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Local multigrid solvers for adaptive
Isogeometric Analysis in hierarchical spline
spaces

Clemens Hofreither*  Ludwig Mitter’  Hendrik Speleers?

December 20, 2019

We propose local multigrid solvers for adaptively refined isogeometric dis-
cretization using HB- and THB-splines. We prove robust convergence of the
proposed solvers with respect to the number of levels and the mesh sizes
of the hierarchical discretization space and provide some numerical experi-
ments. Smoothing is only performed in or near the refinement areas on each
level, leading to a computationally efficient method.

The main analytical tools are quasi-interpolators for THB-spline basis
functions and the abstract convergence theory of subspace correction meth-
ods.

1 Introduction

Elliptic partial differential equations with local features such as singularities are typically
solved numerically through the use of adaptive refinement. Historically, much effort has
been put into the development of a more unified approach to the combined process of
adaptive refinement and multigrid solution, which in addition could also be used with
high order methods, see [20, [36] and the references therein. In the context of Isogeometric
Analysis (IgA; see [20]), the development of an adaptive isogeometric method (AIGM) for
solving elliptic second-order partial differential equations with truncated hierarchical B-
splines (THB-splines) of arbitrary degree, different order of continuity and any dimension
has been addressed in [8, 10, 9]. AIGM based on local refinements can be written using
the standard loop of the form

SOLVE — ESTIMATE —- MARK — REFINE.
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Apart from SOLVE, these steps have been thoroughly discussed in the aforementioned
papers. The distinct feature of applying multigrid or multilevel solvers to adaptively
refined spaces is that the number of new degrees of freedom may not grow exponentially
with the number of refinement steps, which would be the case for global refinement.
Thus, local smoothing strategies are required in order to achieve optimal computational
complexity, leading to so-called local multigrid methods.

The literature on fast solvers for AIGM schemes is still quite sparse. To our knowledge,
the first work on fast solvers for adaptive IgA was [19], where a multigrid solver for HB-
and THB-spline discretizations was constructed. Here, smoothing was still performed
globally, and no convergence analysis was given. Additive (BPX) solvers for analysis-
suitable T-splines were described in [I3], where also the robust convergence with respect
to the mesh size was proved. The construction closely follows that of the corresponding
finite element result in [12].

In the present work, we present the first local multigrid solver for linear systems
associated to the HB- or THB-discretization of elliptic partial differential equations and
present an h-robust convergence analysis. Our construction and analysis are significantly
simpler than the corresponding one for T-splines [I3] and directly exploit the inherent
multilevel structure of hierarchical spline spaces. Surprisingly, the resulting theory is
simpler than that of any analogous solvers in the finite element method (FEM) world
[12, 18, [34]. There is a certain similarity to a multigrid scheme used in deal.Il which
is described in [2I]; however, no convergence analysis is given therein. An important
tool in our analysis is the existence of of a versatile quasi-interpolant for THB-splines
[33, 32].

The theoretical framework for our convergence theory is provided by the theory of sub-
space correction methods [35]. This general approach involves the solving of subproblems
on suitable chosen subspaces and combining these corrections either additively (paral-
lel subspace correction, PSC) or multiplicatively (successive subspace correction SSC).
When applied to a hierarchy of refinement levels, the former lead to additive multilevel
(BPX-like) solvers, whereas the latter lead to multigrid methods. The interpretation of
an abstract multilevel method as an SSC method was introduced in Bramble, Pasciak,
Wang and Xu [6]. The equivalence of certain multigrid methods to SSC methods was also
discussed in Xu [35]. In this setting, smoothing iterations take the role of approximate
subspace solvers.

For adaptive refinement strategies, smoothing must be done locally in a certain sense
in order to maintain optimal computational complexity. It has long been known that, in
order not to degrade the convergence rate, smoothing has to be performed at least for all
basis functions contained in the refined region; this usually means including degrees of
freedom neighboring the newly added ones in the smoothing set [1 [5, [7, 24], 25] 29, 23].
An exception is the hierarchical basis method [2], where only newly added degrees of
freedom are smoothed, but which is limited to two-dimensional problems.

In the present work, we show that smoothing only those fine B-spline functions sup-
ported within the refinement region is sufficient for h-robust convergence.

One can show that if the local smoothing procedure is computationally optimal, these
so-called “local multilevel methods” are of optimal computational complexity in the



sense that if N is the size of the linear system on the finest level, only O(NN) operations
have to be performed for one sweep of this method. Under the same conditions also the
PSC-like BPX preconditioner exhibits optimal computational complexity [4, [15] 28] 27].

The paper is organized as follows. In Section [2] we review the basic features of HB-
and THB-splines and quasi-interpolants (QIs); for the latter, we extend an existing
approximation result. We also describe the isogeometric discretization to be solved and
review the theory of subspace correction methods. In Section 3| we give a decomposition
of hierarchical spline spaces obtained by adaptive refinement and prove its stability and
strengthened Cauchy-Schwarz inequality under suitable smoothing properties. We also
verify these smoothing properties for some standard smoothers. In Section [4| we combine
the previous results in order to give a rigorous convergence analysis of a local multigrid
solver for hierarchical spline spaces and discuss possible extensions.

2 Preliminaries

In this section we review some known results on THB-splines, quasi-interpolants and
convergence theory for abstract subspace correction methods. In addition, in Section
we give new approximation and stability results for THB-spline quasi-interpolants in
Sobolev space norms which generalize previous results from [33, [32].

2.1 THB-splines

Let D C R?% d € N be a closed hyper-rectangle, B C B! C ... C BV, N € N be nested
d-variate tensor product spline spaces on D spanned by the normalized tensor product
B-spline basis for [ =0,..., N,

Bl = {8UY i e I, T i= {(i, ... ig) : ip = 1,...,nt k=1,...,d}, B' :=span BB

on corresponding uniform open knot sequences of degree pr, € Nk = 1,...,d, i.e., the
resulting mesh G! consists of hyper-cubes (cells) with edge size by = 2=\, 1 =1,...,N
for some fixed hg > 0. The (non-empty) quadrilateral cells Y € G! are the Cartesian
product of d open intervals between adjacent grid values. For any coordinate direction
k=1,...,d, each grid value appears in the knot vector as many times as specified by
a certain multiplicity. At any level the multiplicity of each knot may vary between one
(single knots) and pi. To enforce nestedness of the spline spaces we assume the knot
sequences to be also nested, i.e. we assume B' to be obtained from B'~! by dyadic
refinement, hence hy = h;_1/2,1 = 1,..., N, where h; denotes the uniform grid mesh
size of level | and that every knot of level I — 1 is also present at level [ at least with the
same multiplicity in the corresponding coordinate direction.

We also take as given a sequence of nested domains D = o0l o...00N being
closed subsets of D, which are defined as the union of the closure of cells that belong to
the tensor product grid G!=! of the previous level. By assumption Q' is aligned with
the knot lines of B!,1 = 0,..., N. The union of the associated grids is referred to as the



hierarchical mesh
N

G:=J(Gna\a™),  1=0,... N (1)
=0
Let us denote by supp f the support of a function f intersected with D.

Definition 2.1 ([I7]). Let f € B',1 € {0,..., N — 1} and let
f= 3 &'ns G ER, (2)
ﬁeBl-‘rl

be its representation with respect to B!, The truncation of f with respect to B! and
Q1 is defined as

I+1
trunc f = Y (B (3)
5€Bl+1
supp fZQ! T

Now we can introduce the truncated hierarchical B-spline (THB-spline) basis.

Definition 2.2 ([17]). The THB-spline basis T is recursively defined as
T° :={B € B : supp B # 0},
THL = {trll+11110f cfeThsupp f € Q)
U{B e B! :supp g C Q1Y [=0,...,N—1,
T:=T7N.
THB-splines are non-negative, linearly independent and form a partition of unity [17].
Lemma 2.1 ([I7]). For every 7 € T',1 € {0,...,N} there exists a unique 3 € B with

I+1 N N-1 I+1
7 = Trunc § := trunc trunc - - - trunc g, T|Qz\91+1 = 6]Qz\ﬂz+1.

With the sets
BLi={80Y . ie1l), TL:={ieT': Q' Dsuppp? ¢ Q1Y B :=spanBl

of active basis functions [16] on level [ = 0,..., N, the index set Z of THB-splines basis
functions can then be defined as

T:={(,3):1€I,1=0,...,N}, (4)

and definition directly implies the equivalent representation

) ) I+1 )
T={r4:(1,4) eI}, T:=spanT, with 7 .= Truncg®?. (5)

We see from this construction that the support of any 7 € T can be given as the union
of closed cells in G.



It is a well known fact [I7] that without the truncation mechanism, the hierarchical
B-spline (HB-spline) basis spans the same space, i.e.

N
T = span (U Bi) = span{8"¥ : (1,1) € T}. (6)
=0

Therefore, we will refer to T as a hierarchical spline space when the particular choice of
basis is of no interest.

Definition 2.3 ([32, 33]). For each cell T € G in the hierarchical mesh, let d7 v be the
largest difference between the levels of the THB-splines 7 supported on T. The mesh
level disparity o1 is defined as the maximum of the values é7 r related to all cells T € G.

From this, one can bound the number of overlapping basis functions 7 € 7 on a cell

YT € G by
d

cr = (67— + ]-)Epa with Ep = H(pk; + 1)7
k=1

see [33] [§.
Corollary 2.1 ([8]). Under the above assumptions, one has
|T| = |supp 7|, VY €G,TNsuppt # 0,

where || denotes the d-dimensional measure of Y € G and the hidden constants in the
above inequalities depend on d1, but not on T,G or N.

Remark 2.1. All results in this paper can easily be generalized to quasi-uniform meshes
[8], which would demand a more complex notation.

For the rest of this paper, we will always indicate any inequality which does not depend
on the depth N (or, equivalently, on hy or G) of the spline hierarchy with <,2>. We
write =, if the relation holds for both < and 2.

Definition 2.4. The support extension S(Y,k) C G* of T € G! with respect to k,0 <
k<l,1€{0,...,N} is defined as

S(Y,k):={Y eGF:38 € B* suppBNTY #0,suppBNT # O}
By a slight abuse of notation, we will also denote by S(T, k) the region occupied by the
closure of elements in S(T, k).
2.2 Quasi-interpolants

The subsequent construction, following [32, B3], allows the simple design of quasi-
interpolants (QIs) in T, once a sequence of QIs in the spaces B!,l = 0,..., N is given.
Let f be a function on D. Consider a sequence of one-level QIs

Q'f = A (R 1=0,...,N,

icT!



where A9 4 € L1 = 0,..., N are suitable linear functionals. We say that AGD) g
supported on At® iff '
f’A(l,i) =0 = /\(l’l)(f) =0.

If A4 with this property are choosen as small as possible, one refers to A-%) as the
support of A& We define our hierarchical QI in T as

Q:fel’ D) Y A e, (7)

(13)eT

Theorem 2.1 ([32,33]). If each \49 i € TH1=0,...,N is supported on O\ Q1 and
Qlf = f forany f €eBL1=0,...,N then

Of =T, VfeT. (8)

Consequently, the construction of a hierarchical QI for THB-splines has been reduced
to the construction of appropriate one-level Qls as outlined in the above theorem. For
the remainder of this paper we make the following assumptions.

QI1 The mesh level disparity d7 is bounded independently of the number N of levels in
the hierarchy. This can be guaranteed by suitable refinement strategies, [§].

QI2 The linear functionals A& 4 € ZH 1 =0,..., N are locally supported,
diam AG) < Cahy,  VieZl, (9)

where C) is a constant independent of h; and diam A9 denotes the diameter of
AGD)

QI3 The linear functionals (&%), (I,4) € Z are bounded in the L%-norm, 1 < g < oo,
D) < Crlh) ™) fllpanainy,  ¥(L3) €T, (10)

where C) is a constant independent of 7 and ||.|[4(p¢.4)) denotes the usual g-
Lebesgue norm on At (1,4) € T.

Q!4 The linear functionals At9 ¢ € 7! 1 = 0,..., N are choosen so that Q',1 =0,..., N
reproduces the tensor product polynomial space P, of degree p,

Qg=g, VgeP, (11)
for some p = (p,...,p) € N& with 0 < p < p.

In the following two examples, we present one-level Qls that satisfy the conditions

@-@D.



Example 2.1. For d = 1 we consider the QI developed in [22] Section 5.3.1] of the form

(7) with ‘
iy L [ (S (T
=g [ (S () e (12)

where [£], & 41) € G! can be any knot interval in the support of the B-spline (%) of
degree p, and the coefficients a; ; € R,4,5 = 0,...,p are chosen in a special way. These
functionals clearly satisfy (9) with Cy =1, and from [22, Lemma 3] we know that they
also satisfy (10). Finally, from [22, Lemma 2] it follows that is satisfied for each
0<p<p.

Example 2.2. For d > 1 we construct the QI by taking the tensor product of univariate
schemes defined in the previous example More precisely, given a d-variate function
f we define the linear functionals as

ALD(f) = (AL Wiy (), V(l,%) € T,

assuming that Abik) =1, ... d are the linear functionals in operating on functions
of the k-th variable. From the properties of the univariate scheme it follows that also
this multivariate scheme satisfies the conditions @D—.

Suppose T! € G is a cell of a given level I = 0,..., N in Q' \ Q. One can check
that diam Y! = h;v/d. We define

Ay == conv ( U AED Tl) C S(Y,1—67), (13)
(k,3)ET:supp TR NYTIAR

where conv A denotes the convex hull of a set A C R%. Taking into account the bounded
mesh level disparity, we have
diam Avi < Ca,hy,

where C) ., is a constant independent of h;. Let us denote by HW(;C (a) the usual seminorm

on the Sobolev space Wf(A). We are now ready to extend the L?-norm approximation
estimate provided in [32] Corollary 1] as follows.

Theorem 2.2. Under the above assumptions, let X' € G! be a cell of level | in Q'\ Q1
and let Ayi be the corresponding set as defined in . Let Q satisfy (@— (e.g.,
be constructed according to example and emampl. If f € W(fH(ATz), 1<¢g<
00,0 < p < minj—y,_4pj, then for any oo = (v1,...,2q),0 < oy < pj,j=1,...,d one
has

1D(f = 20l acry < OO gy, (14)

where the constant C' is independent of f and h; and |a| = 2?21 aj.

Proof. By the partition of unity property of the basis, definition and condition ({L0J)
we have

9F@)| < Cahy Y f o,y Ve = (21,...,20) €T,



where we used the fact that

h; = min
(k,3)€T:supp TR DNYTIAD

Then, taking the L9-norm we get

19/ acrty < Cull fllLaay)- (15)

Now, consider the averaged Taylor polynomial §, 5,  defined in [32, Definition 1] with
T

p=pand B = Ba,s the ball with largest radius contained in Ay:. Using the bound
and the error estimate from [32, Lemma 2] we arrive at

p+1
1 - gmBATl f)HLQ(Tl) < Cillf - g/LBATZfHL‘I(AW < C2(diamATl> ’f’qu“(ATl)‘
(16)
The inequality is similar to the inequality [32), (18)] but it has no restrictions on
the relations between the degree p, the dimension d and the L%-norm.

Finally, we follow the same line of arguments as in the proof of [32, Theorem 4]. In
particular, we combine the inequalities in [32, (15)-(17)] with (L6)), and we get the error
estimate . We note that D%g = 0 for any polynomial g € P, whenever a;; > p; for
some j =1,...,d. O

2.3 Adaptive isogeometric discretizations

We assume that a computational domain G(D) C R? is given via a bijective and suf-
ficiently smooth geometry mapping G : D — G(D) C R?, which maps the parameter
domain D = (0,1)? to the physical domain G(D). In Isogeometric Analysis (IgA) [20],
this mapping is typically given in terms of spline basis functions, G € (B°)?, but its
concrete form is irrelevant to our discussion. The standard IgA approach is then to
transform the variational problem of interest back to the parameter domain. Choosing a
suitable Hilbert space V over D, we obtain a variational problem of the form: for f € V',
find u € V such that
a(u,v) = (f,v), Yv e V.

Here we assume that the bilinear form on the physical domain G(D) is symmetric,
positive definite, and bounded, which then also holds for a(-,-) : V x V — R. The
concrete coefficient within the bilinear form a(-,-) is modified by this transformation.

Our case of interest are adaptive discretizations of such variational problems using HB-
or THB-splines. Thus, let T be a hierarchical spline space as defined in Section (e.g.,
obtained by an AIGM scheme as outlined in the introduction) and let V := T N Hg (D)
denote our finite dimensional trial space, where H}(D) is the Sobolev space H'(D) =
W} (D) with zero trace at 9D. We assume here pure Dirichlet boundary conditions for
simplicity, but other boundary conditions pose no problem.

We pass to the operator notation A : V — V' by setting (Au,v) = a(u,v) Yu,v € V,
resulting in the operator equation Au = f. The main object of this paper is to construct
fast multigrid solvers for this discretized problem.



2.4 Subspace correction methods

We describe here subspace correction methods and their convergence theory in the ab-
stract setting, which will provide the basis for the convergence analysis of our multigrid
method.

Let (V,(.,.)) be a finite dimensional Hilbert space and choose a space decomposition

of V of the form Ny
v=> v
i=0

with subspaces V; C V, ¢ = 0,...,N € N. For a given u € V, the decomposition
u= Zfio u;, u; € V; is in general not unique.

Let A :V — V' be linear, bounded, symmetric and positive definite (s.p.d.), i.e., A is
isomorphic and ||.|[} := (A.,.) constitutes a norm, where V', V! denote the dual spaces of
YV, Vi, i =0,..., N, respectively. Throughout this paper, we use the following notation
fori=0,...,N:

e P,:V—YV; the (energy) projection with respect to (.,.)4 := (4.,.), i.e.

(Pv,v)a = (v,v;) 4, YveV,v;€V;,i=0,...,N,

e A;:V; — V! the restriction of A to the subspace V;, i.e.

(Aiui,vi> = <Aui,vi>, Yui,v; € Vi, i =0,...,N,

e R;:V/ =V, asp.d. approximation of A; ',
o T;:V — YV, the auxiliary operator T; = R;A;P; = R;A,i=0,...,N.

With a slight abuse of notation we still use 7; to denote the restriction Tily, : V; — V;
and Ti_l = (Tih;i)_l V=V
For a given right-hand side f € V', our goal is to solve the operator equation

Au=f

for u € V by means of the above space decomposition. There are two common ways to
achieve this:

PSC (Parallel subspace correction method) This method performs corrections on each
subspace in parallel for a given u® € V,

N
uFtt = uF 4 B(f — Au¥), B= ZRi’
i=0
for k =0,1,2,... The error equation reads
N
uw—ut =T -T)(u—u*), T=) T,=BA, for k=0,1,2,...
i=0



SSC (Successive subspace correction method) This method performs the corrections in
a successive way for a given u? € V,

WO =k, ot =0t Ri(f — AvY),i=0,...,N, ot =Nt

for k=0,1,2,... The error equation reads

N
uw—uFtt = (H(I—Ti))(u—uk), for k=0,1,2,...,
1=0
where T[N (I = T3) :== (I = To)(I = T1)--- (I = Tx).

Note that in the case of nested spaces V; C V;11,i =0,..., N —1, SSC is nothing else
but the multigrid V-cycle [35], [36]. The convergence analysis of PSC and SSC according
to [35] rests upon the following two assumptions.

Al Stable decomposition: For any v € V there exists a decomposition v = Z}]CV:() Vg, Vi €
Vi, k=0,...,N such that

N

ZHkaQ; < Kollv[l4.
k=0

A2 Strengthened Cauchy-Schwarz (SCS) inequality: For any ug,vp € Vi, k =0,...,N

one has
N N N 1/2 N 1/2
\Z Z (Tiui, Tjvj) a] < Kl(Z(ﬂUuUz‘)A) (Z(EUjo)A) :
i=0 j=i+1 =0 7=0

Theorem 2.3 ([35]). Let A1 and A2 be satisfied. Then PSC and SSC satisfy the

convergence results
K(BA) < KOKla

N
2 —

HH(I T3 <1 - Y with w = max

i=0 B

K0(1+K1)2 k=0,..., Np<RkAk)7

where Kk denotes the condition number and p the spectral radius.

3 Space decomposition of hierarchical spline spaces

The hierarchical spline space T as defined in Section is induced by the domain
hierarchy Q° D Q' D ... D QV. As a consequence of Bl(ﬂl) D B., the nestedness of
B,1=0,...,N and @ we have the representation

N
T=>) B(Q), (17)
=0

10



where B'(Q) := span{3 € B' : suppB C Q} denotes the space spanned by the tensor
product B-splines of level I = 0, ..., N whose support is entirely contained in a given set
Q) C D. Note that these spaces also contain B-spline basis functions which are eliminated
by the Kraft selection mechanism and thus not contained in the basis of the hierarchical
spline space.

The relation provides us with the main space decomposition upon which we will
build a subspace correction method as described in Section [2.4] meaning that smoothing
will only be performed in subspaces of tensor product splines on a single level.

Let T, := B'(Q') and introduce the auxiliary hierarchical spline spaces

k
Tp:=Y T, k=0,...N,
=0

such that To € Ty € ... € Ty = T, with Ik,fk,ﬁ;,ﬁ denoting the active index sets

and bases of Ty, Ty, k = 0,..., N, respectively. Note that 7, = Zy \ Zy—1,k = 1,..., N.

We also denote the hierarchical meshes as in corresponding to these spaces by Gy.
We have the standard inverse inequality ([3])

||Uk||124: ‘Uk‘%ShIZQHUkH(Q) V’Uk; eﬁ‘ka k:O"">N7 (18)

where [|.|lo := [|-lz2(p) |-I1 == |-lwz ), 11 = [l-lw 0y are the usual Sobolev norms.
In Sections and we will verify A1 and A2 for the space decomposition on
the basis of a smoothing property on the subspace solvers Ry, k = 0,..., N: we assume

that

(e, ve) < B o) Vo, € Ty, k=0,...,N (SP)
_ Vg € s =0,...,
hic o6 = lloel7 et

with some constant w € (0, 2).
In Section [3.3] we will prove this smoothing property for some standard smoothing
iterations.

3.1 Stability of the decomposition

Let Q 1 := 0 and Qj : L?3(D) — Ty, k = 0,..., N, be THB-spline QlIs constructed
according to Theorem for instance those given in Example 2.1 and Example As
a direct consequence of the construction of £; one obtains the following property.

Corollary 3.1. Let f € L?>(D). Then we have for any k=0,...,N
(Qk — Qp_1)f € Ty, (Qr — Qie_1)f =0 on D\ U, Qp = U supp 7.
Teﬁ
We define the auxiliary sets

Ave= | My A2, k=0,...,N.

Tegy
TNQ#D

11



Remark 3.1. Note that from 1} one has Ay C U reg, S(Y,k—9), that is, Ay can be
TNQAD _

seen as the support extension with respect to the level &k — § of Qi k = 0,..., N with

equality possible in the tensor product setting.

We have seen in Sectionthat at most ¢ basis functions overlap some Y% € G, k €
{0,...,N}. By virtue of Corollary we obtain the estimate

> Ay S UFI55,

Tegy
TN A£D

Hence, can be used to obtain for k =0,...,N, ¥ € {k —1,k},

19w fl5g, SIFIE,  feLiD), (19)
where we set ||.[lo.0 == |[-[[2(0), [-[1,0 = |-lw2(q) for arbitrary  C R, Following [14} 11],
we have
N
vo e BN Y nwils S Pl = (B -, (20)
=0

where 9! : L?(D) — B! denotes the L?-projector into the tensor product spline space
B,1=0,...,N and P! = 0. We now prove an analogous result for the decomposition
of the hierarchical spline space.

Theorem 3.1. For any v € T there exist vy, € 'f‘k, k=0,...,N such that v = Z;ngzo Vg,

and

N

> h el < llol-

k=0
Thus, assuming (SP)), A1 holds for the space decomposition .
Proof. Let v € T be arbitrary and let

7= (B - P He e B, 1=0,...,N,
:(Qk*Qk_l)UEﬁ‘k, k=0,...,N.

It follows that

N N N
D= m=v, vp=(Qr— Q1)) T =(Qr— Q1)

k=0 =0 =0

Mz
<]

T
>

where the last equality follows by the fact that 9 = Q,_; on B¥ "1 k = 1,..., N.
Hence, we have from

N N
lolZ g, = 1@k~ ) S w2 SIY w25, k=0...N.
=k =k

12



SinceKkQD,kzo,...,Nwehave

N N
lorll§ = llowll? & <||sz|| S Cwlg S lmlis, k=0, N.
=k =k

We now employ the discrete Hardy inequality (see [12, Lemma 4.3]): if ag, by > 0,k =
0,..., N satisfy b < Zl]\;k a; for all k =0,..., N, then for any s € (0,1) we have

N 1
Zs_kbk < s_kak.
1—s

k=0 k=0

Applying this result with s = 1/4 to a; = h3||v;||3 and b, = h3||v;||2, we obtain

N N
D s el 1
1=0 1=0
and the desired result follows with . O

3.2 Strengthened Cauchy-Schwarz inequality

The hierarchy of tensor product B-spline functions satisfies the following form of a
strengthened Cauchy-Schwarz inequality.

Lemma 3.1 ([13]). Let u; € B',v; € BY,4,5 € {0,...,N},j > i. Then we have for
v =1/2
(uis v5)4 S A9 uilh; ! [logllo.

In order to prove assumption A2 for our space decomposition, we first note that (SP))
implies, for all v € Vg,

| Ridgoll3 = B2 RaAgel2 o = B3 (Ao, RiAyo) < whdo]f3,
where the last inequality stems from the spectral equivalence (see, e.g., [35, Lemma 2.1])
(Apv,v) < w(R 1w, 0) Yo = (ARpArv,v) < w(Agv,v) Yo.
This provides us with the assumption for the following result.
Lemma 3.2. Let Ry, : V}, — Vi satisfy
| ReAkvllo S hillv] 4, Yo € Vg, k=0,...,N.
Then one has for any u,v €V, 4,5 =0,..., N,

(T%%TwﬂA:57“7HNCEUJQACQUJOA-
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Proof. Follows exactly the arguments of the proof of [35, Lemma 6.3], using the state-

ment of Lemma (since Ty C B¥) in place of the corresponding FEM estimate used

therein. ]
We can now prove the desired assumption.

Theorem 3.2. Let the smoothers Ry, k = 0,..., N, satisfy (SP)). Then we have for all

up, Uk € T, k=0,...,N,

N N N e, N 12

SN T Tyoa| S (Y (Tuiuia) - (Do(Togo)a)
i=0 j=i+1 i=0 =0

that is, A2 holds for the space decomposition .

Proof. As described above, (SP)) guarantees the assumptions of Lemma . The desired
estimate then follows with the elementary inequality (see, e.g., [12} B35])

N N 2 1/2 1/2
ZZV'l_k'@ykﬁﬁ(Z 22) (Zyk> Vao,y €R, 1=0,...,N. O
=

=0 k=0

3.3 Smoothing property

We first state the well-known Ly-stability of B-splines.
Theorem 3.3 ([31,30]). Let € {0,...,N} and ¢*9) € R,j € Z'. Then we have
137 D50 = g 30D
JET jeT!
We need the following auxiliary result on the norms of B-spline basis functions.
Lemma 3.3. The tensor product B-spline basis functions satisfy
IR = h 28N = hi T V(i) €T

Proof. The bound |3¢9)]; < by 1|49 follows from the inverse inequality (I8). The
bound [|8¢D]|g < hy|BED]; follows from Poincaré’s inequality since diamsupp (-9 <
h and B4 is zero on at least some part of the boundary of its support. The final
equivalence follows from the B-spline stability result of Theorem O

Our smoothers Ry, are to be specified on the subspaces Ty := BE(QF) c BF, k =
0,...,N. Therefore it is natural to use the canonical B-spline basis for their representa-
tion, i.e., fix some k and let

v=>Y ¥ eT; withd R,
J€Ty,
In the remainder of this section, we identify Ay with the local stiffness matrix with
respect to this basis and also interpret Ry as a square matrix of the same size. We will

also make use of the splitting A, = D — L —U, where D, L, U denote the diagonal, lower
left triangular and upper right triangular components of Ay.

14



3.3.1 The Richardson smoother

Let
Rk - HkIa

where [ is the identity matrix of the same size as Ay and the damping parameter p; > 0
is chosen such that (Agv,v) < (R;lv, v) for all v, i.e., pup ~ hi. Thus, the first equation
of is immediately satisfied with w = 1. On the other hand, by Theorem and
Lemma [3.3 we have

—2 _ 3d—2 12 — 1.—2 k,j j12 — ,,—1
h2 g = R 1P = b D IBE B = vl = (vl
— — k
JETy JETy

Thus, (SPJ]) holds for the Richardson smoother.

3.3.2 The Jacobi smoother

Let
Ry = D71,

where the damping parameter py > 0 is chosen such that (Axv,v) < (R;lv,w for all
v. Thus, the first equation of (SP)) is immediately satisfied with w = 1. On the other
hand, by Theorem [3.3] and Lemma [3.3] we have

Bl lols = w2 1P = Y 1B = Y BRI = ol

F€Tk J€Tx J€T

A standard argument using the Cauchy-Schwarz inequality shows that ux can be chosen
depending only on the number of nonzeros per row of A; and thus on ¢, but not on hy;
hence, pux, ~ 1. This shows that (SP) is satisfied for the Jacobi smoother.

4 Convergence of local multigrid methods with (T)HB-splines

4.1 Robust convergence of the local multigrid method

The assumptions of the abstract convergence result Theorem are now satisfied due
to Theorem and Theorem assuming that the chosen smoothers satisfy . We
have verified that standard Richardson or Jacobi smoothers satisfy these assumptions in
Section Thus, we have shown the following main result.

Theorem 4.1. Under the assumption that the mesh level disparity § is uniformly bounded
(which can be guaranteed by suitable refinement strategies [8, (9, [10)]), the proposed lo-
cal multigrid method for HB- and THB-spline spaces based on the space decomposition
and using Richardson or Jacobi smoothers converges uniformly with respect to the
number of levels and the mesh sizes.

15



Remark 4.1. Note that our theory covers HB- and THB-splines in the same framework.
In fact, the choice of basis enters only in the smoothers, and since smoothing is only done
in the B-spline spaces B*(Q¥), our method even produces identical results independent
of the choice of HB- or THB-spline bases.

The theory is significantly simpler than that for previously introduced local multigrid
methods for FEM [12] 18] [34], where the specifics of the element refinement strategy
have to be taken into account.

4.2 Possible enlargements of the subspaces

In Section [3| we have presented a space decomposition ('ﬁ‘k){gvzo which, together with
suitable smoothing operators (Ry), satisfies the assumptions A1, A2. In a sense, the
subspaces Ty, k = 0,..., N to be smoothed over were chosen in a minimal way, since
Q) — Qp_1: L2(D) = Ty, k = 0,..., N are supported on €, only. As we have shown,
this is sufficient in order to obtain h-robustness. However, in practice it may be desirable
to enlarge the subspaces, in particular to improve the behavior of the solver for higher
spline degrees. Therefore we now discuss the possibility of choosing larger subspaces,
Ty C ’I[‘; C T, along with corresponding subspace solvers R,j which we again assume to
satisfy .

Assumption A1 can be proved in a completely analogous way using .

With regards to A2, we note that adding only HB-basis functions of levels 0, ..., k—1,
preserves the inclusion ’]I'g C B*, and Lemma remains valid for the enlarged spaces.
Adding only THB-basis functions of levels 0,...,k — 1 leads to a slightly weakened
inclusion Tg C B*t9-1 thus, an estimate analogous to Lemma remains valid with
slightly larger constants, depending only on §. Hence the proof of Theorem and thus
A2 remain intact provided that is is possible to verify for the enlarged subspaces.

Regarding the optimal computational complexity of the resulting methods, it is merely
required that dim T,‘: ~ dim T}, in order to retain optimality.

We now present two practical enlargements of space decompositions which still satisfy
A1, A2. The following definition resembles a scheme presented in [34]:

L= (T \Te) U{(,3) € TN Ty : 70D £ 709,

T] = span{Tlgl’z) - (1,4) e Z] }.
In other words, if‘[ consists of the newly added THB-spline basis functions which are in
Tk, but not in Ti_1, as well as “neighboring” THB-spline basis functions (of at most &

levels) which have been modified due to truncation.
Another enlargement, potentially easier to implement, is given by

TP = (Ti \ To—1) U {(l,4) € Ty N Ty = supp B9 Ny},
TF .= span{Tlgl’i) - (1,4) € I},
In other words, ﬁ‘f consists of the newly added THB-spline basis functions which are in

T, but not in Tj_1, as well as THB-spline basis functions (of at most ¢ levels) which
intersect €)y.
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We point out that ’ﬁ‘k Q'ﬁ[gﬁ‘f forall k=0,...,]N.

5 Numerical results

We present some preliminary numerical tests for a one-dimensional problem. We solve
the differential equation
—u"+u=1 in (0,1)

and fix the refinement hierarchy
Q= (1-0.51), 1=0,...,L.

We discretize using HB-splines and then apply our proposed local multigrid solver for
the decomposition using two steps of forward Gauss-Seidel smoothing per level.

For demonstrating the robustness in the number of levels and mesh size, we fix the
spline degree and vary the number L of refinement steps and the base mesh size hg. The
results for spline degrees p = 1,2, 3,4 shown in Table[5] We observe that the convergence
rates are robust with respect to both hg and L.

In Table 2| we present convergence rates comparing exact subspace solvers to Gauss-
Seidel smoothing, as well as the minimal (h-robust) subspace decomposition (17) to
the enlarged decomposition based on the truncation criterion TZ from Section We
note that the solver degrades for higher spline degrees, however increasing the smoothing
area slightly improves the convergence rates significantly when exact subspace solvers are
used. The design of improved smoothers which approach this almost p-robust behavior
is an important future task.

Acknowledgments

The authors are thankful for many productive discussions with Walter Zulehner (JKU
Linz) as well as Stefan Takacs (RICAM).

The financial support by the project LIT-2016-2-YOU-006 funded by the Linz Institute
of Technology (LIT) is gratefully acknowledged.

References

[1] D Bai and Achi Brandt. Local mesh refinement multilevel techniques. SIAM Journal
on Scientific and Statistical Computing, 8(2):109-134, 1987.

[2] Randolph E Bank, Todd F Dupont, and Harry Yserentant. The hierarchical basis
multigrid method. Numerische Mathematik, 52(4):427-458, 1988.

[3] Yuri Bazilevs, L Beirao da Veiga, J Austin Cottrell, Thomas JR Hughes, and Gi-
ancarlo Sangalli. Isogeometric analysis: approximation, stability and error esti-
mates for h-refined meshes. Mathematical Models and Methods in Applied Sciences,
16(07):1031-1090, 2006.

17



hy! 10 20 40 hy! 10 20 40

L=11]006 0.10 0.07 L= 0.31 031 0.31
L=2|010 0.11 0.11 L=2|031 032 0.32
L=3|0.07 011 0.12 L=3|031 032 0.32
L=4|012 0.10 0.11 L=4]031 032 0.32
L=5|011 012 0.11 L=5|031 032 0.32

10 20 40 hy! 10 20 40

0.74 0.74 0.73 094 094 094
0.76 0.74 0.73 0.95 094 094
0.76 0.74 0.73 0.95 094 094
0.77 074 0.73 0.95 094 094
0.77 0.74 0.73 0.96 094 094

>
|
—

SESESECH
Il
U W N =
SESESECES
Il
U W N

Table 1: Convergence rates for varying mesh sizes and number of levels with p = 1 (top
left), 2 (top right), 3 (bottom left), 4 (bottom right).

D 1 2 3 4 5 6

exact solvers in Ty | 8e-5 0.25 0.68 0.93 0.99 0.999
Gauss-Seidel in Tx | 0.09 0.32 0.74 0.94 0.99 0.999
exact solvers in ’i‘[ 8-5 0.02 0.05 0.08 0.12 0.16
Gauss-Seidel in T] | 0.09 0.13 0.58 0.91 0.99 0.999

Table 2: Convergence rates with L = 3 for hy = 1/20 for exact subspace solvers vs
Gauss-Seidel smoothing and the minimal decomposition vs the enlarged
decomposition ']I‘,;r from Section

18



[4]

[14]

[15]

[16]

Folkmar Bornemann and Harry Yserentant. A basic norm equivalence for the theory
of multilevel methods. Numerische Mathematik, 64(1):455-476, 1993.

James H Bramble and Joseph E Pasciak. New estimates for multilevel algorithms
including the V-cycle. Mathematics of computation, 60(202):447-471, 1993.

James H Bramble, Joseph E Pasciak, Jun Ping Wang, and Jinchao Xu. Convergence
estimates for multigrid algorithms without regularity assumptions. Mathematics of
Computation, 57(195):23-45, 1991.

Achi Brandt. Multi-level adaptive solutions to boundary-value problems. Mathe-
matics of computation, 31(138):333-390, 1977.

Annalisa Buffa and Carlotta Giannelli. Adaptive isogeometric methods with hierar-
chical splines: error estimator and convergence. Mathematical Models and Methods
in Applied Sciences, 26(01):1-25, 2016.

Annalisa Buffa and Carlotta Giannelli. Adaptive isogeometric methods with hierar-
chical splines: Optimality and convergence rates. Mathematical Models and Methods
in Applied Sciences, 27(14):2781-2802, 2017.

Annalisa Buffa, Carlotta Giannelli, Philipp Morgenstern, and Daniel Peterseim.
Complexity of hierarchical refinement for a class of admissible mesh configurations.
Computer Aided Geometric Design, 47:83-92, 2016.

Annalisa Buffa, Helmut Harbrecht, Angela Kunoth, and Giancarlo Sangalli. BPX-
preconditioning for isogeometric analysis. Computer Methods in Applied Mechanics
and Engineering, 265:63-70, 2013.

Long Chen, Ricardo H Nochetto, and Jinchao Xu. Optimal multilevel methods for
graded bisection grids. Numerische Mathematik, 120(1):1-34, 2012.

D. Cho and R. Véazquez. BPX preconditioners for isogeometric analysis using
analysis-suitable T-splines. IMA Journal of Numerical Analysis, 2018. https:
//doi.org/10.1093/imanum/dry032.

W. Dahmen. Wavelet and multiscale methods for operator equations. Acta Numer-
ica, 6:55—-228, 1997.

Wolfgang Dahmen and Angela Kunoth. Multilevel preconditioning. Numerische
Mathematik, 63(1):315-344, 1992.

Carlotta Giannelli, Bert Jittler, Stefan K Kleiss, Angelos Mantzaflaris, Bernd
Simeon, and Jaka Speh. THB-splines: An effective mathematical technology for

adaptive refinement in geometric design and isogeometric analysis. Computer Meth-
ods in Applied Mechanics and Engineering, 299:337-365, 2016.

19


https://doi.org/10.1093/imanum/dry032
https://doi.org/10.1093/imanum/dry032

[17]

Carlotta Giannelli, Bert Jiittler, and Hendrik Speleers. THB-splines: The truncated
basis for hierarchical splines. Computer Aided Geometric Design, 29(7):485-498,
2012.

Ralf Hiptmair and Weiying Zheng. Local multigrid in H(curl). Journal of Compu-
tational Mathematics, pages 573—603, 2009.

Clemens Hofreither, Bert Juttler, Gabor Kiss, and Walter Zulehner. Multigrid
methods for isogeometric analysis with thb-splines. Computer Methods in Applied
Mechanics and Engineering, 308:96-112, 2016.

Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer
methods in applied mechanics and engineering, 194(39-41):4135-4195, 2005.

B. Janssen and G. Kanschat. Adaptive multilevel methods with local smoothing
for H'- and H°"!-conforming high order finite element methods. SIAM Journal on
Scientific Computing, 33(4):2095-2114, 2011.

Tom Lyche, Carla Manni, and Hendrik Speleers. Foundations of spline theory: B-
splines, spline approximation, and hierarchical refinement. In Splines and PDFEs:
From Approximation Theory to Numerical Linear Algebra, pages 1-76. Springer,
2018.

Stephen F McCormick. Multilevel adaptive methods for partial differential equations,
volume 6. Siam, 1989.

Steve McCormick. Fast adaptive composite grid (FAC) methods: Theory for the
variational case. In Defect correction methods, pages 115-121. Springer, 1984.

Steve McCormick and Jim Thomas. The fast adaptive composite grid (FAC) method
for elliptic equations. Mathematics of Computation, 46(174):439-456, 1986.

William F Mitchell. Optimal multilevel iterative methods for adaptive grids. SIAM
Journal on Scientific and Statistical Computing, 13(1):146-167, 1992.

P. Oswald. Multilevel finite element approximation: theory and applications. Teub-
ner Skripten zur Numerik. Teubner, 1994.

Peter Oswald. On discrete norm estimates related to multilevel preconditioners in
the finite element method. In Constructive Theory of Functions, Proc. Int. Conf.
Varna, pages 203-214, 1991.

Maria-Cecilia Rivara. Design and data structure of fully adaptive, multigrid,
finite-element software. ACM Transactions on Mathematical Software (TOMS),
10(3):242-264, 1984.

20



[30]

[31]
32]

[35]

[36]

Karl Scherer and A Yu Shadrin. New upper bound for the b-spline basis condition
number: II. a proof of de Boor’s 2k-conjecture. Journal of Approximation theory,
99(2):217-229, 1999.

Larry Schumaker. Spline functions: basic theory. Cambridge University Press, 2007.

Hendrik Speleers. Hierarchical spline spaces: quasi-interpolants and local approxi-
mation estimates. Advances in Computational Mathematics, 43(2):235-255, 2017.

Hendrik Speleers and Carla Manni. Effortless quasi-interpolation in hierarchical
spaces. Numerische Mathematik, 132(1):155-184, 2016.

H. Wu and Z. Chen. Uniform convergence of multigrid V-cycle on adaptively refined
finite element meshes for second order elliptic problems. Science in China Series
A: Mathematics, 49(10):1405-1429, 2006.

Jinchao Xu. Iterative methods by space decomposition and subspace correction.
SIAM review, 34(4):581-613, 1992.

Harry Yserentant. Old and new convergence proofs for multigrid methods. Acta
numerica, 2:285-326, 1993.

21






Latest Reports in this series

2009 - 2017
[-]
2018
2018-01 Jarle Sogn and Stefan Takacs
Robust Multigrid Solvers for the Biharmonic Problem in Isogeometric Analysis
2018-02 Irina Georgieva and Clemens Hofreither
Greedy Low-Rank Approzimation in Tucker Format of Tensors and Solutions
of Tensor Linear Systems
2018-03 Katharina Rafetseder and Walter Zulehner
A New Mixed Isogeometric Approach to Kirchhoff-Love Shells
2018-04 Matus Benko, Helmut Gfrerer and Boris S. Mordukhovich
Characterizations of Tilt-Stable Minimizers in Second-Order Cone Program-
ming
2018-05 Helmut Gfrerer and Jane J. Ye
New Sharp Necessary Optimality Conditions for Mathematical Programs with
Equilibrium Constraints
2018-06 Helmut Gfrerer and Jifi V. Outrata
On the Aubin Property of Solution Maps to Parameterized Variational Systems
with Implicit Constraints
2018-07 Matus Benko, Helmut Gfrerer and Jiti V. Outrata
Stability Analysis for Parameterized Variational Systems with Implicit Con-
straints
2019
2019-01 Helmut Gfrerer and Jiri V. Outrata
On a Semismooth* Newton Method for Solving Generalized Equations
2019-02 Matus Benko, Michal Cervinka and Tim Hoheisel
New Verifiable Sufficient Conditions for Metric Subregularity of Constraint Sys-
tems with Applications to Disjunctive Programs
2019-03 Matus Benko
On Inner Calmness*, Generalized Calculus, and Derivatives of the Normal-
cone Map
2019-04 Rainer Schneckenleitner and Stefan Takacs
Condition number bounds for IETI-DP methods that are explicit in h and p
2019-05 Clemens Hofreither, Ludwig Mitter and Hendrik Speleers

Local multigrid solvers for adaptive Isogeometric Analysis in hierarchical spline
spaces

From 1998 to 2008 reports were published by SFB013. Please see
http://www.sfb013.uni-1linz.ac.at/index.php?id=reports
From 2004 on reports were also published by RICAM. Please see
http://www.ricam.oeaw.ac.at/publications/list/

For a complete list of NuMa reports see
http://www.numa.uni-linz.ac.at/Publications/List/

January 2018

March 2018

March 2018

September 2018

December 2018

December 2018

December 2018

April 2019

June 2019

October 2019

December 2019

December 2019


http://www.sfb013.uni-linz.ac.at/index.php?id=reports
http://www.ricam.oeaw.ac.at/publications/list/
http://www.numa.uni-linz.ac.at/Publications/List/

	Introduction
	Preliminaries
	THB-splines
	Quasi-interpolants
	Adaptive isogeometric discretizations
	Subspace correction methods

	Space decomposition of hierarchical spline spaces
	Stability of the decomposition
	Strengthened Cauchy-Schwarz inequality
	Smoothing property
	The Richardson smoother
	The Jacobi smoother


	Convergence of local multigrid methods with (T)HB-splines
	Robust convergence of the local multigrid method
	Possible enlargements of the subspaces

	Numerical results

