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IETI-DP for conforming multi-patch
Isogeometric Analysis in three
dimensions

Rainer Schneckenleitner and Stefan Takacs∗

Abstract We consider dual-primal isogeometric tearing and interconnec-
tion (IETI-DP) solvers for multi-patch geometries in Isogeometric Analysis.
Recently, the authors have published a convergence analysis for those solvers
that is explicit in both the grid size and the spline degree for conforming
discretizations of two dimensional computational domains. In the present pa-
per, we shortly revisit these results and provide numerical experiments that
indicate that similar results may hold for three dimensional domains.

1 Introduction

We are interested in fast domain decomposition solvers for multi-patch Iso-
goemtric Analysis (IgA; [4]). We focus on variants of FETI-DP solvers, see
[2, 10] and references therein. Such methods have been adapted to IgA in [5],
where the individual patches of the multi-patch discretization are used as
subdomains for the solver. This method is sometimes referred to as the dual-
primal isogeometric tearing and interconnection (IETI-DP) method. These
methods are similar to Balancing Domain Decomposition by Constraints
(BDDC) methods, which have also been adapted for IgA, see [1] and follow-up
papers by the same authors. The similarity is outlined in [6].
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Much progress for the IETI-DP methods has been made in the PhD-thesis
by C. Hofer, including the extension to various discontinuous Galerkin formu-
lations, see [3]. Recently, the authors of the paper at hand have extended the
condition number bounds for the preconditioned Schur complement system
to be explicit not only in the grid size but also in the chosen spline degree,
see [8] for the conforming case and [9] for an extension to the discontinuous
Galerkin case. The analysis follows the framework from [6]. One key ingredi-
ent for the analysis in [8] has been the construction of a bounded harmonic
extension operator for splines, which followed the ideas of [7]. The analysis
in [8] treats the two-dimensional case. As usual for FETI-like methods, the
extension of the analysis to three dimensions is not effortless. The goal of
this paper is to demonstrate that the proposed method also performs well for
higher spline degrees in three dimensions.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the model problem, discuss its discretization and the proposed IETI-DP
algorithm. In Section 3, numerical experiments for a three dimensional ex-
ample are presented.

2 Model problem and its solution

We consider a standard Poisson model problem. Let Ω ⊂ Rd be a bounded
Lipschitz domain. For given f ∈ L2(Ω), we are interested in solving for
u ∈ H1(Ω) such that

−∆u = f in Ω and u = 0 on ∂Ω

holds in a weak sense. We assume that the closure of the computational
domain Ω is the union of the closure of k non-overlapping patches Ω(k) that
are parametrized with geometry functions

Gk : Ω̂ := (0, 1)d → Ω(k) := Gk(Ω̂)

such that for any k 6= `, the intersection Ω(k) ∩Ω(`) is empty, a common ver-
tex, a common edge, or (in three dimensions) a common face (cf. [8, Ass. 2]).

We assume that both, ∇Gk and (∇Gk)−1, are in L∞(Ω̂) for all patches. For
the analysis, we need a uniform bound on the L∞-norm and a uniform bound
on the number of neighbors of each patch, cf. [8, Ass. 1 and 3].

For each of the patches, we introduce a tensor B-spline discretization on
the parameter domain Ω̂. The discretization is then mapped to the physical
patch Ω(k) using the pull-back principle. We use a standard basis as obtained
by the Cox-de Boor formula. We need a fully matching discretization, this
means that for each basis function that has a non-vanishing trace on one
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of the interfaces, there is exactly one basis function on each of the patches
sharing this interface such that the traces of the basis functions agree (cf. [8,
Ass. 5]). This is a standard assumption for any multi-patch setting that is not
treated using discontinuous Galerkin methods. For the analysis, we assume
quasi uniformity of grids within each patch, cf. [8, Ass. 4].

In the following, we explain how to the IETI-DP solver is set up. Here,
we loosely follow the notation used in the IETI-DP solution framework that
recently joined the public part of the G+Smo library. We choose the patches
as IETI subdomains. We obtain patch-local stiffness matrices A(k) by eval-
uating the bilinear forms a(k)(u, v) =

∫
Ω(k) ∇>u(x)∇v(x)dx with the basis

functions for the corresponding patch. We set up matrices C(k) such that
their null space are the coefficient vectors of the patch-local functions that
vanish at the primal degrees of freedom. In [8], we have considered corner
values, edge averages, and the combination of both. In the three dimensional
case, we can choose corner values, edge averages, face averages, and any com-
bination thereof. We set up fully redundant jump matrices B(k). We omit
the corner values if and only if the corners are chosen as primal degrees of
freedom. We setup the primal problem in the usual way, i.e., we first, for
k = 1, . . . ,K, compute a basis by

Ψ (k) :=
(
I 0
)

(Ã(k))−1
(

0

R
(k)
c

)
, where Ã(k) :=

(
A(k) (C(k))>

C(k)

)
and R

(k)
c is a binary matrix that relates the primal constraints (with their

patch-local indices) to the degrees of freedom of the primal problem (with
their global indices) and set then

Ã(K+1) :=

K∑
k=1

(Ψ (k))>A(k)Ψ (k), and B̃(K+1) :=

K∑
k=1

B(k)Ψ (k).

We consider the Schur complement problem Fλ = g, where

F :=

K+1∑
k=1

B̃(k)(Ã(k))−1(B̃(k))> and B̃(k) :=
(
B(k) 0

)
for k = 1, . . . ,K.

The derivation of g is a patch-local preprocessing step. We solve the Schur
complement problem using a preconditioned conjugate gradient (PCG) solver
with the scaled Dirichlet preconditioner

MsD :=

K∑
k=1

BΓD
−1
k

(
A

(k)
ΓΓ −A

(k)
ΓI (A

(k)
II )−1A

(k)
IΓ

)
D−1k (BΓ )>,
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where the index Γ refers to the rows/columns of A(k) and the columns of B(k)

that refer to basis functions with non-vanishing trace, the index I refers to
the remaining rows/columns, and the matrix Dk is a diagonal matrix defined
based on the principle of multiplicity scaling. For the analysis, it is important
that its coefficients are constant within each interface. The solution u itself
is obtained from λ using the usual patch-local steps, cf. [8].

Under the presented assumptions, the condition number of the precon-
ditioned Schur complement system is in the two-dimensional case bounded
by

C p

(
1 + log p+ max

k=1,...,K
log

Hk

hk

)2

,

where p is the spline degree, Hk is the patch size, and hk the grid size, see [8].

3 Numerical results

In the following, we present numerical results for a three dimensional domain
and refer to the original paper [8] for the two dimensional case. The compu-
tational domain Ω is a twisted version of a Fichera corner, see Fig. 1. The
original geometry consists of 7 patches. We subdivide each patch uniformly
into 4× 4× 4 patches to obtain a decomposition into 448 patches.

Fig. 1: Computational domain

We solve the model problem −∆u(x, y, z) = 3π2 sin(πx) sin(πy) sin(πz)
for (x, y, z) ∈ Ω with homogeneous Dirichlet boundary conditions on ∂Ω by
means of the IETI-DP solver outlined in the previous sections. Within the
patches, we consider tensor-product B-spline discretizations of degree p and
maximum smoothness Cp−1. We consider several grid sizes, the refinement
level r = 0 corresponds to a discretization of each patch with polynomials.
The next refinement levels r = 1, 2, . . . are obtained by uniform refinement.
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All experiments have been carried out in the C++ library G+Smo1 and have
been executed on the Radon1 cluster2 in Linz. All computations have been
performed with a single core.
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Fig. 2: Condition numbers and solving times for p = 3
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Fig. 3: Condition numbers and solving times for r = 2

Concerning the choice of the primal degrees of freedom, we consider all
possibilities. For the two-dimensional case, the common choices are the corner
values, the edge averages, and a combination of both. We have seen in [8] that
all approaches work, typically the corner values better than the edge averages.
As expected, the combination of both yields the best results. For the three
dimensional case, we have more possibilities. We report on these approaches

1 https://github.com/gismo/gismo, example file examples/ieti_example.cpp.
2 https://www.ricam.oeaw.ac.at/hpc/

https://github.com/gismo/gismo
examples/ieti_example.cpp
https://www.ricam.oeaw.ac.at/hpc/
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p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

r it κ it κ it κ it κ it κ it κ

1 33 14 51 32 64 45 89 84 108 109 136 178

2 57 42 79 80 98 122 124 193 148 227 176 326

3 94 116 123 208 149 315 175 439 199 566 OoM

4 146 275 176 509 OoM OoM OoM OoM

Table 1: Iterations (it) and condition number (κ); Vertex (V)

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

r it κ it κ it κ it κ it κ it κ

1 14 2.5 17 3.1 20 3.8 23 4.4 27 5.1 29 5.5

2 18 3.9 21 4.6 23 5.3 26 6.0 29 6.7 32 7.3

3 23 5.6 25 6.4 28 7.3 30 8.0 33 8.8 OoM

4 27 7.5 30 8.6 OoM OoM OoM OoM

Table 2: Iterations (it) and condition number (κ); Edges (E)

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

r it κ it κ it κ it κ it κ it κ

1 22 6.1 26 7.4 29 8.3 33 9.5 37 10.4 41 11.5

2 29 9.5 31 10.7 34 11.8 37 12.9 42 14.2 46 15.5

3 35 13.1 38 14.4 41 15.9 43 17.0 47 18.3 OoM

4 41 17.1 44 18.4 OoM OoM OoM OoM

Table 3: Iterations (it) and condition number (κ); Faces (F)

in the Tables 1 (vertex values = V), 2 (edge averages = E), 3 (face averages
= F), 4 (V+E), 5 (V+F), and 6 (E+F). The combination of all variants
(V+E+F) is almost identical to the case V+E and only included in the
diagrams. In any case, we report on the number of iterations (it) required
by the PCG solver to reduce the residual with a random starting vector by
a factor of 10−6 compared to the right-hand side. Moreover, we report on
the condition numbers (κ) of the preconditioned system as estimated by the
PCG solver.

In Figure 2, the dependence on the refinement level is depicted. Here, we
have chosen the spline degree p = 3 and have considered all of the possibil-
ities for primal degrees of freedom. Here, we have 44 965 (r = 1), 133 629
(r = 2), 549 037 (r = 3), and 2 934 285 (r = 4) degrees of freedom (dofs).
We observe that choosing only vertex values as primal degrees of freedom
leads to the largest condition numbers. We observe that in this case the con-
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p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

r it κ it κ it κ it κ it κ it κ

1 14 2.5 17 3.1 20 3.8 22 4.3 26 5.0 28 5.4

2 18 3.8 21 4.6 23 5.3 26 6.0 29 6.7 31 7.2

3 22 5.5 25 6.4 28 7.3 30 8.0 33 8.8 OoM

4 27 7.5 30 8.6 OoM OoM OoM OoM

Table 4: Iterations (it) and condition number (κ); Vertices+Edges (V+E)

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

r it κ it κ it κ it κ it κ it κ

1 17 3.7 22 5.2 26 6.6 30 7.8 34 9.0 38 10.1

2 25 6.8 29 8.6 32 10.0 36 11.4 40 12.9 44 14.3

3 32 10.7 36 12.7 39 14.2 42 15.6 45 17.3 OoM

4 39 15.2 43 17.4 OoM OoM OoM OoM

Table 5: Iterations (it) and condition number (κ); Vertices+Face (V+F)

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

r it κ it κ it κ it κ it κ it κ

1 14 2.5 17 3.1 20 3.8 23 4.3 27 5.0 30 5.7

2 19 3.9 21 4.6 24 5.3 27 5.9 30 6.6 33 7.4

3 23 5.5 26 6.4 29 7.2 31 7.9 33 8.5 OoM

4 28 7.4 31 8.4 OoM OoM OoM OoM

Table 6: Iterations (it) and condition number (κ); Edges+Faces (E+F)

dition number grows like r2 (the dashed red line indicates the slope of such
a growth). This corresponds to a growth like (1 + logH/h)2, as predicted by
the theory for the two-dimensional case. All other options yield significantly
better results, particularly those that include edge averages. In these cases,
the growth seems to be less than linear in r ≈ logH/h (the dashed black
like shows such a slope). In the right diagram, we can see that choosing a
strategy with smaller condition numbers also yields a faster method. Since
the dimensions and the bandwidths of the local stiffness matrices grow like
(Hk/hk)3 and (Hk/hk)2, respectively, the complexity of the LU decomposi-

tions grows like
∑K
k=1(Hk/hk)7. The complexity analysis indicates that they

are the dominant factor. The dashed black line indicates such a growth.

In Figure 3, the dependence on the spline degree is presented, where we
have chosen r = 2. Here, the number of dofs ranges from 66 989 (p = 2) to
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549 037 (p = 7). Also in this picture, we see that the vertex values perform
worst and the edge averages best. Again, we obtain a different asymptotic
behavior for the corner values. For those primal degrees of freedom, the con-
dition number grows like p2 (the dashed red line indicates the corresponding
slope). All the other primal degrees of freedom seem to lead to a growth
that is smaller than linear in p (the dashed black line indicates the slope
of a linear growth). Note that for the two-dimensional case, the theory pre-
dicts a growth like p(1 + log p)2. In the right diagram, we can see that the
solving times grow like p4 (the dashed line shows the corresponding slope).
This seems to be realistic since the number of non-zero entries of the stiffness
matrix grows like Npd, where N is the number of unknowns. For d = 3, this
yields in combination with the condition number bound the observed rates.

Concluding, in this paper we have seen that the IETI method as described
in [8] can indeed be extended to the three dimensional case. As for finite
elements, only choosing vertex values is not enough.

Acknowledgements The first author was supported by the Austrian Science Fund

(FWF): S117-03 and W1214-04. Also, the second author has received support from the
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References

1. L. Beirão da Veiga, D. Cho, L. Pavarino, and S. Scacchi. BDDC preconditioners for

isogeometric analysis. Math. Models Methods Appl. Sci., 23(6):1099 – 1142, 2013.
2. C. Farhat, M. Lesoinne, P. L. Tallec, K. Pierson, and D. Rixen. FETI-DP: A dual-

primal unified FETI method I: A faster alternative to the two-level FETI method. Int.

J. Numer. Methods Eng., 50:1523 – 1544, 2001.
3. C. Hofer. Analysis of discontinuous Galerkin dual-primal isogeometric tearing and

interconnecting methods. Math. Models Methods Appl. Sci., 28(1):131 – 158, 2018.
4. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite

elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl.
Mech. Eng., 194(39-41):4135 – 4195, 2005.
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