure 4.6 Detail of Figure 4.5, the setS!, 1.

vi 1(az)

(U 1VI 1)k

we get
i
Fwrwdx ¢ ((w))°

] sZEj‘

e & st s K (4.18)

C1 Vi Vit
sZEJ-';
k2E|

where } 'v is the represetation of a coarsefunction v on U, asin Section4.1.

We note that r v, 1 is constart on eatcr nest level elemen. Therefore we can derive
the following estimate (illustrated in Figure 4.6). Assumethat the (I 1)-level edgeg and
k sharethe node m. We denotethe set of all nest level elemens which sharethe node
m with S} 1, its index setwith S| ! (where we assumew.l.o.g. S|, = f1;2;:::;i + 1g).
For eat elemen . in S|, ! we denotethe edge-ector of the edgenot connectedto m (\in
direction” j ! k) with re.
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Then

v Dk )=y Dk vi@)+ v (@) via@)+ i+ (vio@) (o))

=5 Vg, ra+iii+rvigj,, lia
- - - - q - - - -
Vi), TV Jra it rvia) oy IV lial g

NIFRNI-

whereay,...,a are nest level edgemidpoints asin Figure 4.6, thus (using the algebraic-
geometricmean inequality)
. h [
+1" . . . .
7 P () TRy T L (R VEY IS CE ST o |2 VPY LN R VIT I
4 (4.19)

C rv ir v (dx:
sht

We apply this estimateto the last term in (4.18), which is donedirectly for those(l 1)-
level edgess and k which sharea node. For all otherswe have to build a chain of connecting
edges.
This leadsto Z Z
rwr wwdx ¢ rv 1r vy 1dx:
| |
Now becauseof (4.17) we get

~I }
Vi A . Cakv) 1Kq;

thus
~: Vi1 . (1+ ca)kvp 1ky:

Becausewe useenergyminimization for the interpolation in the interior of coarseagglom-
erates,r',‘ 11 v 1 hasminimal energyamongstall | 1-lewel functions which areidertical
to it on the I-level edgestherefore

ity G v G(1F kv ke (4.20)

3D case. For 3D tetrahedral elemers we replacec; in (4.18) by ¢1hj: max, where hj; max
is the maximal elemen heiglt in tube j, and ¢, in (4.19) by C,=h; min, Whereh;j. nin is the
minimal elemen heigh in this tube. Then becauseof (4.16) the argumenation remains
unchanged,only the scalingargumert is basedon the ( nest level) tetrahedron PQRS

Z
A PQR 2
r' pQRr ' PQR dx = ( ) ;

PQRS V(PQRS)’

whereV (PQRYS) is the volume of the tetrahedron. O
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4.2 Smoothers

Now that the coarselevels are constructed we needsmaoothers for the coupledsystemson
all levels. We will give a short overview of some possibilities thereof, and then go into
detail for the two methods we primarily use,namely Braess-Sarazirand Vanka smoothers.

To the author's knowledgethere is no smoothing-theory for algebraicmultigrid methods
for fundamenally inde nite systems,i.e. not just disturbed positive de nite systems.We
admit that we have no cortributions in this direction either, thuswe will apply the following
heuristic.

Hyp othesis 4.8. If a smoother for a saddlepoint problem performs well' in the geometric
multigrid situation, then it will alsodo soin the algebraicmultigrid situation.

In the light of this heuristic animportant quality factor for the smoothersis the smaoth-
ing rate, which we introducedin Section3.1.1.

Note that the parts of the following sectionswhich concernthe analysisof the smaothers
all baseon geometric multigrid and on a symmetric system matrix, i.e. the Stokes case.
As the smaothers (mostly) operate on one singlelevel, we will drop the level index in the
following sections.

4.2.1 Standard Smoothers for the Squared System

As the systemwe areinterestedin is inde nite, it is not possibleto apply standard smooth-
ing methods (e.g. Richardson, Jacobi, Gauss-Seideljat rst. This could be overcomeby
applying those smoothersto the squared(and thus symmetric, positive de nite) system

A BT T ABT u _ A BT f
B C B C p B C g

This ideais usedfor examplein [Ver844 (here the secondblock row is scaledby 1=h?) or

[Bre93], both useRichardsoniterations on the squaredsystemwhich can be shown to lead

to a (geometric) smoothing rate (m) of order O p% :

4.2.2 Transforming Smoothers

This classof smaothers was introduced by Wittum in [Wit89, Wit90] and is basedon a
generalizationof the factorization for the SIMPLE scdheme(2.31), namely

- A0 1 A

- B_E 0 E!s

| {z—} | —{z—}
=K1 =K

with an arbitrary positive de nite matrix E (in (2.31) we had E = S). The idea is
to transform K by a multiplication from the right with K,* to K4, and then to nd
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smoothers for the block-triangular K, (in [Wit89] it is shown that they only have to ful ll
the smaothing property for the diagonal blocks A and E). Suggestedchoicesfor E are
S or Aq (the scalar,i.e. pressurevariant of A). The latter doesnot lead to a practicable
method at rst, (heuristic) considerationsabout comnuting operators (similarly as in
Section2.5.3.1)are needed,but we will not gointo detail here.

In [Wit90] damped Jacobi, Gauss-Seidebnd ILU smaothers are used for the trans-

formed system. For damped Jacobi a smoothing rate of order O p% is shawvn, for the

other two only O ¥ | but it is stated that in numerical practice a rate of order O 1

is obsened for the ILU transforming smoother.

4.2.3 Braess-Sarazin Smoother

This smaother consistsof the application of the inexact symmetric Uzawaalgorithm (2.36),
which we repeat herefor corvenienceof reading:

Ak u) =1 Aue BTpg (4.21a)
Spks1 PK) =Bl Cpc G (4.21b)
A(Uk+1 Oks+1) = BT(pk+1 Px); (4.21c)

wherenow S is a preconditioner for the inexact Schur-complemen C + BA 1BT.

The smoothing property with a rate of O % for this method was shovn in [BS97]

under the assumptionthat the pressureupdate (4.21b) is done (almost) exactly, i.e. S
C+ BA !BT. In [Zulo0] we nd that the samebehavior can be obtained under wealer
assumptions.

Theorem 4.9. [Zul00, theorem 2] Let A and C be symmetric positive semi-de nite ma-
trices, A and 8 symmetric positive de nite matrices, satisfying

A A (4.22a)
8§ Cc+BABT; (4.22b)
c+BA BT @1+ )S§; (4.22¢)

and
kAk:, ¢h 2, kA %k, h% kBk, ch 2% kCk, ch 2

Then the smaothing property
kK S™k-, (m)h 2

is satis ed with

) m 1; (m 1)m ! p

(m) = max (L+ T wih =+ 2
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For < 1=83weget < 1,thusthe secondterm in the maximum will dominate for m
large enough. As this term can be bounded by

m

o1 o+ 1
(m ) = m form>1

mm (m 1) e(m 1)

we get the smoothing rate O(%) mertioned above.

We usean (inner) AMG method for C + BA BT as$ L where A = D, with the
diagonal D of A, (damped Jacobi iteration; thus we are able to explicitly construct the
matrix, what is neededfor the AMG method). For A we want to usesomedamped SSOR
(or SSUR) iteration, i.e.

A= (D+ E)D YD+ F);

where E is the lower left triangular part (with zero diagonal), and F the upper right
triangular part (with zerodiagonal)of A, and and are someparameters. The following
corollary shavs the impact of (4.22) on the choiceof the parameters , and , underthe
assumptionthat A is an M-matrix. For essetially positive type matricessimilar results as
the following could be shown, for simplicity of preseration we will not go into the details
but restrict oursehesto the M-matrix case.

Corollary 4.10. Assumethat
A is an M-matrix, that
A and S are constructed as indicate alove, and that

the estimate 1
@ 8 c+=-BD BT & (4.23)

whee < 1 is the convegene rate of the multigrid methal and k the numter of
iterations, is valid,

and de ne
p'Cp
| r— .
C Ogspl;pm pTBD lBTp.

Then (4.22) is ful | led if

a ) 2z (4.24a)
1+ + 22 11+! kk, and (4.24b)
i+ )@@ ) (4.24c¢)

hold, whee
max; a
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Proof. It is easily seenthat
D 1+ )(MD+ F+ E+ %ED 'F)

is a su cient condition for (4.22c), which is certainly ful lled for (4.24c).
Analogouslyone can shav that (4.24a)is su cient for (4.22a).
What remainsis (4.22b), a su cien t condition would be

1 k

2 1
D+ E+ F+ ’ED 'F)

To estimate the last term on the left hand side we split asfollows

TED IF _ _
% KED 2k, kD 2Fk,

and calculate

I I
KED Yk; = max 1!3]—_] max fsaL_J kD 2k,
' T ' =

and similarly
kD ¥™Fk, kD%, :

Now we get for all x
XTED 'Fx XxTDX
_ kD ky 2
xTX xTx

and summing up

D+ E+ F+ 2EDF=@1 )D+ A+ 2ED 'F
1+ + 2 2)D:

Thus we get the su cien t condition for (4.22b)

2 2 .
@a+ + ) 151 &

0

Remark 4.11 Condition (4.23) is ful | led e.g. if S originates in a convegent, symmetric
multigrid methal and some additional (but weak) assumptionhold (for examplethat the
coarse level systemsare constructed with the Galerkin approach), for details we refer e.g.
to [Hac93].
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Figure 4.7 If we useGalerkin projections for the inner AMG, we have to build and keep
all the matrices S

A1;B; ! §1

AxB, 1 &

Blocksystem-
Coarsening

VAL;BL Y

Equations (4.24a){(4.24c) provide a set of su cient conditions for (4.22) but are for
> 0 very pessimisticas we will shov in the numeric results. If we assumefor example
that k is large enoughand therefore

1 k

1+1 Kk L
and further that = 1, which correspndsto a uniform mesh,then we can only calculate
a maximal admissible = 0:135and 2:32, 2:68. For = 0, i.e. Jacobiiteration
for A, we get a minimal allowed = 2 andthen = 2, which is also the choice for the

numerical tests in [Zul0Q].

Remark 4.12 It seemsto be a gaod idea (at least from the point of view of computer-
memory consumption) to build the coarse matrices for the (inner) $-AMG methal using
the coarse level versions of the matricesC, B and A. Instinctively one may think that it
doesnot makea big di er ence that this deesnot correspnd to the Galerkin approach. But
especially for complex 3D problemswe run into convelgene problems, which we do not
haveif we use Galerkin projected matrices.

Unfortunately the plain Galerkin approach causesan increaseof memory-usagebecause
we haveto perform the coarseningsfor § on each level, il lustrated in Figure 4.7.

4.2.4 Vanka Smoothers

The discretization of the Navier-Stokesequationswhich was usedby Vanka when he intro-
ducedthis method [Van86]wasa nite volume method on a staggeredgrid with pressure
nodesat the cell-certers and velocity nodesat the cell-faces.Small subproblemsare setup
cellby cell| i.e.with onepressuredegreeof freedomand the connectedvelocity unknowns
| andthe solutionsare conbined usinga multiplicativ e Sdwarz iteration. The smaoothing
property of this method in a nite elemen cortext wasanalyzed(for the additive Scthwarz
case)in [SZ03]. We will sketch shortly the prerequisitesneededtherein.

The local sub-problemsare set up using the (local) prolongators(on a xed multigrid-
level 1)

j cRMLRM cRM™ 1 R™;
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wherej is the index of the sub-problemand n;; and m;; determineits dimension,and we
assume X

P =1 (4.25)
i
and that X
i j isnonsingular. (4.26)
j
The small problemsare now constructed as
|
: T .
AJ h B, [ Vi _ L
Bj :( 1BA'B C q is

wherer and s are the global residuals, somerelaxation parameter, and the following
relations have to be ful lled for all |

FR=AT; (4.27a)
[B=8B (4.27b)
C= 'Cy; (4.27¢)

whereA is a preconditionerfor A.

Remark 4.13 In [SZ03 theorem 1] we nd that for the additive Schwarzcasethe methal
can again be representel as preconditioned Richardsoniteration with preconditioner

@ = A BT

B BA BT §° (4.28)

P 1
with S= ~ ;§* T and§ = 1(C + BjA 'B]), and s therefore contained in the

classof inexact symmetric Uzawaalgorithms (compare with (2.35)).
The smamthing result obtained in this situation is summarizel in the following theorem
(without proof).

Theorem 4.14. [SZ03 theorem 4] For K asin (4.28) with A and S symmetric positive
de nite,

A A (4.29)
8§ Cc+BA BT; (4.30)

and
kK Kk, ckKk,

we get that the smaothing property
KKS™k,  (m)kKk.,
is satis ed with (m) = O(1=" m).
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We will now presert one possibility of constructing the small systemsmeeting the
requiremens (4.25), (4326) and (4.27) on a speci ¢ level. Choosea patrtitioning of the set
of pressureunknowns i Pj (with P; \ P, =; forj 6 k) and build correspnding setsof
velocity nodesV;, wherea velocity node is cortained in V; if and only if it is connectedto
a pressurenode in P; via an ertry in the matrix B.

The matrix A is now constructedby setting those ertries aj of A to zerowherei 6 j
andi 2 Vg, j 2 V, for somef,  with £6 {. This can be interpreted asthe application of
a Jacobi method on the boundary of the setsV; and using the full matrix information in
the interior. Somescalingmay be neededbecauseof (4.29).

Then ; canbe chosenasthe canonicalenbeddingfrom R™i into R™. For ; we start
with the canonicBIerrbeddingfrom R™i into R", which we denotewith #; and then scale
ead row with 1= s, wheres is the number of setsV, that the node assiated to the row
is part of, to ful ll (4.25).

Now A; is extracted from the matrix A asonemight expect, with the full block for the
interior unknowns and the diagonalfor the boundariesof the patch. The local matrix B; is
directly extracted directly from B but with a scalingaccordingto the above construction
of j and (4.27b). Finally hasto be chosensud that (4.30) s ful lled.

Computationally cheager versionsof A can be built by using only the diagonal of the
interior-unknown-blocks, the upper triangle (corresppndsto Gauss-Seidel)pr by applying
somesort of lumping.

Remark 4.15 If onewantsto useinformation of the wholepatch blacks of A but wantsthe
matricesA‘j to be diagonal(becausethen the smal problemscan be solvel faster), numerical
experiments have shownthat they shouldbe constructed basal on the following heuristics.
We rst build the full local matrix A; = (&) which we want to approximate by a
diagonalmatrix A;. Assumethat for givenf; the vectors x and # are the solutions of

A'j)%:fj and Ajk:fj:

Now we want ® to ful | |

AR
thus we try to minimize
kKA R Ajxk,:
Now
kAR Apxk, = k(I AA Hfjk,
k(I A A Hkekfik,;
whee k:ke is the Frokenius norm. If we determine A = diagf&y;:::; &, g such that
k(I A A ke is minimal, then this leadsto
1 X
= — &

akkl



Chapter 5

Software and Numerical Studies

Now we Il the methods of the previouschapterswith life, which meansthat we apply them
to problemswith various levels of complexity. But beforethat, we give a short overview
of the software deweloped in the courseof the working on this thesis.

5.1 The Software Package AMuSE

All the numerical tests in this thesis were performed using the software padkage AMuUSE
| Algebraic Multigrid for Stokes-ype Equations| which was deweloped by the author.
It is basedon the meshgeneratorand AMG solwer for potential equation and plain strain
elasticity problemsNAOMI by Ferdinand Kickinger! [Kic96, Kic97a, Kic97b, Kic98] and
was also cortributed to by Christoph Reisinger.

Apart from this thesis AMUSE or its earlier incarnation NAOMI have beenused as
solvers for mixed problemsin seeral projects [RW99, Him02, Bec02 Penng].

It is mostly written in C++ and takesadvantage of the object oriented capabilities of
this programminglanguage(we will not gointo detail about that but referto the standard
literature, e.g.[Str97]). We want to emphasizethat there may be faster codesthan ours
for someof the methods mentioned in this thesis(in fact, the author is very surethat there
are), many modern and e cien t programmingtechniques(e.g. expressiontemplates, cathe
aware programming, etc.) or parallelization were not applied. But the aim was not to
dewelop a code which is the fastestfor one method, but to have a tool to comparevarious
methods using the samebasic programming ervironmert. Thus, we do not to compare
di erent implemenations but really di erent methods. Thereforeit may not be sensible
to look at the absolutetimings preseted in the sectionswith numerical results, but only
to comparedi erent timings for di erent methods.

We will now shortly sketch the structure of AMUSE, where we will use typewriter
font for expressiondirectly related to the sourcecode of the padkage.

Inow at AVL List GmbH, Graz, Austria
2now at University of Heidelberg, Germany

71
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Figure 5.1 The generalstructure of AMUSE. More complex dependencies(e.g. due to
moving meshesgtc.) were omitted in this gure.

TimeStepper
method of lines+ ODE

NavierStokesSolver

linearization

MeshHandler FEMGeneration-=

|
| |

BlockSystemSolver

AMG soler for
A BT
B C

5.1.1 Structure

The structure of the programis sketchedin Figure 5.1. The certral part (at leastconcerning
this thesis) is the block-systemsolwer, its componerts are descrited in Figure 5.2.
The following external libraries and padkagesare usedin parts of the program:

TemplateNumerical Toolkit (TNT) , Mathematical and Computational Science®ivi-
sion, National Institute of Standardsand Tednology, Gaithersburg, MD USA. Used
for the direct solution of the coarselevel systems.

Generl Mesh Viewer (gmv), Applied Physics Division, Los Alamos National Labo-
ratory, CA USA. Usedfor the visualization of the numerical results.

Figure 5.2 The block-system-solers are implemeried as derived classesof the base
AMuSBlockSolver . Ead one (except the direct solvers) can use a preconditioner, i.e.
an object which is derived from AMuSBIlockPrecond. And the preconditioners(which use
someAMG solwer) can useand manipulate the structures neededfor an AMG method.

AMuSBIlockSolver
Richardson, AMuSBIlockPrecond AMG “tools'
GMRES, CoupledAMG, AMuSEsridTransfer
BiCGstab, \Black-Box" AMuSBlockSmoother
SIMPLE, (sec.2.5.3.1) AMuSEEllipticSmoother
direct,. ..
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gzsteam, DeepakBandyopadha/ and Lutz Kettner, and zlib, Jean-Loup Gailly and
Mark Adler. Usedfor the compressedutput of solutions.

Linuxthreads Xavier Leroy. Usedfor the sharedmemory parallelization of the FEM
matrix generation.

5.1.2 Matrices

AMUSE provides seeral sparsematrix classeswhich are substartial for the componerts
descriked above. As somenon-standardideasare usedfor their construction, we will sketch
them in this section.

The basic(templated) classis AMuSEparseMatrixData< T >, whereelemens of type
T are storedin a similar way as compressedow storage(CRS) format, the only di erence
is, that we useseparatearrays for the elemen and index data of ead singlerow, not one
long array for all elemens. The template parameter T could be a scalartype like float
or double or againa small matrix (classAMuSEmallMatrix< T, m, n > whereT is the
type of the ertries and mand n are the row and column dimensions). This is usedto store

block matriceslike 1
Al 1 Al 2 Al;j
%AZ 1 p22 A2 §
Al A2 Al
with k  k blocks A"™ (k  j) with similar sparsity pattern, e ciently as
0 a1;1 a1;2 al;kl
%az;l a2 a2;k§
ak;l ak;2 ak;k

with smallj j matricesa'’™, where
(@™)ap = (A*)im:

The AMuSEparseMatrixData< T > classis only usedfor the storageof sparsematrices.
The "mathematical’ objects (which can be multiplied with vectors, ‘inverted’, etc.) are of
type AMuSEparseMatrix< T >.

The next generalization AMuSBMaskedSparseMatrix< T > can be understood in the
following way. Assumewe want to store the matrix A of the Oseenlinearized problem,
which for examplein 3D in generalhasthe form

0 1
A
@ A A: (5.1)
A
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Saving it as AMuSEparseMatrix< AMuSEmallMatrix< double, 3, 3 > >would be a
waste of computer memory thusit is saved as AMuSEparseMatrix< double >. For cer-
tain types of boundary conditions, e.g. symmetry planes, matrix A does not totally t
structure (5.1), someertries dier in the three diagonal blocks but most do not. Us-
ing for example AMuSEBMaskedSparseMatrix< AMuSEmallMatrix< double, 3, 3 > >
hides this problem from the user. From outside it behaves like AMuSEparseMatrix<
AMuSEmallMatrix< double, 3, 3 > >, but internally it tries to use and save only
double instead of AMuSEmallMatrix< double, 3, 3 > elemerts.

5.2 Numerical results

All the rates which will be stated in this sectionare basedon the ", norm of the residual
after the i-th iteration step,i.e. on

krik:-, = kb Kxjk-,:

Becausene comparemethods with di erent costsper iteration step we preferthe following
two measuredor e ciency:

the averagereduction of the norm of the residual per minute CPU time (which will
be abbreviated by \red./min." in the tables below, \asympt. red./min." will be the
averagereduction per minute in an asymptotic region of the corvergencehistory)
and

the measure

averageCPU time in minutes for the reduction
of the norm of the residual by a factor of 0:1

number of unknowns

01 -—

This number would be constart for di erent levelsof re nement if we had an optimal
method, i.e. if the work for a given reduction of the residualis O(n), wheren is the
number of unknowns.

Not all tests have beencarried out on the samecomputers,thus a cross-comparisomf those
valuesfor di erent tests may not be sensible.In all caseswve usedstandard Linux-PCs.
If not stated di erently the results for the Oseenproblems are always basedon the
linear problem with w near the solution of the correspnding Navier-Stokes equations.
The geometriesin Figures5.4,5.11,and 5.12were provided by AVL List GmbH, Graz,
Austria.

52.1 2D Test Cases

We have stated to shav how the methods behare for complex 3D problems, newvertheless
we start with 2D problemswith moderately complex geometry The reasonis, that here
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Figure 5.3 Theinitial meshandthe numerical solution of the driven cavity Stokesproblem
(lighter grey indicates higher velocities)

we can carry out parameter-studiesfor various methods on di erent levelsin a reasonable
period of time, which would not be possibleotherwise.
Our two model problemsare the following:

Driv en cavit y. The initial grid (and the numerical solution of the Stokesproblem)

canbefoundin Figure 5.3. The problemis easilydescriked, on a unit squarewe pose

a Dirichlet condition with velocity (1;0) on the upper boundary and homogeneous
Dirichlet conditions on the rest of the boundary (the walls). The ner levels were

generatedby a hierardchical re nement of the coarsegrid.

2D valve. Herethe geometryis one half of the regionround a valve with inlet-size
0.03 and the distance between the walls at the narrowest part 0.003. The meshes
were generatedusing Ferdinand Kickinger's NAOMI.

We posetwo problems,onewith symmetry boundary conditions alongthe symmetry

plane, the other one with homogeneoudDirichlet conditions there. In both cases
we set Dirichlet condition with quadratic pro le (with maximum velocity 1) on the

upper boundary, natural out o w conditions on the lower boundary. The geometry
and the solutions for the two problems(Navier-Stokes, = 5 10 %) are illustrated

in Figure 5.4.

Dep endence on Mesh Width

In the rst setof testswe want to ched the \ h-independence'of the methods, i.e. we solve
the same Stokes problem on di erent levels of re nement and comparethe e ciencies.
We solwe the driven cavity problemwith modi ed Taylor-Hood-discretization and the red-
bladk coloring algorithm with averagingfor the coarselevel construction. Just doing this
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Figure 5.4 Valve problems. The upper part shavs the absolute values of the velocity-
solution of the problem with symmetry boundary condition, the lower part of the problem
with homogeneoudDirichlet conditions at the symmetry plane (in both casesonly the
problem on one half of the geometry shovn was solved).

Cells
Vect Ma(s;
10,

9.45

— 84

>

- 63
| —525

— 42

—3.15

onthe ne level leadsto a geometricmultigrid method (as mertioned in Remark 3.3), the
results can be found in Table 5.1 and Figure 5.5(a) (there "BBPre' denotesthe \black-
box" preconditioner of Section2.5.3.1and "MSM' the Vanka smaother of Section 4.2.4,
wherethe patchesconsistof one pressureunknown and the connectedvelocity degreesof
freedom). If we randomly mix the numbering of the ne level nodes, then the red-bladk
algorithm is not able to reproduce the hierarchy, thus we have a real AMG method, for
which we shaw the resultsin Table 5.2 and Figure 5.5(b). One can also apply the idea of
Remark 4.1, i.e. to usethe given meshas\v elocity-mesh" and to do one coarseningstep
to getthe rst pressurelevel, which leadsto the resultsin Figure 5.5(c). For all tests the
linear solver was stopped after a reduction of the residual by a factor of 10 °.

The correspnding results for di erent AMG methods for the P,-P;-stab-discretized
driven cavity problem can be found in Table 5.3 and Figure 5.6.

In both casesfor the P;isoP,-P; and the P,-P;-stab elemen, we seecommonbehaviors
of the solwers. First, for the GMG situation Tq.; is (nearly) constant for the coupled
methods, aspredicted by theory. For the AMG situation this getsa little worse,but is still
acceptable. The e ciency of the AMG-SIMPLE method su ers if h gets small, which is
not surprising. The \black-box" preconditionerfor BiCGstab performsbest, which alsois
not surprising asit is cheapand at the sametime optimal (i.e. the ratesare h-independert)
for the Stokescase,accordingto theory (c.f. Section2.5.3.1).

Dep endence on Convection

Now we take a singlemeshand ched how the methods perform whenwe want to solve the
Oseenproblem for di erent intensities of corvection. For ead Oseenproblem we take the
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Table 5.1 The results for driven cavity Stokes ow with hierarchically re ned grid (!
GMG) and modi ed Taylor-Hood discretization.

re nement-level 5 6 7 8 9
total number of unknowns 10,571 | 52,446 | 166,691| 665,155| 2,657,411
on nest level
Coupled, Braess | red./min | 8.6e-41| 4.0e-8| 0.03 0.47 0.84
SSURO0.8,W-6-6 | Tg1 2.4e-6 | 3.2e-6| 3.9e-6 | 4.6e-6 4.9e-6
Coupled,Braess | red./min | 1.6e-8 | 0.043 0.36 0.80 0.95
Jacobi, W-12-12 | Ty 1.2e-5 | 1.7e-5| 1.4e-5| 1.6e-5 1.7e-5
Coupled, MSM red./min | 2.8e-33| 3.3e-6 0.2 0.72 0.92
W-11-11 To1 2.9e-6 | 3.5e-6| 8.6e-6 | 1l.1e-5 9.9e-6
BiCGstab + red./min | 1.3e-163| 5.1e-35| 2.4e-9 | 6.6e-3 0.33
Black-Box Prec. | To1 5.8e-7 | 5.6e-7| 7.0e-7 | 1.7e-7 7.8e-7
AMG-SIMPLE red./min 0.044 | 0.842 | 0.9869 | 0.9986 |
Ton 7.0e-5 | 2.6e-4| 1e-3 2.5e-3 |

Table 5.2 The results for driven cavity Stokes ow with hierarchically re ned grid and
renumbering (! AMG) and modi ed Taylor-Hood discretization.

re nement-level 5 6 7 8 9
total number of unknowns 10,571 | 52,446 | 166,691| 665,155| 2,657,411
on nest level
Coupled, Braess | red./min | 1.8e-27| 1.2e-4| 0.26 0.79 0.94
SSURO0.8,W-6-6 | To1 3.5e-6 | 4.9e-6 | 1.0e-5| 1.5e-5 1.4e-5
Coupled, Braess | red./min | 4.6e-9 | 0.028 0.59 0.89 0.97
Jacobi, W-12-12 | Ty 1.1e-5 | 1.2e-5| 2.6e-5| 3.0e-5 2.8e-5
Coupled, MSM red./min | 2.3e-26| 3.7e-5| 0.24 0.76 0.94
W-15-15 To1 3.7e-6 | 4.3e-6| 9.7e-6 | 1.2e-5 1.3e-5
BiCGstab + red./min | 6.1e-128| 7.1e-31| 1.6e-6 | 0.068 0.51
Black-Box Prec. | To1 7.4e-7 | 6.3e-7| 1.0e-6 | 1.3e-6 1.3e-6
AMG-SIMPLE red./min 0.049 0.82 0.98 0.998 |
To1 7.2e-5 | 2.2e-4 | 7.6e-4 | 1.8e-3 |
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Figure 5.5 The e ciencies of the methods for driven cavity Stokes ow with

Taylor-Hood discretization.
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Table 5.3 The results for driven cavity Stokes ow with hierarchically re ned grid and

renumbering (!

solver ran out of computer memory)

AMG) and P;-P;-stab discretization. (mp...memory problems,i.e. the

re nement-level 5 6 7 8 9
total number of unknowns 14,067 | 55,779 | 222,147| 886,659| 3,542,787
on nest level
Coupled, Braess | red./min | 0.048 0.55 0.89 0.97 mp
SSURO0.8,W-6-6 | Tg1 5.4e-5 | 6.9e-5| 8.9e-5 | 8.4e-5 mp
Coupled, Braess | red./min | 0.084 0.70 0.94 0.99 mp
Jacobi, W-12-12 | Tp1 6.6e-5 | 1.2e-4| 1.7e-4 | 2.0e-4 mp
Coupled, MSM red./min | 1.6e-11| 0.021 0.56 0.90 0.96
W-15-15 To:1 6.6e-6 | 1.1e-5| 1.8e-5| 2.4e-5 2.6e-5
BiCGstab + red./min | 1.0e-100| 2.3e-10| 0.0016 | 0.17 0.67
Black-Box Prec. | To1 7.1e-7 | 1.9e-6| 1.6e-6 | 1.5e-5 1.6e-6
AMG-SIMPLE red./min 0.089 0.88 0.99 1.0 |
To:1 6.8e-5 | 3.1e-4| 1.3e-3| 2.7e-3 |

Figure 5.6 The e ciencies of the (AMG) methods for driven cavity Stokes ow with
P,-P;-stab discretization.
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Table 5.4 Dependenceof the e ciency of the methods on varying strength of corvection
for the two-dimensionalvalve problem.

| 1 | 01 |3.2e-3| 1le-3 | 7e-4 | 5e-4 | 4.2e-4

Coupled,Braess | red./min | 3.8e-8| 1.4e-3| 1.9e-3| 5.1e-3| 0.019| 0.06 | 0.087
SSURO0.8,W-4-4 | Ty, 1.3e-6| 3.4e-6| 3.6e-6| 4.2e-6| 5.6e-6| 7.9e-6| 9.1e-6
Coupled,Braess | red./min | 2.8e-5| 0.19 | 0.19 | 0.21 | 0.28 | 0.40 | 0.48
Jacobi, W-10-10 | To.1 2.1e-6| 1.3e-5| 1.3e-5| 1.4e-5| 1.8e-5| 2.4e-5| 3.0e-5
Coupled, MSM red./min | 3.1e-6| 1.8e-5| 0.080| 0.042 | 5.8e-4| 4.7e-4| 1.4e-3
W-8-8 To1 1.8e-6| 2.0e-6| 8.8e-6| 7.0e-6| 3.0e-6| 2.9e-6| 3.4e-6
BiCGstab+ red./min | 8.4e-7| 3.1e-4| 8.3e-4| 4.8e-4| 2.8e-3| 0.023 | 0.042
Black-Box Prec. | To:1 1.6e-6| 2.8e-6| 3.1e-6| 2.9e-6| 3.8e-6| 5.9e-6| 7.0e-6
AMG-SIMPLE red./min | 051 051 | 039 | 0.38 | 0.38 | 0.37 | 0.39
To1 3.3e-5| 3.3e-5| 2.4e-5| 2.3e-5| 2.3e-5| 2.2e-5| 2.4e-5

convection speedw nearthe solution of the Navier-Stokesproblemwith given (therefore
the dependenceof the linear problem on is twofold, via itself and via w( )), and we
stop the linear iteration after a reduction of the residual by a factor of 10 3.

The rst geometryhereis the two-dimensionalvalve, it is discretizedwith the modi ed
Taylor-Hood elemen with 103,351unknowns (in total) on the discretization level. The
results can be found in Figure 5.7(a) and Table 5.4. In Figure 5.8 we plot residualsvs.
CPU-time for the nonlinear iteration for = 8 10 4, wherewe usedi erent methods for
the solution of the linear problems,and the linear iterations are stopped after a reduction
of the residualby a factor of 10 2. There, we alsoput a comparisonof the Oseeniterations
and this variant of Newton's method, wherethe linear problemsare solved by (in this case
three steps of) a \Oseen-preconditioned" Richardson iteration, as suggestedin Section
2.4.2.

The sametest (Oseenproblem, xed h, varying and w( )) was carried out for the
driven cavity problem, again with modi ed Taylor-Hood discretization and 166,691un-
knowns. The dependenceon s plotted in Figure 5.7(b).

We seethat for moderate corvection again the \black-box" preconditioner performs
well, although it is not as cheap as in the Stokes case(an additional pressure-Laplace-
AMG hasto be performed). For smaller the coupledmethod (especially with the local
smoother) is preferable (at least in these examples). It is remarkable that the AMG-
SIMPLE method is robust in  over a large interval, in the valve-exampleits rates start
to get worseonly shortly beforethe whole nonlinear iteration breaksdown. In the driven
cavity examplethe AMG method (with red-bladk coarseningand simple averagingas in-
terpolation) for the A-problem was divergert for < 8 10 4, thus we have no results for
the AMG-SIMPLE method and the \black-box" preconditionerfor smaller .

The comparisonof the Oseeniteration with the \Oseen-preconditionedRichardson"-
Newton iteration givesno clearresult. Asymptotically the secondmethod performsbetter
| the asymptotic reduction of the residual per minute is 0.42 comparedto 0.54 for the
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Figure 5.7 Ty, for the Oseenproblemon one xed grid with di erent and with w near
the solution of the Navier-Stokesproblem, for di erent methods, for the 2D valve and the
driven cavity problem.
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Figure 5.8 Residual-historiesfor the nonlineariteration. The linear iterations weresolved
with the di erent methods until a mild reduction (factor 10 2) of the (linear) residualwas
readhed. The secondBiCGstab result (\hi.-pr") was reated with a stronger reduction
(factor 10 3) of the (linear) residual.

The secondpicture comparesthe Oseeniterations (\Coupled,MSM" from the rst
picture) with the Newton method, where the linear problem is solved with Oseen-
preconditionedRichardsoniterations.
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Table 5.5 Di erent methods for the coarselevel constructionin the coupledmethod (with
local smaother) for the P;-P;-stab discretized valve problem. \Ruge-Steben splitting”
meansthe modi cation (3.21) of the red-bladk algorithm, \Ruge-Stuben interpolation”
the method (3.14).

asympt. red./min | To1

reduction/step
systemmatrix, 0.24 0.00286 | 1.1e-5
red-bladk splitting, averaging
systemmatrix, 0.13 0.127 | 3.2e-5
Ruge-Stiben splitting, averaging
systemmatrix, 0.18 0.0453 | 2.1e-5
Ruge-Stiben splitting and interpolation
distance matrix, 0.15 0.0475 | 2.2e-5
Ruge-Stiben splitting, averaging
distance matrix, 0.13 0.00975 | 1.4e-5
Ruge-Stiben splitting and interpolation

Oseeniteration. But in practice one is not interested in a solution of the problem up
to a very strong reduction of the residual, the rst three or four powers of ten are more
important, and in this initial phasethe standard Oseeniteration is faster.

Inuence of C/F-Splitting and Interp olation

In Section 3.2.2.1we have presened di erent possibilities for the C/F-splitting and for
the prolongator. In Table 5.5we comparethe standard red-bladk coloring Algorithm 3.10,
the modi cation (3.21), and the interpolation by averagingand (3.14), all applied to the
systemmatrix and to the distance matrix (3.1). Thesesmethods are usedfor the coarse
level construction of a coupled AMG method with the local smaoother (W-15-15) for the
Oseenproblem( = 5 10 4) on the P;-P;-stab discretizedvalve (with 34,863unknowns).

It seemsclear that the advancedmethods result in better corvergencerates than the
simple red-bladk coloring with averaging. What is a bit surprising at rst glanceis that
the situation is the other way round when we look at the e ciencies. The reasonthereof
are slightly densercoarselevel matrices generatedby the modi ed red-blad splitting, but
this could be repaired in various ways (some can be found e.g. in [Sta01d). Thus, the
better ratesindicate that somemore thoughts in this direction could pay o .

AMGe for the Crouzeix-Ra viart Element

AMUSE is not yet capableof solving Crouzeix-Raviart-discretized problemsin any other
way than with the coupled AMGe method, presened in Section4.1.3. Therefore, we are
not able to presem comparisonsof di erent solvers, but only to shav how the method
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Figure 5.9 The agglomeratesof one coarselevel of the valve problem.

Figure 5.10 The e ciency of the coupled AMGe method with Braess-Sarazirand local
smoother for di erent levels of re nement. The gure on the left comesfrom the driven
cavity problem, on the right from the 2D valve.
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performsfor the two test problems. There are alsono 3D tests for AMGe in this thesis,as
our experiencesthere are still at a very basiclevel.

In Figure 5.9 we illustrate the formation of agglomerateson a coarselevel for the valve
problem. The resultsfor the solution of the driven cavity and the valve problem, both with
Stokes o w, for increasingly ner grids canbe foundin Table 5.6 and Figure 5.10. For both
smaothers we applied, the level dependenceof our version of the AMGe method is surely
improvable, esgecially the Braess-Sarazirsmoother seemsto barely t to the rest of the
algorithm. The local smaother performsall right for the driven cavity problem, but also
deterioratesfor the valve. What we have obsenedis, that up to a certain number of coarse
levelsthe method behavesnicely and then suddenlygetsworse(note for examplethe jump
in the corvergencerates of the valve problem from two to three re nement levels), which
we assumeis related to ill shaped agglomerateson the coarserlevels. Thus, we think that
improvemernt is possibleif a more sophisticatedagglomerationalgorithm is used.
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Table 5.6 The e ciency of the coupledmethod with Braess-Sarazirand local smaother
for di erent levels of re nemern.

Driv en Cavity

re nement-level 5 6 7 8

total number of unknowns 37,024| 147,776| 590,464 2,360,576

on nest level

Coupled, Braess | asympt.red./step | 0.39 0.45 0.43 0.52

SSURO0.8,W-6-6 | Tg1 1.1e-5| 1.4e-5| 1.9e-5 2.7e-5

Coupled, MSM asympt.red./step | 0.11 0.26 0.23 0.29

W-10-10 To1 2.9e-6| 4.2e-6 | 4.6e-6 5.3e-6
2D Valve

re nement-level 1 2 3 4

total number of unknowns 22,932 91,112 | 363,216/ 1,450,400

on nest level

Coupled, MSM asympt.red./step | 0.046 | 0.098 0.30 0.40

W-10-10 To1 3.0e-6| 3.7e-6 | 6.3e-6 8.5e-6

5.2.2 3D Problems

The two three-dimensionalgeometrieswe usein this thesisare the following:

3D valves. In Figure 5.11 we show this geometrywith two valves. We prescribe a
velocity of 0.5 at the inlets, the distance betweenthe walls at the narrowest part is
0.03. The meshwas generatedwith Joacim Sdceberl's "netgen'[St97].

For the so called rotax (illustrated in Figure 5.12) a multi-elemert meshis used,
which was provided by the AVL List GmbH and which consistsof 302 tetrahedra,
142,339%hexahedra, 5095 pyramids, and 10019prisms with triangular basis. Thus,
we apply the strategy explainedin Section2.2.2.

We prescribe a velocity of 0.05at the inlets, the outlets have a diameter of 0.045.

Mo died Taylor-Ho od Element

We want to solve the problem obtained by a modi ed Taylor-Hood discretization of the
valve, which has a total number of unknowns of 2,092,418.For the coupled method with
Braesssmaoother and standard, single-shiftedred-black coarseningwe obsene a poor per-
formance (seeFigure 5.13) as neither for the Stokes problem, nor for the Oseenproblem
it is clearly faster than the AMG-SIMPLE method. If we usethe local smaother the situ-
ation is even worse, it is hardly possibleto obtain a converging method with a reasonable
number of smoothing steps. Here the stability problemsmertioned in Section4.1.1strike,
therefore we apply the 2-shift strategy and get slightly better (at least better than with
AMG-SIMPLE) but not satisfactory results.
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Figure 5.11 The 3D valve problem. The uid erters at the two inlets on the right, passes
the valves, enters the wider areaand leavesit again via two holeson the left (which can
not be recognizedin this picture).

Figure 5.12 The socalledrotax. It hastwo inlet ports in an angleof =2 and two smaller
outlets. The lower part of the gure providesa view inside the geometry with a viewpoint
indicated by the arrow.
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Figure 5.13 Convergencebehavior of the Stokes(on the left) and the Oseenproblem with
= 10 3 (on the right) for the P,isoP,-P; discretized3D valves.
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One could supposethat the better performanceof the 2-shift strategy originatesin the
increaseof smoothing stepson the ne (velocity-) level. Thereforewe have included the
resultsfor the 1-shift method with a doublednumber of smaothing stepsonthe nest level,
to shaw that this is not the case.

An illustration of the solution of the Navier-Stokes problem can be found in Figure
5.14.

P,-P;-stab Element

As indicated by the results of Section4.1.2the resultsfor the P,-P;-stab discretization are
more promising. We useit onthe rotax problemand get a total number of 658,528 visible)
unknowns. Becauseof the strategy of Section2.2.2our problemhasimplicitly moredegrees
of freedom,but they arelocally eliminated (which resultsin a densermatrix). For example
for a hexahedronwe needsewen auxiliary nodeswhich nearly doublesthe number of the
eight ‘real' nodes.

In Figure 5.15and Table 5.8 we comparethe e ciencies of the AMG-SIMPLE method
andthe coupledAMG method (with Braess-Sarazismaoother) and seethat in this situation
againthe coupledmethod hasto be preferred.

In Figure 5.16 we shaw the solution of the Navier-Stokesproblemwith =5 10 4.
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Table 5.7 E ciencies for the Stokesand the Oseenproblemwith = 10 2 for the P;isoP,-
P, discretized3D valves. For the coupledmethod for the Stokesproblemwe usedthe Braess
smoother and a W-11-11cycle, for the Oseenproblem a W-14-13cycle.
Stok es problem
| asympt. red./min. | asympt. To,

AMG-SIMPLE 0.85 6.9e-6
Coupled, standard red-bladk 0.84 6.2e-6
Coupled, 2-shift 0.82 5.7e-6
Coupled, doubled number of 0.88 8.3e-6
smaooth. stepson nest lev.

Oseen problem
| asympt. red./min. | asympt. Toy

AMG-SIMPLE 0.82 5.5e-6
Coupled, standard red-black 0.84 6.4e-6
Coupled, 2-shift 0.79 4.8e-6

Figure 5.14 Pressuredistribution on the boundary and o w around the valvesfor the 3D
valve problemwith = 10 3,
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Figure 5.15 Comparisonof the AMG-SIMPLE method and the coupledapproad for the
P1-P;-stab discretization of the rotax (Oseenproblem, =5 10 4).
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Table 5.8 E ciencies of the AMG-SIMPLE method and the coupled approad for the
P1-P;-stab discretization of the rotax (Oseenproblem, =5 10 4).

| asympt. red./min. | asympt. To;

AMG-SIMPLE

0.97

1.0e-4

Coupled

0.95

6.4e-4

5.3 Conclusions and Outlo ok

In this thesis we have investigatedthe application of se\eral possiblecomponerts for the
AMG solution of the saddlepoint problem arising in the nite elemen discretization of

the Oseenequations.

Our main achievemeris lie in the dewelopmen of coupled algebraic multigrid solvers

for sudh problems,to be concrete

we have found a technique for the construction of coarsegrid hierarchiesfor problems
discretizedwith the madi e d Taylor-Hood element and we have given someheuristics

for their stabilization,

we have deweloped an AMG method for the P,-P;-stabelementand have proventhat
the coarselevel systemsthere are stable

we have made rst stepsin the application of AMGe to the coupled problem and
have shavn exemplarily, that if it is usedin a certain way for the Crouzeix-Raviart
element then again one obtains stable coarselevel systems,

we have showvn how to apply smathers known from geometricmultigrid methods in
a purely algebaic context, and



CHAPTER 5. SOFTWARE AND NUMERICAL STUDIES 90

Figure 5.16 Pressureon the surfaceand main ow of the solution of the rotax problem
with =5 10 4

we have deweloped a software packagewhich is capableof most of the techniquesde-
scribedin this thesis(and somemore) and which hasprovided us with the possibility
of

applying the methods to \r eal-life" industrial problemsand of

comparing our approad with methods using the segregated approach (e.g. AMG-
SIMPE or the \black-box" preconditioner).

We have seenthat if AMG is applied usingthe segregatedapproad, then this hasclear
advantageswith respect to the simplicity of dewvelopmern. One just needs\o the shelf’
AMG solwersfor elliptic problemsand can plug them in somerelatively easyto implemert
method, and that is it.

Most of this \black-box" character is lost for the coupled method on which we have
focused,as the behavior of the solver dependsfor example strongly on the chosen nite
elemen pairing and its stability properties. But, asthe numerical experimerts indicate,
if the coarsegrid is constructed carefully and if the smaoother ts, then the method can
becomepowerful and can outperform solvers using the segregatedapproad.

Of course,much morework canbeinvestedin di erent aspectsof thesemethods, on the
practical and on the theoretical side. One questionis the possibility of generalizationsto
arbitrary nite elemens. We have shortly discussedhis in Chapter 4, but our numerical
experiencesn this direction are still very rudimentary.
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Other questionsariseon the analytic side. We have proven (in somecases}he stability
of the coarselevel system, but what about corvergence?What about stability results for
a more generalclassof elemeis?

If the methods preseted hereshould be usedin an industrial cortext, then somemore
thought should also be spert on an e cient implemertation, on modern programming
techniques,on parallelization aspects, etc.

Newertheless,we have deweloped a coupled method which can compete with classical

approades,and which hasan areaof application beyond unit squareproblemswith weak
corvection.
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