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Inexact IETI-DP for conforming isogeometric
multi-patch discretizations

Rainer Schneckenleitner∗ and Stefan Takacs†

Abstract

In this paper, we investigate Dual-Primal Isogeometric Tearing
and Interconnecting (IETI-DP) methods for conforming Galerkin dis-
cretizations on multi-patch computational domains with inexact sub-
domain solvers. Recently, the authors have proven a condition number
estimate for a IETI-DP method using sparse LU factorizations for the
subdomain problems that is explicit, among other parameters, in the
grid size and the spline degree. In the present paper, we replace the
sparse LU factorizations by fast diagonalization based preconditioners
to get a faster IETI-DP method while maintaining the same explicit
condition number bound.

1 Introduction

The discretization of partial differential equations leads usually to large-scale
linear systems. We are interested in a fast solver for linear systems that are
obtained from the discretization of boundary value problems using Isoge-
ometric Analysis (IgA; [4]) schemes. We consider computational domains
that are composed of multiple non-overlapping patches, for which FETI-DP
type algorithms are a canonical choice. Adaptations of FETI-DP, intro-
duced in [1], have already been made to IgA, see, e.g., [6, 2]. This approach
is sometimes called Dual-Primal Isogeometric Tearing and Interconnecting
(IETI-DP). Recently, a convergence analysis for IETI-DP methods that is
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explicit in the grid sizes, the patch diameters, the spline degree and other
parameters like the smoothness of the splines within the patches or the num-
ber of patches was carried out for a conforming Galerkin IgA discretization,
see [8]. There, the authors considered a Schur complement IETI-DP method,
where the subdomain problems are solved with sparse direct solvers. Large
subdomain problems slow down the overall algorithm and require a lot of
memory resources. The saddle point formulation of IETI-DP allows the use
of inexact local solvers. The successful use of inexact solvers for FETI-DP
has already been demonstrated in [3, 5]. In this paper, we use the fast diag-
onalization (FD) method introduced in [7] as solver for the subdomain-local
subproblems. We show that the inexact IETI-DP version obeys the same
condition number bound that also holds for the standard IETI-DP method
based on exact solvers for the local problems from [8].

The structure of the paper is as follows. Section 2 is devoted to the
introduction of the model problem and the IETI-DP solver. Numerical results
are presented in Section 3.

2 Model problem and its solution

Let Ω ⊂ R2 be an open bounded Lipschitz domain with boundary ∂Ω and
f ∈ L2(Ω) be a given source function. We consider the following model
problem: Find u ∈ H1

0 (Ω) such that∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx for all v ∈ H1
0 (Ω). (1)

We assume that Ω is composed of K non-overlapping patches Ω(k) that are
parameterized with geometry mappings

Gk : Ω̂ := (0, 1)d → Ω(k) := Gk(Ω̂),

where the interface between any two patches is either a common vertex or
a common edge, cf. [8, Ass. 2]. Additionally, we assume that the number of
patches sharing a vertex is uniformly bounded, cf. [8, Ass. 3]. Moreover, we
assume that there is a constant CG such that ‖∇Gk‖L∞(Ω̂) ≤ CG diam(Ω(k))

and ‖∇G−1
k ‖L∞(Ω̂) ≤ CG diam(Ω(k))−1, see [8, Ass. 1], and that we have quasi-

uniform grids [8, Ass. 4]. The local discretization spaces on the parameter

domain Ω̂ are tensor-product B-splines spaces, obtained using the Cox-de
Boor formula. The local discretization spaces on the physical patches Ω(k) are
obtained by the pull-back principle. We assume that the geometry mappings
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as well as the discretizations agree on all interfaces between the patches,
cf. [8, Ass. 5]. So, we are able to set up a fully matching discretization with
the function space

V = {v ∈ H1
0 (Ω) : v ◦Gk is a B-spline function}.

The corresponding discrete problem is obtained by restricting (1) to this
space.

In the following, we introduce the IETI-DP solver. The patches from
the definition of the computational domain provide a canonical choice of
substructures which we use to set up the solver. By assembling the variational
problem (1) on the individual patches separately, we obtain independent
linear systems

A(k)u(k) = f (k) for k = 1, . . . , K,

where A(k) is the local stiffness matrix and f (k) is the local source vector.
We use the vertex values as primal degrees of freedom, see [8, Alg. A]. By

eliminating the primal degrees of freedom, we obtain the matrices A
(k)
∆∆ and

the vectors f (k)

∆
and u

(k)
∆ . Moreover, we introduce jump matrices B(k), where∑K

k=1B
(k)u(k) = 0 ensures the continuity between the patches (except the

continuity at the corners), in the usual way, see [8, Section 3]. The matri-

ces B
(k)
∆ are obtained from B(k) again by eliminating the primal degrees of

freedom.

The A(k)-orthogonal primal basis representation Ψ(k) is characterized by
the linear system (

A(k) (C(k))>

C(k)

)(
Ψ(k)

∆(k)

)
=

(
0

R
(k)
c

)
,

where C(k) is a matrix that selects the coefficients corresponding to the primal
degrees of freedom and R

(k)
c is a binary local-to-global mapping of the primal

constraints. We compute Ψ(k) using a MINRES solver, preconditioned with

P̃ (k) =

(
(Â

(k)
M )−1

(C(k)(Â
(k)
M )−1C(k))−1

)
,

where Â
(k)
M := Â(k) + γkM̂

(k)e
(k)
h (e

(k)
h )>M̂ (k) is the stiffness matrix on the

parameter domain Â(k), corrected by a term involving the mass matrix M̂ (k)

on the parameter domain and the vector e
(k)
h , which represents the constant

function with value 1. We choose γk = 1 if Ω(k) does not contribute to the
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Dirichlet boundary ∂Ω and γk = 0 otherwise. The application of (Â
(k)
M )−1

is realized with the fast diagonalization (FD) method, see [7]. After the
computation of all Ψ(k), we obtain the global primal basis representation
matrix Ψ by canonical mappings. Next, we set up the primal stiffness matrix,
the primal source vector and the corresponding jump matrix given by

AΠ :=
K∑
k=1

(Ψ(k))>A(k)Ψ(k), f
Π

:= Ψ>f and BΠ :=
K∑
k=1

B(k)Ψ(k).

The overall IETI-DP saddle point system reads as follows:
A

(1)
∆∆ (B

(1)
∆ )>

. . .
...

A
(K)
∆∆ (B

(K)
∆ )>

AΠ B>Π
B

(1)
∆ · · · B

(K)
∆ BΠ 0




u

(1)
∆
...

u
(K)
∆

uΠ

λ

 =


f (1)

∆
...

f (K)

∆

f
Π

0

 . (2)

We solve (2) with a preconditioned MINRES method using the preconditioner

P := diag (Q(1)(Â
(1)
M )−1(Q(1))>, · · · , Q(K)(Â

(K)
M )−1(Q(K))>, A−1

Π , M̂sD), (3)

where Q(k) is the A(k)-orthogonal projection from the local function space
into the space V

(k)
∆ := {u(k) : C(k)u(k) = 0} of functions with vanishing

primal degrees of freedom and Â
(k)
M is defined as above and realized using

the FD method. A−1
Π is realized by a direct solver. M̂sD is an inexact scaled

Dirichlet preconditioner, defined by

M̂sD := BΓD
−1ŜD−1B>Γ , (4)

where Ŝ := diag(Ŝ(1), . . . , Ŝ(K)) with Ŝ(k) := Â
(k)
ΓΓ − Â

(k)
ΓI (Â

(k)
II )−1Â

(k)
IΓ . The

diagonal matrix D is based on the principle of multiplicity scaling, cf. [8].

The index Γ refers to the rows/columns of Â(k) and the columns of B(k) that
refer to basis functions with non-vanishing trace, the index I refers to the
remaining rows/columns.

Under the presented assumptions, the condition number of the system (2)
preconditioned with (3) is bounded by

C p

(
1 + log p+ max

k=1,...,K
log

Hk

hk

)2

,

where p is the spline degree, Hk is the diameter of Ω(k), and hk the grid size
on Ω(k), and the constant C only depends on the constant CG, the quasi-
uniformity constant and the maximum number of patches sharing a vertex,
see [8].
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3 Numerical results

In this section, we show numerical results of the proposed inexact IETI-DP
method on the computational domains as given in Fig. 1. The first domain
is a quarter annulus consisting of 32 patches and the second one is the Yeti-
footprint decomposed into 84 patches.

Figure 1: Computational domains; Quarter annulus (left); Yeti-footprint
(right)

We consider the model problem

−∆u(x, y) = 2π2 sin(πx) sin(πy) for (x, y) ∈ Ω

with homogeneous Dirichlet boundary conditions. Within each patch, we
use B-splines of degree p and maximum smoothness Cp−1. The coarsest
discretization space (r = 0) is the space of patchwise global polynomials,
only the more rectangular patches of the Yeti-footprint have one inner knot
on each of the longer sides of the patches. The subsequent refinements r =
1, 2, . . . are obtained via uniform refinement steps.

All numerical experiments have been carried out using the C++ library
G+Smo1, the CPU times have been recorded on the Radon12 Cluster in Linz.

We compare three different IETI-DP solvers: the proposed solver as in-
troduced in Section 2 (=MFD), a IETI-DP solver for the saddle point sys-
tem (2) without the primal degrees of freedom eliminated with direct solvers
for the local subproblems (=MLU), and the Schur complement based ap-
proach as introduced in [8] (=CGLU). We use MINRES as outer solver in
the cases MFD and MLU and conjugate gradient as outer solver for the case
CGLU. For MLU and CGLU, we use sparse direct LU solvers from the Par-
diso project3 for the local subproblems and for computing the bases Ψ(k). For

1https://github.com/gismo/gismo
2https://www.ricam.oeaw.ac.at/hpc/
3https://www.pardiso-project.org/
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Figure 2: Solving times for p = 5 (left) and r = 7 (right); MFD (blue lines);
MLU (red lines); CGLU (green lines); Annulus
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Figure 3: Solving times for p = 3 (left) and r = 6 (right); MFD (blue lines);
MLU (red lines); CGLU (green lines); Yeti-footprint

MFD, the primal bases Ψ(k) are solved with MINRES up to an accuracy of
10−8. We present the times required for computing a primal basis Ψ which
we indicate in the tables with the same letter, the accumulated setup and
application times of the different local preconditioners for all patches K, ab-
breviated by ΘS and ΘA, respectively as well as the solving times and the
number of iterations (it.) required by the main Krylov space solver. We start
all numerical experiments with zero initial guess and stop the iterations if
the `2-norm of the residual vector is reduced by a factor of 10−6 compared
to the `2-norm of the right-hand side vector.

The Tables 1 and 2 present the timings of the algorithms on the quarter
annulus domain. We observe that the solving and total times required by
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r Ψ ΘS ΘA solving total it.

MFD 6 1.2 0.1 0.4 4.2 5.5 71

MLU 0.8 7.6 21.2 43.0 51.4 37

CGLU 0.8 7.6 9.5 17.0 15.4 15

MFD 7 8.0 0.3 4.9 25.0 33.3 80

MLU 4.0 42.3 106.4 216.0 262.3 39

CGLU 4.0 42.3 45.4 81.0 127.3 15

MFD 8 35.5 2.0 26.9 126.3 163.8 88

MLU 18.1 243.6 503.8 1015.0 1276.7 41

CGLU 18.0 242.1 225.3 412.0 672.1 17

Table 1: Alg. A; p = 5; timings in sec.; Annulus

r Ψ ΘS ΘA solving total it.

MFD 6 2.5 0.2 0.5 8.2 10.9 76

MLU 1.2 17.9 33.8 72.0 91.1 39

CGLU 1.2 17.8 14.4 26.0 45.0 15

MFD 7 15.1 0.4 5.4 41.0 56.5 84

MLU 5.8 105.0 163.3 343.0 453.8 41

CGLU 5.8 105.0 73.8 134.0 244.8 17

MFD 8 60.1 2.3 29.9 200.0 262.4 94

MLU OoM

CGLU OoM

Table 2: Alg. A; p = 8; timings in sec.; Annulus

MFD are three to five times smaller compared to the other methods MLU
and CGLU. MFD is much faster than the other methods despite the fact that
the required number of iterations are up to approximately six times larger.
One disadvantage of MFD is the computation of the primal basis Ψ. The
tables show a larger computation time when using MFD. This is a weakness
of the classical preconditioned MINRES method when applied to problems
with multiple right-hand sides. In general, we have to solve systems with
four right-hand sides to compute Ψ(k). Moreover, we see that the setup and
application of the FD based preconditioner is much faster compared to the
factorizations of (

A(k) (C(k))>

C(k)

)
and their application. Table 2 shows another advantage of the MFD method.
Since its memory footprint is smaller, it also provides a solution vector to the
considered linear system for the refinement level r = 8. The plots in Fig. 2 vi-
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r Ψ ΘS ΘA solving total it.

MFD 5 0.7 0.1 0.8 6.8 7.6 213

MLU 0.3 2.3 9.4 19.0 21.6 45

CGLU 0.3 2.3 4.5 8.0 10.6 20

MFD 6 3.4 0.2 5.0 31.0 34.6 242

MLU 1.2 10.5 49.6 100.0 111.7 51

CGLU 1.2 10.4 23.1 42.0 53.6 22

MFD 7 21.8 1.2 52.7 212.0 235.0 274

MLU 6.8 50.3 295.2 600.5 657.6 55

CGLU 6.8 50.1 126.1 234.0 290.9 22

Table 3: Alg. A; p = 3; timings in sec.; Yeti-footprint

r Ψ ΘS ΘA solving total it.

MFD 5 2.2 0.2 1.2 20.0 22.4 249

MLU 0.6 10.5 23.5 48.0 59.1 51

CGLU 0.6 10.4 10.9 19.0 30.0 22

MFD 6 9.5 0.4 5.9 79.0 88.9 282

MLU 3.0 44.8 140.5 286.0 333.8 57

CGLU 3.0 44.8 60.6 111.0 158.8 23

MFD 7 54.2 1.5 63.2 414.0 469.7 309

MLU 14.1 265.3 739.1 1521.0 1800.4 61

CGLU 13.8 261.7 304.4 570.0 845.5 25

Table 4: Alg. A; p = 7; timings in sec.; Yeti-footprint

sualize solving times of the IETI-DP solvers on the quarter annulus domain.
We mark the performance of MFD with blue lines and triangles, MLU with
red lines and squares and the performance of CGLU is indicated with green
lines and crosses. In both graphs, we observe that MFD is the fastest algo-
rithm. In the left plot, we see that for spline degree p = 5, the solving times
increase rather linearly with respect to the number of unknowns. Moreover,
the left graph shows that MFD computes the solution for the linear system
even for refinement level r = 9 (≈ 8.5M dofs). In the right graph, we present
the solving times with respect to the spline degree for refinement level r = 7.
The solving times for the three IETI-DP solvers increase about linearly with
the spline degree.

The plots in Fig. 3 show solving times of the IETI-DP solvers on the
Yeti-footprint. We marked the performance of the different IETI-DP solvers
as above in the experiments on the quarter annulus. The plot on the left
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shows the increase of the solving time with respect to the refinement level
with polynomial degree p = 3 and the plot on the right shows the increase of
the solving time with respect to the polynomial degree, where we have fixed
the refinement level to r = 6. As on the quarter annulus, we see that MFD is
superior compared to MLU and CGLU also on the Yeti-footprint with respect
to the solving times and the smaller memory footprint of MFD allows us to
consider larger problems. In both plots, we observe similar growth rates of
the solving time for all three solvers as in Fig. 2. In the Tables 3 and 4, we
present and compare the required timings for the polynomial degrees p = 3
and p = 7 for different refinement levels on the Yeti-footprint.

To conclude, we presented a fast IETI-DP method which allows the in-
corporation of inexact solvers for the local subproblems while maintaining
the condition number bound as established in [8]. It is beneficial both be-
cause of its smaller memory footprint and its faster convergence for the model
problems.

Acknowledgments. The first author was supported by the Austrian
Science Fund (FWF): S117-03 and W1214-04. Also, the second author has
received support from the Austrian Science Fund (FWF): P31048.
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