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We study the convergence behavior of Dual-Primal Isogeometric Tearing and Intercon-
necting (IETI-DP) methods for solving large-scale algebraic systems arising from multi-
patch Isogeometric Analysis. We focus on the Poisson problem on two dimensional com-
putational domains. We provide a convergence analysis that covers several choices of the
primal degrees of freedom: the vertex values, the edge averages, and the combination of
both. We derive condition number bounds that show the expected behavior in the grid
size h and that are quasi-linear in the spline degree p.
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1. Introduction

Isogeometric Analysis (IgA), see Ref. 16, is a method for solving partial differential
equations (PDEs) in a way that integrates better with standard computer aided
design (CAD) software than classical finite element (FEM) simulation. Both the
computational domain and the solution of the PDE are represented as linear com-
bination of tensor-product B-splines or non-uniform rational B-splines (NURBS).
Since only simple domains can be represented by just one such spline function,
usually the computational domain is decomposed into subdomains, in IgA usually
called patches, where each patch is parameterized with its own spline function.

For IgA, like for any other discretization method for PDEs, fast iterative solvers
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are of interest. Domain decomposition solvers are a natural choice for multi-patch
IgA. Nowadays, Finite Element Tearing and Interconnecting (FETI) methods have
become the most popular non-overlapping domain decomposition methods. Af-
ter the introduction of the FETI technology by C. Farhat and F.-X. Roux in
199111, many FETI versions have been developed for different applications, see,
e.g., Refs. 33, 25, 19 for a comprehensive presentation of domain decomposition
methods and, in particular, of FETI methods. The most advanced and most widely
used versions are certainly the Dual-Primal FETI methods (FETI-DP), which have
been introduced in Ref. 10. The Balancing Domain Decomposition by Constraints
(BDDC) methods introduced in Ref. 8 can be seen as the primal counterpart of the
FETI-DP methods. In Ref. 21, it has been proven that the spectra of the precon-
ditioned systems for FETI-DP and BDDC are essentially the same. Moreover, that
paper gives an abstract framework for proving condition number bounds which we
use in this paper.

The Ref. 18 extends FETI-DP to isogeometric discretizations. The proposed
method is sometimes called Dual-Primal Isogeometric Tearing and Interconnecting
(IETI-DP) method. Convergence analysis for IETI-DP methods13,14 and BDDC
methods for IgA4 has been provided for numerous contexts. The given condition
number bounds are explicit in grid and patch size, sometimes also in other parame-
ters, like diffusion parameters. Convergence theory that also covers the dependence
on the spline degree, is not available in the context of IgA.

Condition number estimates for FETI methods applied to spectral element dis-
cretizations have been provided in Refs. 17, 23, which show that the condition
number only grows poly-logarithmic in the polynomial degree. Comparable bounds
are also known for Schwarz type12,29 and substructuring2,24 methods for hp finite
element discretizations. For an overview and more references, see Ref. 20. However,
for hp-FETI-DP algorithms, such bounds are not known to the authors. Often the
analysis for spectral methods is carried out by showing that the stiffness matrix of
interest is spectrally equivalent to a stiffness matrix for a suitably constructed low-
order problem. While such an analysis yields appealing upper bounds for spectral
methods, a straight-forward extension of the analysis to IgA does not yield reason-
able statements concerning the dependence on the spline degree. An alternative is
to work directly on the function spaces of interest. One ingredient for any FETI
analysis are energy bounds for the discrete harmonic extension, which can be done
by explicitly constructing bounded extension operators, cf. Ref. 22 for the case of
h-FEM, Refs. 5, 28 for spectral elements, and the paper on hand for spline spaces.

One of the strengths of IgA is k-refinement which allows the construction of
discretizations that show the approximation power of a high-order method for the
costs (in terms of the degrees of freedom) of a low order method. Certainly, an
efficient realization also requires a fast solver that is (almost) robust in the spline
degree p. In the last years, p-robust approximation error estimates for single-patch
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domains32,26 and multi-patch domains31, as well as p-robust linear solvers, like the
fast diagonalization method27 or multigrid methods for single-patch domains9,15,7

and multi-patch domains31 have been proposed.

In the present paper, we provide a convergence analysis for a standard IETI-
DP solver. The convergence analysis covers three cases for the choice of the primal
degrees of freedom: Vertex values (Algorithm A), edge averages (Algorithm B) and
a combination of both (Algorithm C). For all cases, we show that the condition
number of the preconditioned system is bounded by

C p

(
1 + log p+ max

k
log

H(k)

h(k)

)2

,

where p is the spline degree,H(k) is the diameter of the kth patch, h(k) is the grid size
on the kth patch, and the constant C only depends on the geometry function, the
quasi-uniformity of the grids on the individual patches and the maximum number
of patches sharing any vertex. This means that the constant C is independent of
the number of patches, their diameters, the grid sizes, the spline degree and the
smoothness of the splines, i.e., all choices of the smoothness between C0 and Cp−1

are covered.

The remainder of this paper is organized as follows. In Section 2, we introduce
the model problem and discuss its isogeometric discretization. The proposed IETI-
DP solver is presented in Section 3. In Section 4, we give the convergence theory.
Then, we proceed with numerical experiments that illustrate our theoretical findings
in Section 5. In Section 6, we conclude with some final remarks.

2. The model problem

We consider a standard Poisson problem with homogeneous Dirichlet boundary con-
ditions as model problem. Let Ω ⊂ R2 be an open, bounded and simply connected
domain with Lipschitz boundary. For a given right-hand side f ∈ L2(Ω), we want
to find a function u ∈ H1

0 (Ω) such that∫
Ω

∇u(x) · ∇v(x) dx︸ ︷︷ ︸
a(u, v) :=

=

∫
Ω

f(x) v(x) dx︸ ︷︷ ︸
〈f, v〉 :=

for all v ∈ H1
0 (Ω). (2.1)

Here and in what follows, we denote by L2(Ω) andHs(Ω), s ∈ R, the usual Lebesgue
and Sobolev spaces, respectively. H1

0 (Ω) ⊂ H1(Ω) is the subspace of functions
vanishing on ∂Ω, the boundary of Ω. These spaces are equipped with the standard
scalar products (·, ·)L2(Ω) and (·, ·)H1(Ω) := (∇·,∇·)L2(Ω), seminorms | · |Hs(Ω) and
norms ‖ · ‖L2(Ω) and ‖ · ‖Hs(Ω).

We assume that the physical domain Ω is composed of K non-overlapping
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patches Ω(k), i.e., we have

Ω =

K⋃
k=1

Ω(k) and Ω(k) ∩ Ω(`) = ∅ for all k 6= `,

where T denotes the closure of the set T . Each patch Ω(k) is parameterized by a
geometry mapping

Gk : Ω̂ := (0, 1)2 → Ω(k) := Gk(Ω̂) ⊂ R2, (2.2)

which can be continuously extended to the closure of the parameter domain Ω̂. In
IgA, the geometry mapping is typically represented using B-splines or NURBS. For
the analysis, we only require the following assumption.

Assumption 1. There are patch sizes H(k) > 0 for k = 1, . . . ,K and a constant
C1 > 0 such that

‖∇Gk‖L∞(Ω̂(k)) ≤ C1H
(k) and ‖(∇Gk)−1‖L∞(Ω̂(k)) ≤ C1

1

H(k)

holds for all k = 1, . . . ,K.

The following assumption guarantees that the patches form an admissible de-
composition, i.e., that there are no T-junctions.

Assumption 2. For any two patch indices k 6= `, the set Ω(k) ∩ Ω(`) is either a
common edge (including the neighboring vertices), a common vertex, or empty.

If two patches Ω(k) and Ω(`) share a common edge, we denote that edge by
Γ(k,`) = Γ(`,k), and its pre-images by Γ̂(k,`) := G−1

k (Γ(k,`)) and Γ̂(`,k) := G−1
` (Γ(k,`)).

Moreover, we define

NΓ(k) := {` : Ω(k) and Ω(`) share an edge}.

Analogously, if two patches Ω(k) and Ω(`) share only a vertex, we denote that vertex
by x(k,`) = x(`,k), and its corresponding pre-images by x̂(k,`) := G−1

k (x(k,`)) and
x̂(`,k) := G−1

` (x(k,`)). Moreover, we define P(x) := {k : x ∈ Ω(k)} and

Nx(k) := {` : Ω(k) and Ω(`) share a vertex or an edge}.

For the analysis, we need that the number of neighbors is bounded.

Assumption 3. There is a constant C2 > 0 such that |Nx(k)| ≤ C2 for all patches
k = 1, . . . ,K.

The provided assumptions guarantee that the pre-images in the parameter do-
main Γ̂

(k)
D := G−1

k (∂Ω ∩ ∂Ω(k)) of the (Dirichlet) boundary ΓD = ∂Ω consists of
whole edges.
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Now, we introduce the isogeometric function spaces. Let p ∈ N := 1, 2, 3, . . . be
a given spline degree. For simplicity, we assume that the spline degree is uniformly
throughout the overall domain. We use B-splines as discretization space. To keep
the paper self-contained, we introduce the basic spline notation. The splines are
defined based on a p-open knot vector:

Ξ = (ξ1, . . . , ξn+p+1) = (ζ1, . . . , ζ1︸ ︷︷ ︸
m1

, ζ2, . . . , ζ2︸ ︷︷ ︸
m2

, . . . , ζNZ , . . . , ζNZ︸ ︷︷ ︸
mNZ

),

where the multiplicities satisfy m1 = mNZ = p + 1, and mi ∈ {1, . . . , p} for
i = 2, . . . , NZ − 1 and the breakpoints satisfy ζ1 < ζ2 < · · · < ζNZ . We call

Z = (ζ1, . . . , ζNZ ) and M = (m1, . . . ,mNZ )

the vector of breakpoints associated to Ξ and the vector of multiplicities associated
to Ξ, respectively. We denote the standard B-spline basis as obtained by the Cox-
de Boor formula, cf. (2.1) and (2.2) in Ref. 6, by (B[p,Ξ, i])ni=1. The corresponding
spline space is given as linear span of these basis functions, i.e.,

S[p,Ξ] := span{B[p,Ξ, 1], . . . , B[p,Ξ, n]}.

To obtain the isogeometric function space, we choose for each patch two p-open
knot vectors Ξ(k,1) and Ξ(k,2) over (0, 1). On the parameter domain Ω̂, we define the
tensor-product spline space by V̂ (k) and its transformation to the physical domain
by V (k):

V̂ (k) := {v ∈ S[p,Ξ(k,1)]⊗ S[p,Ξ(k,2)] : v|
Γ̂

(k)
D

= 0} and V (k) := V̂ (k) ◦G−1
k , (2.3)

where v|T denotes the restriction of v to T (trace operator). We introduce a basis
for the space V̂ (k) by choosing the basis functions of the standard B-spline basis
that vanish on the Dirichlet boundary Γ̂

(k)
D . We order the total number of N (k) =

N
(k)
I +N

(k)
Γ basis functions such that the first N (k)

I are supported only in the interior
of the patch and the following N (k)

Γ basis function contribute to the boundary of
the patch:

Φ̂(k) := (φ̂
(k)
i )N

(k)

i=1 ,

{φ̂(k)
i } = {φ̂ : ∃j1, j2 : φ̂(x, y) = B[p,Ξ(k,1), j1](x)B[p,Ξ(k,2), j2](y) ∧ φ̂|

Γ̂
(k)
D

= 0},

φ̂
(k)
i |∂Ω̂ = 0⇔ i ∈ {1, . . . , N (k)

I }, and φ̂
(k)
i |∂Ω̂ 6= 0⇔ i ∈ N (k)

I + {1, . . . , N (k)
Γ }.

(2.4)

Following the pull-back principle used for defining the function space on the
physical domain, we define the basis for V (k) by

Φ(k) := (φ
(k)
i )N

(k)

i=1 and φ
(k)
i := φ̂

(k)
i ◦G

−1
k .

We assume that the underlying grids on each of the patches are quasi-uniform.
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Assumption 4. There are grid sizes ĥ(k) > 0 for k = 1, . . . ,K and a constant C3 > 0

such that

C3 ĥ
(k) ≤ ζ(k,δ)

i+1 − ζ
(k,δ)
i ≤ ĥ(k)

holds for all i = 1, . . . , N
(k,δ)
Z − 1 and all δ = 1, 2.

The grid size on the physical domain is defined via h(k) := ĥ(k)H(k).

To be able to set up a H1-conforming discretization on the whole domain Ω, we
assume that the function spaces are fully matching.

Assumption 5. For any two patches Ω(k) and Ω(`) sharing a common edge Γ(k,`),
the following statement holds true. For any basis function φ(k)

i that does not vanish
on Γ(k,`), there is exactly one basis function φ(`)

j such that they agree on Γ(k,`), i.e.,

φ
(k)
i |Γ(k,`) 6= 0 ⇒ ∃j : φ

(k)
i |Γ(k,`) = φ

(`)
j |Γ(k,`) . (2.5)

This assumption is satisfied if the the spline degrees p, the knot vectors, and the
geometry mappings agree on all interfaces. Based on this assumption, we define the
overall function space as

V := {u ∈ H1
0 (Ω) : u|Ω(k) ∈ V (k) for k = 1, . . . ,K}. (2.6)

Using these function spaces, we obtain the Galerkin discretization of the variational
problem (2.1), which reads as follows. Find u ∈ V such that

a(u, v) = 〈f, v〉 for all v ∈ V, (2.7)

where a(·, ·) and 〈f, ·〉 are as defined in (2.1). By choosing a basis for V , the varia-
tional problem (2.7) can be written in a matrix-vector form. For the construction of
a IETI-DP method, we omit this step and directly work with the discrete variational
problem (2.7).

3. The IETI-DP solver

In this section, we derive a IETI-DP solver for the discretized variational prob-
lem (2.7). First, we observe that the bilinear form a(·, ·) and the linear form 〈f, ·〉
are the sum of contributions of each of the patches, i.e.,

a(u, v) =

K∑
k=1

a(k)(u, v), where a(k)(u, v) :=

∫
Ω(k)

∇u(x) · ∇v(x) dx

and

〈f, v〉 =

K∑
k=1

〈f (k), v〉, where 〈f (k), v〉 :=

∫
Ω(k)

f(x) v(x) dx.
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By discretizing a(k)(·, ·) and 〈f (k), ·〉 using the basis Φ(k), we obtain the matrix-
vector system

A(k) u(k) = f (k), (3.1)

where A(k) = [a(k)(φ
(k)
j , φ

(k)
i )]N

(k)

i,j=1 is a stiffness matrix and f (k) = [〈f (k), φ
(k)
i 〉]N

(k)

i=1

is a load vector.

Since we are interested in the solution of the original problem (2.7), we need to
enforce continuity. Doing this is an operation on the interfaces only. Note that the
basis Φ(k) has been defined such that the first N (k)

I basis functions are supported
only in the interior of the patch and the following N (k)

Γ basis functions do contribute
to the boundary of the patch, see (2.4). Following this decomposition, we obtain

A(k) =

(
A

(k)
II A

(k)
IΓ

A
(k)
ΓI A

(k)
ΓΓ

)
and f (k) =

(
f (k)

I

f (k)

Γ

)
.

Using this decomposition, we rewrite the linear systems (3.1) as Schur complement:

S(k)w(k) = g(k), (3.2)

where

S(k) := A
(k)
ΓΓ −A

(k)
ΓI (A

(k)
II )−1A

(k)
IΓ and g(k) := f (k)

Γ
−A(k)

ΓI (A
(k)
II )−1f (k)

I
. (3.3)

The overall solution is then obtain by

u(k) =

(
u

(k)
I

u
(k)
Γ

)
=

(
(A

(k)
II )−1A

(k)
ΓI w

(k)

w(k)

)
. (3.4)

By combining the linear systems (3.2) for all patches, we obtain the linear system

Sw = g, (3.5)

where

S :=

S(1)

. . .
S(K)

 , w :=

 w(1)

...
w(K)

 and g :=

 g(1)

...
g(K)

 .

As a next step, we give an interpretation of the linear system in a variational
sense. Let

W (k) := {v|∂Ω(k) : v ∈ V (k)} and W :=

K∏
k=1

W (k)

be the function spaces on the skeleton. Let H(k)
h : W (k) → V (k) be the discrete

harmonic extension, i.e., such that

(H(k)
h w(k))|∂Ω(k) = w(k), and a(H(k)

h w(k), v(k)) = 0 for all v(k) ∈ V (k)
0 ,
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where V (k)
0 := {v ∈ V (k) : v|∂Ω(k) = 0}. The linear system (3.5) can be rewritten

as follows. Find w = (w(1), . . . , w(K)) ∈W such that

K∑
k=1

a(k)(H(k)
h w(k),H(k)

h q(k))︸ ︷︷ ︸
s(w, q) :=

=

K∑
k=1

〈f,H(k)
h q(k)〉︸ ︷︷ ︸

〈g, q〉 :=

for all q = (q(1), . . . , q(K)) ∈W.

The next step is to enforce continuity between the patches. So, for any two patches
Ω(k) and Ω(`) that share an edge Γ(k,`) and all functions φ(k)

i and φ(`)
j such that

φ
(k)
i |Γ(k,`) = φ

(`)
j |Γ(k,`) 6= 0,

we introduce a constraint of the form

w
(k)
i∗ − w

(`)
j∗ = 0, (3.6)

where i∗ = i−N (k)
I and j∗ = j −N (`)

I are the corresponding indices. If we choose
the vertex values as primal degrees of freedom (see also Algorithms A and C below),
we do not introduce such constraints for the functions associated to the vertices,
see Figure 1. If only the edge averages are chosen as primal degrees of freedom (see
also Algorithm B below), we additionally introduce constraints of the form (3.6) for
the corresponding degrees of freedom for the patches that share only a vertex. This
means that we represent the vertex values in a fully redundant way, see Figure 2.

Say, the number of constraints of the form (3.6) is NΓ. Then, we define a matrix
B ∈ RNΓ×N such that each of the constraints (3.6) constitutes one row of the linear
system

Bw = 0.

This means that each row of the matrix B has exactly two non-vanishing entries: one
with value 1 and one with value −1. We decompose the matrix B into a collection
of patch-local matrices B(1), . . . , B(K) such that B = (B(1) · · ·B(K)).

The original variational problem (2.7) is equivalent to the following problem.
Find (w, λ) such that (

S B>

B

)(
w

λ

)
=

(
g

0

)
.

For patches Ω(k) that do not contribute to the Dirichlet boundary of the physical
domain Ω, the corresponding matrices A(k) and S(k) refer to Poisson problems with
pure Neumann boundary conditions, which means that these matrices are singular.
So, in general, the matrix S is singular as well.

To overcome this problem, primal degrees of freedom are introduced. Here, we
have several possibilities:
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Ω1

Ω2

Ω3

Ω4

Figure 1: Omitting vertices
(Algorithms A and C)

Ω1

Ω2

Ω3

Ω4

Figure 2: Fully redundant
(Algorithm B)

• Algorithm A (Vertex values): The space W̃ is the subspace of functions
where the vertex values agree, i.e.,

W̃ :=

{
w ∈W :

w(k)(x) = w(`)(x)

for all common vertices x of all pairs of Ω(k) and Ω(`)

}
.

The subspace W̃∆ ⊂ W̃ satisfies these conditions homogeneously, i.e.,
W̃∆ :=

∏K
k=1 W̃

(k)
∆ and

W̃
(k)
∆ := {w ∈W (k) : w(x) = 0 for all vertices x of all Ω(k)}.

• Algorithm B (Edge averages): The space W̃ is the subspace of functions
where the averages of the function values over the edges agree, i.e.,

W̃ :=

{
w ∈W :

∫
Γ(k,`)

w(k)(x) dx =

∫
Γ(k,`)

w(`)(x) dx for all edges Γ(k,`)

}
.

The B-spline space W̃∆ satisfies these conditions homogeneously, i.e.,
W̃∆ :=

∏K
k=1 W̃

(k)
∆ and

W̃
(k)
∆ :=

{
w ∈W (k) :

∫
Γ(k,`)

w(k)(x) dx = 0 for all edges Γ(k,`)

}
.

• Algorithm C (Vertex values and edge averages): We combine the constraints
from both cases. So, the spaces W̃ and W̃ (k)

∆ and W̃∆ are the intersections
of the corresponding spaces obtained by Algorithms A and B.

We introduce matrices C(k) representing the subspace W̃ (k)
∆ , i.e., we have

C(k)w(k) = 0 ⇔ w(k) ∈ W̃ (k)
∆

for all w(k) ∈ W (k) with vector representation w(k). The matrix C(k) is chosen to
have full rank, i.e., the number of rows coincides with the number of primal degrees
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of freedom per patch. The matrix C is a block-diagonal matrix containing the blocks
C(1), . . . , C(K).

For every choice of primal degrees of freedom, the space W̃Π is the S-orthogonal
complement of W̃∆ in W̃ , i.e.,

W̃Π := {w ∈ W̃ : s(w, q) = 0 for all q ∈ W̃∆}. (3.7)

Let ψ(1), . . . , ψ(NΠ) be a basis of W̃Π. For the computation, one usually chooses a
nodal basis, where the vertex values and/or the edge averages form the nodal values.
The matrix Ψ represents the basis in terms of the basis for the space W , i.e.,

Ψ =

 ψ(1)

...
ψ(NΠ)

 . (3.8)

Following Ref. 21, the following linear system is an equivalent rewriting of the
original variational problem (2.7): Find (w∆, µ, wΠ, λ) such that

S C> B>

C

Ψ>SΨ Ψ>B>

B BΨ



w∆

µ

wΠ

λ

 =


g

0

Ψ>g

0

 ,

where the solution for the original problem is obtained by w = w∆ + ΨwΠ. By
reordering and by building the Schur complement, we obtain the following equivalent
formulation

F λ = d, (3.9)

where

F :=
(
B 0 BΨ

) S C>

C

Ψ>SΨ

−1 I

0

Ψ>


︸ ︷︷ ︸

F0 :=

B> and d := F0 g. (3.10)

The idea of the IETI-DP method is to solve the linear system (3.9) with a
preconditioned conjugate gradient (PCG) solver. As preconditioner, we use the
scaled Dirichlet preconditioner MsD, which is given by

MsD := BD−1SD−1B>,

where D ∈ RNΓ×NΓ is a diagonal matrix defined based on the principle of multi-
plicity scaling. This means that each coefficient di,i of D is assigned the number of
Lagrange multipliers that act on the corresponding basis function, but at least 1,
i.e.,

di,i := max
{

1,

NΓ∑
j=1

b2i,j

}
,
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where bi,j are the coefficients of the matrix B.

For the realization of the proposed method, one has to perform the following
steps.

• Compute the vectors g(k) according to (3.3).
• Compute the matrix Ψ according to (3.7) and (3.8).
• Compute SΠ := Ψ>SΨ

• Execute a preconditioned conjugate gradient (PCG) solver for computing
λ. This requires the computation of the residual and the application of
the preconditioner. For the computation of the residual ŵ := Fλ − d, the
following steps are applied:

– Compute q̂ = ((q̂(1))> · · · (q̂(K))>)> := B>λ− g.
– Solve the linear system(

S(k) (C(k))>

C(k)

)(
ŵ

(k)
∆

µ̂(k)

)
=

(
q̂(k)

0

)
(3.11)

for all k = 1, . . . ,K. If the vertex values are chosen as primal degrees
of freedom (Algorithms A and C), it is possible to get an equivalent
formulation by eliminating the degrees of freedom corresponding to
the vertex values and the corresponding Lagrange multipliers.

– Solve the linear system

SΠŵΠ = Ψ>q̂, (3.12)

which is usually expected to be small.
– The residual is given by

ŵ := B


ŵ

(1)
∆
...

ŵ
(K)
∆

+BΨŵΠ. (3.13)

The computation of the preconditioned residual p̂ := MsD ŵ only requires
matrix-vector multiplications.
• To obtain the solution vector u, first w is computed analogously to (3.11),
(3.12) and (3.13) based on q = ((q(1))> · · · (q(K))>)> := B>λ. Then, the
solution vector u is obtained by (3.4).

4. Condition number estimate

In this section, we prove the following condition number estimate.

Theorem 4.1. Provided that the IETI-DP solver is set up as outlined in the pre-
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vious sections, the condition number of the preconditioned system satisfies

κ(MsDF ) ≤ C p
(

1 + log p+ max
k=1,...,K

log
H(k)

h(k)

)2

,

where C only depends on the constants from the Assumptions 1, 3, and 4.

Note that, for a fixed choice of the spline degree p, this estimate behaves essen-
tially the same as one would expect for standard low-order finite elements.

Notation 1. We use the notation a . b if there is a constant c > 0 that only depends
on the constants from the Assumptions 1, 3, and 4 such that a ≤ cb. Moreover, we
write a h b if a . b . a.

Following the standard path, we develop an analysis in the H1/2-seminorm on
the skeleton. For this, we need to know that the H1-seminorm of the discrete har-
monic extension is bounded by the H1/2-seminorm on the boundary. Since such a
result has not been worked out for spline spaces, we give an estimate in Section 4.1.
In Section 4.2, we give a p-robust embedding statement and in Section 4.3, we give
a lemma that allows to tear the H1/2-seminorm apart. In Section 4.4, we use these
results to give a condition number bound.

4.1. Estimates for the discrete harmonic extension

The analysis of this subsection follows Ref. 22, where the same technique has been
used to estimate the discrete harmonic extension in the context of Finite Element
methods. In this subsection, we only consider one single patch at a time, i.e., k is
fixed. Let

V := S[p,Ξ(k,1)]⊗ S[p,Ξ(k,2)] and W := {v|∂Ω̂ : v ∈ V}

be the corresponding function space and its restriction to ∂Ω̂, respectively. Note
that V̂ (k) = {v ∈ V : v|

Γ̂
(k)
D

= 0}.

Let Z(k,δ) = (ζ
(k,δ)
1 , . . . , ζ

(k,δ)

N
(k,δ)
Z

) be the vectors of breakpoints associated to the

knot vectors Ξ(k,δ), for δ = 1, 2, respectively. Let ĥ be the corresponding grid size,
using Assumption 4, we have

ĥ . ζ
(k,δ)
i+1 − ζ

(k,δ)
i ≤ ĥ

for all i = 1, . . . , N
(k,δ)
Z −1 and all δ = 1, 2. As a next step, we introduce a hierarchy

of nested grids

Z(k,δ,0) := (0, 1), Z(k,δ,1), · · · , Z(k,δ,L) := Z(k,δ)

with Z(k,δ,`) = (ζ
(k,δ,`)
1 , . . . , ζ

(k,δ,`)

N
(k,δ,`)
Z

) such that ζ(k,δ,`)
1 = 0, ζ(k,δ,`)

N
(k,δ,`)
Z

= 1 and

ĥ` . ζ
(k,δ,`)
i+1 − ζ(k,δ,`)

i ≤ ĥ`, where ĥ` := 4L−` ĥ (4.1)



Condition number bounds for IETI-DP methods that are explicit in h and p 13

for all i = 1, . . . , N
(k,δ,`)
Z − 1, all ` = 1, . . . , L and all δ = 1, 2. The following Lemma

guarantees the existence of such grids.

Lemma 4.1. Let Z := (ζ1, . . . , ζNZ ) with ζ1 = 0 and ζNZ = 1 be a given vector of
breakpoints with grid size h := maxi=1,...,NZ−1 ζi+1 − ζi. For all h̃ ≥ 3h, there is a
vector of breakpoints Z̃ := (ζ̃0, . . . , ζ̃NZ̃ ) such that

min{1, 1
3 h̃} ≤ ζ̃i+1 − ζ̃i ≤ h̃ for all i = 1, . . . , NZ̃ − 1. (4.2)

Proof. Let h̃ ≥ 3h be arbitrary but fixed. Let ζ̂0 := 0 and

ζ̂i := max{ζj : ζj ≤ ζ̂i−1 + 2
3 h̃} for i = 1, 2, . . . (4.3)

Let NẐ be the smallest index such that ζ̂NẐ = 1. Define

Z̃ := (ζ̃1, . . . , ζ̃NZ̃ ) :=

{
(ζ̂1, . . . , ζ̂NẐ ) if ζ̂NẐ − ζ̂NẐ−1 ≥ min{1, 1

3 h̃}
(ζ̂1, . . . , ζ̂NẐ−2, ζ̂NẐ ) otherwise.

(4.4)

Here, we take the minimum of 1 and 1
2 h̃ in the first case to make this definition

to be correct also for the case NẐ = 1. From (4.3), we immediately obtain that
ζ̂i+1 − ζ̂i ≤ 2

3 h̃ for all i = 1, . . . , NẐ . From this and the construction in (4.4), we
obtain the upper bound in (4.2).

Observe that ζ̂i+1 − ζ̂i ≥ 2
3 h̃ − h ≥

1
3 h̃ for all i = 1, . . . , NẐ − 1. This follows

from the definition in (4.3) in combination with the fact that the grid size of the
original grid is h. This immediately implies ζ̃i+1− ζ̃i ≥ 1

3 h̃ for all i = 1, . . . , NẐ − 1.
If NZ̃ = NẐ − 1, this finishes the proof. If NZ̃ = NẐ , we have by assumption that
ζ̃NZ̃ − ζ̃NZ̃−1 ≥ min{1, 1

3 h̃}, which finishes the proof also in this case.

For each of this vectors of breakpoints, we introduce corresponding p-open knot
vectors without repeated inner knots:

Ξ(k,δ,`) := (ζ
(k,δ,`)
1 , . . . , ζ

(k,δ,`)
1︸ ︷︷ ︸

p+ 1 times

, ζ
(k,δ,`)
2 , . . . , ζ

(k,δ,`)

N
(k,δ,`)
Z −1

, ζ
(k,δ,`)

N
(k,δ,`)
Z

, . . . , ζ
(k,δ,`)

N
(k,δ,`)
Z︸ ︷︷ ︸

p+ 1 times

).

Based on these grids, we introduce coarse-grid spline spaces of maximum smoothness
by

W(`) :=
{
w ∈ (S[p,Ξ(k,1,`)]⊗ S[p,Ξ(k,2,`)])|∂Ω̂ : w ◦ γ ∈ Cp−1(−∞,∞)

}
where γ : (−∞,∞)→ ∂Ω̂ is given by

γ(t) :=


(0, t) if t ∈ [0, 1) + 4Z
(t− 1, 1) if t ∈ [1, 2) + 4Z
(1, 3− t) if t ∈ [2, 3) + 4Z
(4− t, 0) if t ∈ [3, 4) + 4Z

, (4.5)
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where Z is the set of integers. Note that the condition w ◦ γ ∈ Cp−1(−∞,∞)

introduces special smoothness requirements on the vertices of Ω̂. For convenience,
we define W(0) := {0} and W(L+1) := W and observe that the spaces W(`) are
nested, i.e.,

W(0) ⊂ W(1) ⊂ · · · ⊂ W(L) ⊂ W(L+1).

Since the spaces W(`) for all ` = 1, . . . , L are periodic and of maximum smooth-
ness, we have a robust inverse estimate. The space W(L+1) is not a spline space of
maximum smoothness, thus only a standard inverse estimate for piecewise polyno-
mial functions can be used.

Lemma 4.2. The following H1 − L2 and H2 −H1-inverse estimates hold:

• |w|2
H1(∂Ω̂)

. p4 ĥ−2
L+1‖w‖2L2(∂Ω̂)

for w ∈ W(L+1).

• |w|2
H1(∂Ω̂)

. ĥ−2
` ‖w‖2L2(∂Ω̂)

for w ∈ W(`) with ` = 1, . . . , L.

Proof. This follows immediately from definition (4.5), the observation that
|w|H1(∂Ω̂) = |w ◦ γ|H1(0,4) and ‖w‖L2(∂Ω̂) = ‖w ◦ γ‖L2(0,4), the inverse inequali-
ties given in Theorem 4.76, eq. (4.6.5) in Ref. 30 (for ` = L + 1) and Theorem 6.1
in Ref. 32 (for ` = 1, . . . , L) and (4.1).

The following Lemma shows that there is also an H1 −H1/2-inverse estimate.

Lemma 4.3. The H1 − H1/2-inverse estimate |w|2
H1(∂Ω̂)

. p2 ĥ−1
L+1|w|2H1/2(∂Ω̂)

holds for all w ∈ W(L+1).

Proof. Using the reiteration theorem and the fact that the fractional order Sobolev
spaces coincide with the corresponding interpolation spaces, cf. Theorems 7.21 and
7.31 in Ref. 1, we obtain that H1 is the interpolation between the Sobolev spaces
H1/2 and H2, i.e.,

‖w‖H1(∂Ω̂) h ‖w‖[H1/2(∂Ω̂),H2(∂Ω̂)]1/3
.

Thus, we obtain

‖w‖3
H1(∂Ω̂)

. ‖w‖2
H1/2(∂Ω̂)

‖w‖H2(∂Ω̂).

Since the derivative of a spline is again a spline, we obtain analogously to the
proof of Lemma 4.2 that ‖w‖H2(∂Ω̂) . p2ĥ−1

L+1‖w‖H1(∂Ω̂). This yields the estimate

‖w‖2
H1(∂Ω̂)

. p2ĥ−1
L+1‖w‖2H1/2(∂Ω̂)

. The Poincaré inequality finishes the proof.
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LetQ` be the L2-orthogonal projector intoW(`) and let Π` be theH1-orthogonal
projector intoW(`), minimizing the distance in the norms ‖·‖2

L2(∂Ω̂)
and ‖·‖2

H1(∂Ω̂)
,

respectively. For these projectors, the following error estimates are satisfied.

Lemma 4.4. The estimate ‖(I −Q`)w‖2L2(∂Ω̂)
. ĥ`‖w‖2H1/2(∂Ω̂)

holds for all func-

tions w ∈ H1(∂Ω̂) and all ` = 0, . . . , L+ 1.

Proof. For ` = 0, we have Q` = 0 and ĥ` = 1. Thus, the statement is trivial. Now,
assume that ` ≥ 1. Let w ∈ H1(∂Ω̂) be arbitrary but fixed and let v := w ◦ γ.
Observe that

‖(I −Q`)w‖2L2(∂Ω̂)
= inf
w`∈W(`)

‖w − w`‖2L2(∂Ω̂)
= inf
v`∈V(`)

‖v − v`‖2L2(0,4),

where γ is as in (4.5). The Theorem 4.1 in Ref. 26 and (4.1) yield

‖(I −Q`)w‖2L2(∂Ω̂)
. ĥ2

` |v|2H1(0,4).

For the choice v` := 0, we have

‖(I −Q`)w‖2L2(∂Ω̂)
. ‖v‖2L2(0,4).

Using Hilbert space interpolation theory, cf. Theorems 7.23 and 7.31 in Ref. 1, we
obtain

‖(I −Q`)w‖2L2(∂Ω̂)
. ĥ`‖v‖2H1/2(0,4).

Using ‖v‖2L2(0,4) = ‖w‖2
L2(∂Ω̂)

and

|v|2H1/2(0,4) =

∫ 4

0

∫ 4

0

|v(s)− v(t)|2

|s− t|2
dsdt .

∫ 4

0

∫ 4

0

|v(s)− v(t)|2

|γ(s)− γ(t)|2
dsdt = |w|2

H1/2(∂Ω̂)
,

we immediately obtain the desired result.

Lemma 4.5. ‖(I − Π`)w‖2L2(∂Ω̂)
. ĥ2

` |w|2H1(∂Ω̂)
holds for all w ∈ H1(∂Ω̂) and all

` = 0, . . . , L+ 1.

Proof. Analogously to the proof of Lemma 4.4, one can derive from Theorem 4.1
in Ref. 26 and (4.1) that |(I−Π`)w|2H1(∂Ω̂)

. ĥ2
` |w|2H2(∂Ω̂)

holds for all w ∈ H1(∂Ω̂).
The desired result follows using a standard Aubin-Nitsche duality argument.

The following Lemma shows that an L2-orthogonal decomposition almost real-
izes the minimum of arbitrary decompositions.
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Lemma 4.6. The estimate
L+1∑
`=1

ĥ−2
` ‖(Q` −Q`−1)w‖2

L2(∂Ω̂)
h inf
w`∈W(`), w=

∑L+1
`=1 w`

L+1∑
`=1

ĥ−2
` ‖w`‖

2
L2(∂Ω̂)

holds for all w ∈ H1(∂Ω̂).

Proof. Since (Q` −Q`−1)w ∈ W(`), we immediately obtain
L+1∑
`=1

ĥ−2
` ‖(Q` −Q`−1)w‖2

L2(∂Ω̂)
≥ inf
w`∈W(`), w=

∑L+1
`=1 w`

L+1∑
`=1

ĥ−2
` ‖w`‖

2
L2(∂Ω̂)

.

For the proof of the other direction, let w ∈ H1(∂Ω̂) be arbitrary but fixed. Consider
any fixed representation of w =

∑L+1
`=1 w` with w` ∈ W(`). Observe that w` can be

uniquely written as

w` =
∑̀
n=1

w
(n)
` , where w

(n)
` = (Qn −Qn−1)w`.

From w =
∑L+1
`=1 w`, we immediately obtain (Qn − Qn−1)w =

∑L+1
`=n w

(n)
` . Using

the triangle inequality and the Cauchy-Schwarz inequality, we obtain

ĥ−2
n ‖(Qn −Qn−1)w‖2

L2(∂Ω̂)
≤ ĥ−2

n

(
L+1∑
`=n

‖w(n)
` ‖L2(∂Ω̂)

)2

≤

(
L+1∑
`=n

ĥ2
`

ĥ2
n

)
︸ ︷︷ ︸

. 1

(
L+1∑
`=n

ĥ−2
` ‖w

(n)
` ‖

2
L2(∂Ω̂)

)
.

By summing over n, we obtain using orthogonality
L+1∑
n=1

ĥ−2
n ‖(Qn −Qn−1)w‖2

L2(∂Ω̂)
.
L+1∑
n=1

L+1∑
`=n

ĥ−2
` ‖w

(n)
` ‖

2
L2(∂Ω̂)

=

L+1∑
`=1

ĥ−2
` ‖w`‖

2
L2(∂Ω̂)

,

which finishes the proof.

Lemma 4.7. The estimate
∑L+1
`=1 ĥ

−2
` ‖(Q`−Q`−1)w‖2

L2(∂Ω̂)
. ‖w‖2

H1(∂Ω̂)
holds for

all w ∈ H1(∂Ω̂).

Proof. Using Lemma 4.6 and by bounding the infimum by a particular decompo-
sition, and using Lemma 4.5, Π0 = 0 and ĥ0 h 1 we obtain
L∑
`=1

ĥ−2
` ‖(Q` −Q`−1)w‖2

L2(∂Ω̂)
h inf
w`∈W(`), w=

∑L+1
`=1 w`

L+1∑
`=1

ĥ−2
` ‖w`‖

2
L2(∂Ω̂)

≤
L+1∑
`=1

ĥ−2
` ‖(Π` −Π`−1)w‖2

L2(∂Ω̂)
.
L+1∑
`=1

‖(Π` −Π`−1)w‖2
H1(∂Ω̂)

= ‖w‖2
H1(∂Ω̂)

,
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which finishes the proof.

Lemma 4.8. The estimate
∑L+1
`=1 ĥ

−1
` ‖(Q` − Q`−1)w‖2

L2(∂Ω̂)
. ‖w‖2

H1/2(∂Ω̂)
holds

for all w ∈ H1(∂Ω̂).

Proof. Orthogonality and Lemma 4.7 yield

‖Qw‖2
L2(∂Ω̂)

= ‖w‖2
L2(∂Ω̂)

and ‖Qw‖2Lh . ‖w‖2
H1(∂Ω̂)

,

where

Q :=


Q1 −Q0

Q2 −Q1

...
QL+1 −QL

 , and ‖(w1, · · · , wL+1)‖2Lh :=

L+1∑
`=1

h−2
` ‖w`‖

2
L2(∂Ω̂)

.

Using Hilbert space interpolation theory, cf. Theorems 7.23 and 7.31 in Ref. 1, we
immediately obtain the desired result.

As a next step, we define extension operators that extend the solution from one
edge into the interior. Let Γ̂(δ) := {γ(s) : s ∈ (δ − 1, δ)} for δ = 1, 2, 3, 4 be the
four sides of Ω̂. We define the extension operator E(`,Γ̂(1)) :W → V as follows:

(E(`,Γ̂(1))w)(x, y) := w(0, y) max{0, x/η(`,Γ̂(1))}p︸ ︷︷ ︸
θ(`,Γ̂(1))(x) :=

,

where η(`,Γ̂(1)) := max{ζ(k,2)
i : ζ

(k,2)
i ≤ ĥ`} is the largest breakpoint which is smaller

than or equal to ĥ`. Note that (4.1) implies that η(`,Γ̂(1)) > 0 and that

η(`,Γ̂(1)) h ĥ`. (4.6)

Note that by construction

(E(`,Γ̂(1))w)|Γ̂(1) = w, (E(`,Γ̂(1))w)|Γ̂(2) = w(0, 1) θ(`,Γ̂(1))(x),

(E(`,Γ̂(1))w)|Γ̂(3) = 0, (E(`,Γ̂(1))w)|Γ̂(4) = w(0, 0) θ(`,Γ̂(1))(x)

for all w ∈ W. For the other edges we define the extension operator E(`,Γ̂(δ)) and
the function θ(`,Γ̂(δ)) analogously.

Let x̂(δ) := γ(δ − 1) for δ = 1, 2, 3, 4 be the vertices of Ω̂ = (0, 1)2. Consider
the vertex x̂(1) = (0, 0)>. The adjacent edges are Γ̂(1) and Γ̂(4). We define a vertex
extension operator E(`,x̂(1)) :W → V as follows:

(E(`,x̂(1))w)(x, y) := w(0, 0)θ(`,Γ̂(1))(x)θ(`,Γ̂(4))(y).
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For any other vertices x̂(δ), we define E(`,x̂(δ)) analogously. Let E : W → V be an
overall extension operator, defined as follows:

E :=

L+1∑
`=1

E(`)(Q` −Q`−1), where E(`) :=

4∑
δ=1

E(`,Γ̂(δ)) −
4∑
δ=1

E(`,x̂(δ)). (4.7)

By construction, we have

(E(`)w)|∂Ω̂ = w and (Ew)|∂Ω̂ =

L+1∑
`=1

(Q` −Q`−1)w = (QL+1 −Q0)w = w. (4.8)

As a next step, we estimate theH1-seminorm of the extension. Here, we estimate
the constituent parts of E(`) separately.

Lemma 4.9. The estimate

(E(`,Γ̂(δ))w, E(n,Γ̂(δ))q)2
H1(Ω̂)

.

√
min{ĥ`, ĥn}
max{ĥ`, ĥn}

(
p−1ĥ`|w|2H1(Γ̂(δ))

+ p−1ĥn|q|2H1(Γ̂(δ))

+ pĥ−1
` ‖w‖

2
L2(Γ̂(δ))

+ pĥ−1
n ‖q‖2L2(Γ̂(δ))

)
holds for all w ∈ W(`), q ∈ W(n) with `, n = 1, . . . , L+ 1 and δ = 1, . . . , 4.

Proof. Observe that the definition of the extension operator and the tensor-
product structure of the domain immediately imply

(E(`,Γ̂(δ))w, E(n,Γ̂(δ))q)H1(Ω̂)

= (θ(`,Γ̂(δ)), θ(n,Γ̂(δ)))L2(0,1)(w, q)H1(Γ̂(δ)) + (θ(`,Γ̂(δ)), θ(n,Γ̂(δ)))H1(0,1)(w, q)L2(Γ̂(δ)).

By computing the corresponding integrals, we immediately obtain

|(E(`,Γ̂(δ))w, E(n,Γ̂(δ))q)H1(Ω̂)|

h p−1 min{ĥ`, ĥn}|(w, q)H1(Γ̂(δ))|+ p(max{ĥ`, ĥn})−1|(w, q)L2(Γ̂(δ))|.
(4.9)

Using the Cauchy-Schwarz inequality and the geometric-arithmetic mean inequality,
we obtain

(w, q)H1(Γ̂(δ)) ≤
√

1

ĥ`ĥn
(ĥ`|w|2H1(Γ̂(δ))

+ ĥn|q|2H1(Γ̂(δ))
)

and

(w, q)L2(Γ̂(δ)) ≤
√
ĥ`ĥn(ĥ−1

` ‖w‖
2
L2(Γ̂(δ))

+ ĥ−1
n ‖q‖2L2(Γ̂(δ))

).

By plugging these estimates into (4.9), we obtain the desired result.

The following lemma allows to estimate the vertex extensions by the function
values on one of the adjacent edges.
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Lemma 4.10. The estimate

(E(`,x̂(δ))w, E(n,x̂(δ))q)2
H1(Ω̂)

.
min{ĥ`, ĥn}
max{ĥ`, ĥn}

(
p−1ĥ`|w|2H1(Γ̂(δ))

+ p−1ĥn|q|2H1(Γ̂(δ))

+ pĥ−1
` ‖w‖

2
L2(Γ̂(δ))

+ pĥ−1
n ‖q‖2L2(Γ̂(δ))

)
holds for all w ∈ W(`), q ∈ W(n) with `, n = 1, . . . , L+ 1 and δ = 1, . . . , 4.

Proof. Let δ be arbitrary but fixed and observe that the edges adjacent to x̂(δ) are
Γ̂(δ−1) and Γ̂(δ), where we make use of Γ̂(0) := Γ̂(4). Direct computations yield

|(E(`,x̂(δ))w, E(n,x̂(δ))q)2
H1(Ω̂)

|

=
(

(θ(`,Γ̂(δ−1)), θ(n,Γ̂(δ−1)))L2(0,1)(θ
(`,Γ̂(δ)), θ(n,Γ̂(δ)))H1(0,1)

+ (θ(`,Γ̂(δ−1)), θ(n,Γ̂(δ−1)))H1(0,1)(θ
(`,Γ̂(δ)), θ(n,Γ̂(δ)))L2(0,1)

)
|w(x̂(δ))| |q(x̂(δ))|

h
min{ĥ`, ĥn}
max{ĥ`, ĥn}

|w(x̂(δ))| |q(x̂(δ))| ≤ min{ĥ`, ĥn}
max{ĥ`, ĥn}

(|w(x̂(δ))|2 + |q(x̂(δ))|2)

(4.10)
Using standard estimates, we obtain

|w(x̂(δ))|2 . ‖w‖L2(Γ̂(δ))‖w‖H1(Γ̂(δ)) . pĥ−1
` ‖w‖

2
L2(Γ̂(δ))

+ p−1ĥ`|w|2H1(Γ̂(δ))

and an analogous statement for q. By plugging these results into (4.10), we obtain
the desired result.

Lemma 4.11. The relation
∑L+1
`=1

min{ĥ`,ĥn}
max{ĥ`,ĥn}

h
∑L+1
`=1

√
min{ĥ`,ĥn}
max{ĥ`,ĥn}

h 1 holds for

all n = 1, . . . , L+ 1.

Proof. By splitting the sum and using the summation formula for the geometric
series, we obtain

L+1∑
`=1

min{ĥ`, ĥn}
max{ĥ`, ĥn}

=

n∑
`=1

ĥn

ĥ`
+

L+1∑
`=n+1

ĥ`

ĥn
=

n∑
`=1

4`−n +

L+1∑
`=n+1

4n−` h 1.

The proof of
∑L+1
`=1

√
min{ĥ`,ĥn}
max{ĥ`,ĥn}

h 1 can be done analogously.

Using these estimates, we are now able to show that the overall extension oper-
ator E is bounded as follows.

Lemma 4.12. The estimate |Ew|2
H1(Ω̂)

. p|w|2
H1/2(∂Ω̂)

holds for all for all w ∈ W.
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Proof. Let w ∈ W be arbitrary but fixed and define w` := (Q` − Q`−1)w for
` = 1, . . . , L+ 1. Observe that the definition and the triangle inequality yield

|wL+1|2H1(∂Ω̂)
= |(I −QL)w|2

H1(∂Ω̂)
≤ |(I −ΠL)w|2

H1(∂Ω̂)
+ |(ΠL −QL)w|2

H1(∂Ω̂)
,

where ΠL is the H1-orthogonal projection. Using stability and Lemma 4.3, we
obtain ‖(I−ΠL)w‖2

H1(∂Ω̂)
. p2ĥ−1‖w‖2

H1/2(∂Ω̂)
. Using this and Lemma 4.2 and the

triangle inequality, we obtain

|wL+1|2H1(∂Ω̂)
. p2ĥ−1‖w‖2

H1/2(∂Ω̂)
+ĥ−2‖(I−ΠL)w‖2

L2(∂Ω̂)
+ĥ−2‖(I−QL)w‖2

L2(∂Ω̂)
.

Using Lemmas 4.4 and 4.5, we further obtain

|wL+1|2H1(∂Ω̂)
. p2ĥ−1‖w‖2

H1/2(∂Ω̂)
. (4.11)

Observe that (4.7), the triangle inequality yield, and Assumption 3

|Ew|2
H1(Ω̂)

.
4∑
δ=1

∣∣∣∣∣
L+1∑
`=1

E(`,Γ̂(δ))w`

∣∣∣∣∣
2

H1(Ω̂)

+

4∑
δ=1

∣∣∣∣∣
L+1∑
`=1

E(`,x̂(δ))w`

∣∣∣∣∣
2

H1(Ω̂)

. (4.12)

Using Lemmas 4.9 and 4.11, we obtain∣∣∣∣∣
L+1∑
`=1

E(`,Γ̂(δ))w`

∣∣∣∣∣
2

H1(Ω̂)

=

L+1∑
`=1

L+1∑
n=1

(
E(`,Γ̂(δ))w`, E(n,Γ̂(δ))wn

)
H1(Ω̂)

. p−1
L+1∑
`=1

ĥ`|w`|2H1(∂Ω̂)
+ p

L+1∑
`=1

ĥ−1
` ‖w`‖

2
L2(∂Ω̂)

.

Analogously, we obtain using Lemmas 4.10 and 4.11∣∣∣∣∣
L+1∑
`=1

E(`,x̂(δ))w`

∣∣∣∣∣
2

H1(Ω̂)

. p−1
L+1∑
`=1

ĥ`|w`|2H1(∂Ω̂)
+ p

L+1∑
`=1

ĥ−1
` ‖w`‖

2
L2(∂Ω̂)

.

By plugging these two estimates into (4.12), we obtain

|Ew|2
H1(Ω̂)

. p−1
L+1∑
`=1

ĥ`|w`|2H1(∂Ω̂)
+ p

L+1∑
`=1

ĥ−1
` ‖w`‖

2
L2(∂Ω̂)

.

Using (4.11) and Lemma 4.2, we obtain further

|Ew|2
H1(Ω̂)

. p‖w‖2
H1/2(∂Ω̂)

+ p−1
L∑
`=1

ĥ−1
` ‖w`‖

2
L2(∂Ω̂)

+ p

L+1∑
`=1

ĥ−1
` ‖w`‖

2
L2(∂Ω̂)

. p‖w‖2
H1/2(∂Ω̂)

+ p

L+1∑
`=1

ĥ−1
` ‖w`‖

2
L2(∂Ω̂)

.

Using w` = (Q` −Q`−1)w and Lemma 4.8, we obtain further

|Ew|2
H1(Ω̂)

. p‖w‖2
H1/2(∂Ω̂)

.
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A Poincaré type argument finishes the proof.

Since we have an estimate for the extension operator E , we can also give a
corresponding estimate for the discrete harmonic extension Hh. Before we do this,
we state a standard result on the equivalence of the norms between physical domain
and parameter domain.

Lemma 4.13. For all patches k = 1, . . . ,K, we have

• |u|Hs(Ω(k)) h (H(k))1−s|u ◦ Gk|Hs(Ω̂) for all u ∈ Hs(Ω(k)) and s ∈ {0, 1},
and

• |w|Hs(∂Ω(k)) h (H(k))1/2−s|w ◦ Gk|Hs(∂Ω̂) for all w ∈ H1/2(∂Ω(k)) and
s ∈ {0, 1/2, 1},

where we use the notation H0 := L2. The same holds if ∂Ω(k) and ∂Ω̂ are replaced
by Γ(k,`) and Γ̂(k,`), respectively.

Proof. The results for s ∈ {0, 1} directly follow from Assumption 1 and the chain
rule for differentiation and the substitution rule, see, e.g, Lemma 3.5 in Ref. 3.
The results for s = 1/2 are then obtained by Hilbert space interpolation theory, cf.
Theorems 7.23 and 7.31 in Ref. 1.

Finally, we can state the main theorem of this section.

Theorem 4.2. The estimate

|w|2H1/2(∂Ω(k)) . |Hhw|
2
H1(Ω(k)) . p|w|2H1/2(∂Ω(k))

holds for all w ∈W (k).

Proof. Let H : H1/2(∂Ω(k)) → H1(Ω(k)) be the harmonic extension. Since the
H1-seminorm of the harmonic extension is equivalent to the H1/2-seminorm on the
boundary and since the harmonic extension minimizes over H1(Ω(k)) ⊃ V (k), we
have

|w|2H1/2(∂Ω(k)) . |Hw|
2
H1(Ω(k)) ≤ |Hhw|

2
H1(Ω(k)),

which shows the first part of the estimate. Since the discrete harmonic extension
minimizes over V (k), we obtain using Lemma 4.13

|Hhw|2H1(Ω(k)) = inf
v∈V (k) : v|

∂Ω(k)=w
|v|2H1(Ω(k)) h inf

v∈V̂ (k) : v|∂Ω̂=w◦Gk
|v|2

H1(Ω̂)
.

Since the operator E preserves the Dirichlet boundary conditions, we have that
E(w ◦Gk) ∈ V̂ (k) and thus we obtain using Lemmas 4.12 and 4.13

|Hhw|2H1(Ω̂)
≤ |E(w ◦Gk)|2

H1(Ω̂)
. p|w ◦Gk|2H1/2(∂Ω̂)

h p|w|2H1/2(∂Ω(k)),

which shows the second part of the estimate.
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4.2. An embedding result

The following Lemma shows that we are able to bound the function values of a
spline function from above using the H1-norm. If we consider the physical domain,
the additional scaling factor is such that it can be eliminated using the Poincaré
inequality.

Lemma 4.14. The estimates

sup
x∈Ω̂

|û(x)|2 . Λ‖û‖2
H1(Ω̂)

and sup
x∈Ω(k)

|u(x)|2 . Λ
(
|u|2H1(Ω(k)) + (H(k))−2‖u‖2L2(Ω(k))

)
,

where Λ := 1 + log p+ log H(k)

h(k) , hold for all û ∈ V̂ (k) and u ∈ V (k) .

Proof.

11
2

1

1
2

x

Q∗

C1/2(x)

Figure 3: The chosen point x with its cone of radius r = 1/2

Let û ∈ V̂ (k) and x ∈ Ω̂ be arbitrary but fixed. We assume without loss of
generality that

x ∈ [0, 1/2]2. (4.13)

The domain [0, 1)2 is composed of elements Q(i) := [q(i)
1
, q

(i)
1 ) × [q(i)

2
, q

(i)
2 ) on

which the function u is polynomial. Let Q∗ := [q∗
1
, q∗1) × [q∗

2
, q∗2) be the element

containing x. Using Assumption 4, we obtain

ĥ(k) h ĥ := max
δ=1,2

q∗δ − q∗δ . (4.14)

For any r > 0, let Cr(x) be the cone with vertex x = (x1, x2), defined by

Cr(x) := {ξ = (ξ1, ξ2) ∈ R2 : ‖ξ − x‖`2 ≤ r, ξ1 ≥ x1, ξ2 ≥ x2}.
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The assumption (4.13) yields C1/2(x) ⊂ [0, 1]2. Consider the case that Cε(x) ⊂ Q∗,
where ε := 4−1p−4ĥ3/2, first. Using the notation

v(r, θ) := û(x1 + r sin θ, x2 + r cos θ)

and the fundamental theorem of calculus, we obtain

û(x) = v(0, θ) = v(r, θ)−
∫ r

0

∂v

∂ρ
(ρ, θ) dρ

for all r ∈ (0, 1/2] and all θ ∈ [0, π/2]. By splitting up the integral and using Young’s
inequality, we obtain

û(x)2 . v(r, θ)2 +

(∫ ε

0

∂v

∂ρ
(ρ, θ) dρ

)2

+

(∫ r

ε

∂v

∂ρ
(ρ, θ) dρ

)2

(4.15)

for all r ∈ (1/4, 1/2) ⊂ (ε, 1/2). Using Theorem 4.76, eq. (4.6.2) and (4.6.1) in
Ref. 30, we estimate the first integral as follows∫ ε

0

∂v

∂ρ
(ρ, θ) dρ ≤ ε

∥∥∥∂v
∂ρ

∥∥∥
L∞((0,ε)×(0,π/2))

≤ ε|û|W 1
∞(Q∗) . p4ĥ−3/2ε‖û‖L2(Q∗).

(4.16)
The second inequality is estimated using the Cauchy-Schwarz inequality as follows∫ r

ε

∂v

∂ρ
(ρ, θ) dρ =

∫ r

ε

ρ−1/2

(
∂v

∂ρ
(ρ, θ)ρ1/2

)
dρ

≤ (log r − log ε)1/2

(∫ r

ε

∂v

∂ρ
(ρ, θ)2ρ dρ

)1/2

.

By transforming the integral back to Cartesian coordinates, we obtain further∫ r

ε

∂v

∂ρ
(ρ, θ) dρ ≤ (log r − log ε)1/2|û|H1(Cr(x)\Cε(x)) . (− log ε)1/2|û|H1(C1/2(x)\Cε(x))

(4.17)

for all r ∈ (1/4, 1/2). By plugging the estimates from (4.16) and (4.17) into (4.15),
we obtain

û(x)2 . v(r, θ)2 + p4ĥ−3/2ε‖û‖2L2(Q∗) − log ε|û|2H1(C1/2(x)\Cε(x))

. v(r, θ)2 + (1 + log p− log ĥ)‖û‖2
H1(Ω̂)

for all r ∈ (1/4, 1/2) and all θ ∈ [0, π/2]. By taking the integral over the domain
C1/2(x)\C1/4(x), we obtain

û(x)2 h
∫
C1/2(x)\C1/4(x)

û(x)2dξ =

∫ π/2

0

∫ 1/2

1/4

r û(x)2dr dθ

.
∫ π/2

0

∫ 1/2

1/4

rv(r, θ)2dr dθ + (1 + log p− log ĥ)‖û‖2
H1(Ω̂)

∫ π/2

0

∫ 1/2

1/4

r dr dθ

. (1 + log p− log ĥ)‖û‖2
H1(Ω̂)

,
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which shows the desired result.

Now, we consider the case that Cε 6⊂ Q∗. In this case, we define

x̃ := (min{x1, q
∗
1 − ε},min{x2, q

∗
2 − ε})>

and observe that (4.14) yields that x̃ ∈ Q∗. By construction, Cε(x̃) ⊂ Q∗. Thus,
using the arguments above, we obtain

û(x̃)2 . (1 + log p− log ĥ)‖û‖2
H1(Ω̂)

. (4.18)

Moreover, we observe that ‖x − x̃‖`2 . p−4ĥ3/2. Thus, we conclude using the fun-
damental theorem of calculus

(û(x)− û(x̃))2 ≤ ‖x− x̃‖`2‖û‖2W 1
∞(Q∗) . p−4ĥ3/2‖û‖2W 1

∞(Q∗).

Using Theorem 4.76, eq. (4.6.2) and (4.6.1) in Ref. 30, we further obtain

(û(x)− û(x̃))2 . ‖û‖2L2(Q∗).

By combining this result with (4.18), the triangle inequality and Young’s inequality,
we immediately obtain the first bound. The second statement follows directly using
Lemma 4.13.

4.3. The tearing lemma

The variation of a function v over a domain T is defined via

|v|L0
∞(T ) := inf

c∈R
‖v − c‖L∞(T ) =

1

2

(
ess.supx∈T v(x)− ess.infx∈T v(x)

)
,

where ess.sup and ess.inf are the essential supremum and infimum, respectively.
Thus, we have obviously

|v|L0
∞(T1∪T2) ≤ |v|L0

∞(T1) + |v|L0
∞(T2) and ‖v(x)− v‖L∞(T ) ≤ 2|v|L∞(T ) for all x ∈ T.

(4.19)

Lemma 4.15. The estimates

4∑
`=1

|û|2
H1/2(Γ̂(`))

≤ |û|2
H1/2(∂Ω̂)

.
4∑
`=1

(
|û|2

H1/2(Γ̂(`))
+ Λ|û|2

L0
∞(Γ̂(`))

)
,

4∑
`=1

|u|2H1/2(Γ(k,`)) ≤ |u|
2
H1/2(∂Ω(k)) .

∑
`∈N (k)

(
|u|2H1/2(Γ(k,`)) + Λ|u|2L0

∞(Γ(k,`))

)

hold for all û ∈ V̂ (k) and u ∈ V (k), where Λ := 1 + log p+ log H(k)

h(k) .
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Proof. We begin with the first statement. Obviously,

|û|2
H1/2(∂Ω̂)

=

4∑
`=1

|û|2
H1/2(Γ̂(`))

+

4∑
`=1

∑
n∈{1,...,4}\{`}

∫
Γ̂(`)

∫
Γ̂(n)

|û(x)− û(y)|2

|x− y|2
dxdy

︸ ︷︷ ︸
≥ 0

,

(4.20)
which immediately shows the first side of the desired inequality. For the second side,
we have to estimate the double integral. Let us consider a term with ` 6= n. The
edges Γ̂(`) are parameterized by the functions

γ(1)(t) := (0, t), γ(2)(t) := (1− t, 1), γ(3)(t) := (1, 1− t), γ(4)(t) := (t, 0).

(Note that this parameterization is different than that of (4.5).) We define the
functions v := u ◦ γ(`) and w := u ◦ γ(n). Simple calculations show that

|s+ t|2 . |γ(m)(s)− γ(n)(t)|2

holds for all m and n with m 6= n. Thus, we obtain∫
Γ̂(m)

∫
Γ̂(n)

|û(x)− û(y)|2

|x− y|2
dx dy .

∫ 1

0

∫ 1

0

|v(s)− w(t)|2

|s+ t|2
dsdt

By adding a productive zero and using the triangle inequality, we obtain∫
Γ̂(m)

∫
Γ̂(n)

|û(x)− û(y)|2

|x− y|2
dx dy

.
∫ 1

0

∫ 1

0

|v(s)− v(0)|2

|s+ t|2
dsdt+

∫ 1

0

∫ 1

0

|w(t)− w(0)|2

|s+ t|2
dsdt

h
∫ 1

0

|v(s)− v(0)|2

s
ds+

∫ 1

0

|w(t)− w(0)|2

t
dt

(4.21)

Consider the first of these summands. Let ε := p−4(ĥ(k))2. By splitting up the
integral, we obtain∫ 1

0

|v(s)− v(0)|2

s
ds =

∫ ε

0

|v(s)− v(0)|2

s
ds+

∫ 1

ε

|v(s)− v(0)|2

s
ds. (4.22)

Using the fundamental theorem of calculus and the Cauchy-Schwarz inequality, we
obtain∫ ε

0

|v(s)− v(0)|2

s
ds =

∫ ε

0

(∫ s
0
v′(z) dz

)2
s

ds ≤
∫ ε

0

∫ s

0

v′(z)2 dz ds ≤ ε|v|2H1(0,1).

Using a standard inverse estimate, cf. Theorem 4.76, eq. (4.6.5) in Ref. 30, we obtain
further∫ ε

0

|v(s)− v(0)|2

s
ds . εp4(ĥ(k))−2 inf

c∈R
‖v − c‖2L2(0,1) ≤ εp

4(ĥ(k))−2|v|2L0
∞(0,1).

(4.23)
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For the second integral in (4.22), we obtain using (4.19) that∫ 1

ε

|v(s)− v(0)|2

s
ds .

∫ 1

ε

1

s
ds ‖v(·)− v(0)‖2L∞(0,1) = − log ε |v|2L0

∞(0,1). (4.24)

The combination of (4.22), (4.23), (4.24), and and the definition of ε yields∫ 1

0

|v(s)− v(0)|2

s
ds .

(
1 + log p− log ĥ(k)

)
|v|2L0

∞(0,1).

Since we can estimate the second integral in (4.21) analogously, we have∫
Γ̂(m)

∫
Γ̂(n)

|û(x)− û(y)|2

|x− y|2
dxdy .

(
1 + log p− log ĥ(k)

) (
|û|2

L0
∞(Γ̂(m))

+ |û|2
L0
∞(Γ̂(n))

)
.

The combination of this estimate and (4.20) shows the first statement. The second
statement is obtained using Lemma 4.13.

4.4. Condition number estimate

In the following, we prove Theorem 4.1. The idea of the proof is to use Theorem 22
in Ref. 21, which states that

κ(MsD F ) ≤ sup
w∈W̃

‖B>DBw‖2S
‖w‖2S

, (4.25)

where w is the coefficient vector associated to w.

Lemma 4.16. Let u = (u(1), · · · , u(K)) ∈ W̃ with coefficient vector u and let
w = (w(1), · · · , w(K)) with coefficient vector w be such that

w = B>DBu.

Then, we have for each patch Ω(k) and each edge Γ(k,`) connecting the vertices
x(k,`,1) and x(k,`,2)

|w(k)|2H1/2(Γ(k,`)) . |u
(k)|2H1/2(Γ(k,`)) + |u(`)|2H1/2(Γ(k,`)) + ∆(k,`,1) + ∆(k,`,2),

|w(k)|2L0
∞(Γ(k,`)) . |u

(k)|2L0
∞(Γ(k,`)) + |u(`)|2L0

∞(Γ(k,`)) + ∆(k,`,1) + ∆(k,`,2),

where ∆(k,`,i) = 0 for Algorithms A and C and

∆(k,`,i) :=
∑

j∈P(x(k,`,i))

|u(k)(x(k,`,i))− u(j)(x(k,`,i))|2

for Algorithm B.

Proof. First discuss the entries of the scaling matrix D, which was defined to
be a diagonal matrix with coefficients di,i for i = 1, . . . , NΓ. di,i is defined to be
the number of Lagrange multipliers that act on the corresponding basis function.
For each edge basis function, i.e., a basis function that is active on one edge and
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vanishes on all vertices, we have only one Lagrange multiplier. Thus, di,i = 1 for
the corresponding values of i.

For the vertex basis functions, we have to distinguish based on the choice of the
primal degrees of freedom. For the Algorithms A and C, no Lagrange multiplier
acts on the respective degree of freedom. Thus, we have di,i = 1. For Algorithm B,
we have di,i = |P(x(i))| − 1, where x(i) is the corresponding vertex, since we use a
fully redundant scheme.

Simple calculations yield for Algorithms A and C that

w(k)|Γ(k,`) = u(k)|Γ(k,`) − u(`)|Γ(k,`) −
2∑
i=1

θ(k,`,i)
(
u(k)(x(k,`,i))− u(`)(x(k,`,i))

)
.

where θ(k,`,i) is the basis function in Φ(k) such that θ(k,`,i)(x(k,`,i)) = 1. Since u
satisfies the primal constraints, we have u(k)(x(k,`,i)) = u(`)(x(k,`,i)) and thus

w(k)|Γ(k,`) = u(k)|Γ(k,`) − u(`)|Γ(k,`) .

Therefore, we have |w(k)|2
H1/2(Γ(k,`))

. |u(k)|2
H1/2(Γ(k,`))

+ |u(`)|2
H1/2(Γ(k,`))

and
|w(k)|2

L0
∞(Γ(k,`))

. |u(k)|2
L0
∞(Γ(k,`))

+ |u(`)|2
L0
∞(Γ(k,`))

, which finishes the proof for the
Algorithms A and C.

For Algorithm B, one obtains

w(k)|Γ(k,`) = u(k)|Γ(k,`) − u(`)|Γ(k,`)

+

2∑
i=1

1

|P(x(k,`,i))| − 1
θ(k,`,i)

∑
j∈P(x(k,`,i))\{`}

(
u(k)(x(k,`,i))− u(j)(x(k,`,i))

)
.

Note that θ(k,`,i) behaves like max{0, 1− |x− x(k,`,i)|/h(k)}p. So,

• |θ(k,`,i)|2
H1/2(Γ(k,`))

. |θ(k,`,i)|H1(Γ(k,`))‖θ(k,`,i)‖L2(Γ(k,`)) h 1, and
• ‖θ(k,`,i)‖2

L∞(Γ(k,`))
= 1.

Assumption 3 yields |P(x(k,`,i))| h 1. Thus, we immediately obtain the desired
result also for Algorithm B.

The term ∆(k,`,i) contains the differences u(k)(x(k,`,i)) − u(j)(x(k,`,i)) for any
patch Ω(j) that shares the corresponding vertex x(k,`,i) with the patch Ω(k). The
following Lemma shows that these terms can be estimated from above with differ-
ences that only involve patches sharing an edge.

Lemma 4.17. We have

∆(k,`,i) .
∑

m∈P(x(k,`,i))

∑
n∈P(x(k,`,i))∩NΓ(m)

|u(m)(x(k,`,i))− u(n)(x(k,`,i))|2,
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where ∆(k,`,i) is as in Lemma 4.16.

Proof. The sum in ∆(k,`,i) contains contributions of the form

|u(k)(x(k,`,i))− u(`)(x(k,`,i))|2.

If the patches Ω(k) and Ω(`) share an edge, we are done. Otherwise, there is a
sequence k =: n0, n1, . . . , nj := ` such that

• the patches Ω(ni) and Ω(ni−1) share an edge, thus ni ∈ NΓ(ni−1) for all
i = 1, . . . , j and
• all patches Ω(ni) contain the vertex x(k,`,i), thus ni ∈ P(x(k,`,i)) for all
i = 0, . . . , j.

Thus, we have using Assumption 3

|u(k)(x(k,`,i))− u(`)(x(k,`,i))|2 .
j∑
i=1

|u(ni−1)(x(k,`,i))− u(ni)(x(k,`,i))|2,

which finishes the proof since ni−1 ∈ P(x(k,`,i)) and ni ∈ P(x(k,`,i)) ∩NΓ(ni).

Lemma 4.18. Let Ω(k) and Ω(`) be two patches sharing the edge Γ(k,`). Assume
that Γ(k,`) connects the two vertices x(k,`,1) and x(k,`,2). Provided that the integrals
over the edge agree, i.e.,

∫
Γ(k,`) u

(k)(s)− u(`)(s) ds = 0, we have
2∑
i=1

|u(k)(x(k,`,i))− u(`)(x(k,`,i))|2 . Λ
(
|H(k)

h u(k)|2H1(Ω(k)) + |H(`)
h u(`)|2H1(Ω(`))

)
for all u = (u(1), . . . , u(K)) ∈ V , where Λ := 1 + log p+ maxj=1,...,K log H(j)

h(j) .

Proof. Let û(k) := u(k) ◦ Gk and û(`) := u(`) ◦ G`. By an unitary transformation
(rotation, reflection), we obtain a representation such that the pre-image of the
joint edge Γ(k,`) is (0, 1) × {0} and that the pre-image of x(k,`,1) is 0. Thus, the
assumption on the edge average reads as∫

(0,1)×{0}
û(k)(x)− û(`)(x)dx = 0.

In the interior, consider the difference of the respective discrete harmonic extensions
Ĥ(k)
h û(k) − Ĥ(`)

h û(`). Lemma 4.14 yields

|u(k)(x(k,`,1))−u(`)(x(k,`,1))|2 = |û(k)(0)−û(`)(0)|2 . Λ(k,`)‖Ĥ(k)
h û(k)−Ĥ(`)

h û(`)‖2
H1(Ω̂)

.

Using Theorem 1.24 in Ref. 25 (using the choice ψ(u) :=
∫

Γ̂
u(s)ds), we obtain

further

|u(k)(x(k,`,1))− u(`)(x(k,`,1))|2 . Λ(k,`)|Ĥ(k)
h û(k) − Ĥ(`)

h û(`)|2
H1(Ω̂)

. Λ(k,`)(|Ĥ(k)
h û(k)|2

H1(Ω̂)
+ |Ĥ(`)

h û(`)|2
H1(Ω̂)

),
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which finishes the proof.

Using the last three Lemmas and Assumption 3, we immediately obtain
K∑
k=1

∑
`∈NΓ(k)

|w(k)|2H1/2(Γ(k,`)) .
K∑
k=1

∑
`∈NΓ(k)

(
|u(k)|2H1/2(Γ(k,`)) + ∆(k,`,1) + ∆(k,`,2)

)

.
K∑
k=1

∑
`∈NΓ(k)

(
|u(k)|2H1/2(Γ(k,`)) +

2∑
i=1

|u(k)(x(k,`,i))− u(`)(x(k,`,i))|2
)

.
K∑
k=1

∑
`∈NΓ(k)

|u(k)|2H1/2(Γ(k,`)) + Λ

K∑
k=1

|H(k)
h u(k)|2H1(Ω(k)),

(4.26)
where Λ is as in Lemma 4.18, and an analogous estimate for the L0

∞(Γ(k,`))-
seminorms. Finally, we are able to give a proof of the main theorem.

Proof. (of Theorem 4.1). Let u = (u(1), · · · , u(K)) with coefficient vector u be
arbitrary but fixed and let w = (w(1), · · · , w(K)) with coefficient vector w be such
that w = B>DBu. Theorem 4.2 yields

‖B>DBu‖2S = ‖w‖2S =

K∑
k=1

|H(k)
h w(k)|2H1(Ω(k)) . p

K∑
k=1

|w(k)|2H1/2(∂Ω(k)),

where H(k)
h is the discrete harmonic extension into H1(Ω(k)). Lemma 4.15 yields

further

‖B>DBu‖2S . pΛ

K∑
k=1

∑
`∈N (k)

(
|w(k)|2H1/2(Γ(k,`)) + |w(k)|2L0

∞(Γ(k,`))

)
,

where Λ is as in Lemma 4.18. Using (4.26), we obtain

‖B>DBu‖2S . pΛ

K∑
k=1

∑
`∈NΓ(k)

(
|u(k)|2H1/2(Γ(k,`)) + |u(k)|2L0

∞(Γ(k,`))

)

+ pΛ2
K∑
k=1

|H(k)
h u(k)|2H1(Ω(k)).

Lemma 4.15 and Theorem 4.2 yield

‖B>DBu‖2S .
K∑
k=1

pΛ2|H(k)
h u(k)|2H1(Ω(k)) + pΛ|u(k)|2L0

∞(∂Ω(k)).

Lemma 4.14 yields

‖B>DBu‖2S . pΛ2
K∑
k=1

inf
c∈R

(
|H(k)

h u(k)|2H1(Ω(k)) + (H(k))−2‖H(k)
h (u(k) − c)‖2L2(Ω(k))

)
.
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A standard Poincaré inequality yields further

‖B>DBu‖2S . pΛ2
K∑
k=1

|H(k)
h u(k)|2H1(Ω(k)) = pΛ2‖u‖2S .

The combination of this estimate and (4.25) finishes the proof.

5. Numerical results

In this section, we give results from numerical experiments that illustrate the con-
vergence theory presented in this paper. We consider the Poisson problem

−∆u(x, y) = 2π2 sin(πx) sin(πy) for (x, y) ∈ Ω

u = 0 on ∂Ω,

where we consider the two domains shown in Figure 4. The first domain is a circular
ring consisting of 12 patches. Each patch is parameterized using a NURBS mapping
of degree 2. The second domain is the Yeti-footprint, where we have decomposed the
12 patches of the standard representation into 84 patches to obtain a representation
with inner vertices as well.

(a) Circular ring

(b) Yeti-footprint

Figure 4: Computational domains and the decomposition into patches

The numerical experiments are based on the presented IETI-DP approach (Al-
gorithms A, B and C), where the primal degrees of freedom for the corners are
implemented by elimination of the corresponding degrees of freedom as suggested
in Section 3. As patch-local discretization spaces V̂ (k), we use spline spaces of max-
imum smoothness. The discretization of the triple ring on the coarsest grid level
(r = 0) only consists for each of the patches only of global polynomials, i.e., there
are no inner knots. The same holds for most of the patches of the Yeti-footprint,
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r � p 2 3 4 5 6 7 8
it κ it κ it κ it κ it κ it κ it κ

2 10 5.96 11 6.46 12 6.79 12 7.29 13 7.53 14 7.99 15 8.16

3 11 6.69 12 7.30 12 7.81 13 8.28 13 8.64 14 9.03 15 9.32

4 12 7.67 12 8.41 13 9.02 13 9.53 14 9.98 14 10.38 14 10.73

5 12 8.81 13 9.68 14 10.38 14 10.96 14 11.47 15 11.91 15 12.31

6 14 10.14 14 11.13 15 11.91 15 12.57 15 13.13 15 13.63 15 14.07

7 15 11.65 15 12.75 16 13.62 17 14.35 16 14.97 17 15.52 17 16.00

8 15 13.33 17 14.56 17 15.51 17 16.31 17 16.99 17 17.58 17 18.11

Table 1: Iteration counts (it) and condition numbers κ; Algorithm A; triple ring

r � p 2 3 4 5 6 7 8
it κ it κ it κ it κ it κ it κ it κ

2 14 15.43 13 15.69 13 15.56 15 16.32 15 16.33 16 17.01 16 17.04

3 15 18.32 15 18.51 15 18.93 16 19.45 17 19.81 17 20.30 18 20.63

4 16 21.52 16 21.77 16 22.24 16 22.73 16 23.19 17 23.63 18 24.02

5 17 24.92 17 25.17 18 25.67 17 26.18 18 26.67 18 27.12 18 27.54

6 18 28.47 18 28.73 19 29.25 19 29.78 19 30.28 19 30.75 21 31.19

7 19 32.16 19 32.43 21 32.97 22 33.52 21 34.05 22 34.54 21 34.99

8 21 36.01 22 36.28 22 36.84 22 37.42 23 37.96 23 38.47 24 38.95

Table 2: Iteration counts (it) and condition numbers κ; Algorithm B; triple ring

while the discretization for the 20 patches that have a non-square shape have one
inner knot that connects the midpoints of the two longer sides of the patch. The
finer discretizations (r = 1, 2, . . .) are obtained by a uniform refinement such that
the grid size behaves like h h 2−r. The newly introduced knots are single knots,
so splines of maximum smoothness are obtained in the interior of each patch. The
local subproblems are solved using a standard direct solver. The overall problem is
solved using a conjugate gradient solver, preconditioned with the scaled Dirichlet
preconditioner. The starting value has been a vector with random entries in the
interval [−1, 1]. The iteration has been stopped when the `2-norm of the residual
has been reduced by a factor 10−6 compared to the `2-norm of the initial residual.
For all numerical experiments, we present the required number of iterations (it) and
the condition number (κ) of the preconditioned system MsDF as estimated by the
conjugate gradient solver.

In the Tables 1, 2 and 3, we present the numerical experiments for the triple
ring (Figure 4a). In Table 1, we provide the results for the case that only the vertex
values are chosen as primal degrees of freedom (Algorithm A). Here, we observe that
the condition number grows like log2H/h as predicted by the theory. The growth
in the spline degree seems to be like √p or even slower, while the theory predicts
p log2 p. In Table 2, we consider the case that only the averages of the function
values on the edges are chosen as primal degrees of freedom (Algorithm B). Here,
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r � p 2 3 4 5 6 7 8
it κ it κ it κ it κ it κ it κ it κ

2 9 2.18 9 2.33 10 2.55 10 2.68 11 2.91 11 3.01 12 3.24

3 10 2.46 10 2.74 10 3.00 11 3.21 11 3.42 12 3.58 12 3.77

4 10 2.92 11 3.29 11 3.59 11 3.85 12 4.07 12 4.26 12 4.44

5 11 3.47 11 3.93 12 4.27 12 4.55 13 4.80 13 5.01 13 5.20

6 12 4.16 12 4.64 13 5.01 13 5.32 13 5.59 14 5.82 14 6.03

7 13 4.89 14 5.42 14 5.82 15 6.16 15 6.44 15 6.69 16 6.91

8 14 5.69 15 6.25 15 6.69 16 7.05 16 7.35 16 7.61 16 7.84

Table 3: Iteration counts (it) and condition numbers κ; Algorithm C; triple ring

r � p 2 3 4 5 6 7 8
it κ it κ it κ it κ it κ it κ it κ

1 12 3.02 14 4.06 15 4.72 17 5.60 18 6.13 20 6.88 22 7.33

2 14 4.64 16 5.76 17 6.64 18 7.49 20 8.15 21 8.86 22 9.39

3 16 6.71 19 8.03 20 9.11 20 10.04 21 10.83 23 11.57 24 12.20

4 20 9.22 22 10.77 22 12.03 23 13.09 23 14.01 24 14.84 26 15.57

5 22 12.17 23 13.96 25 15.40 25 16.60 26 17.64 27 18.59 27 19.39

6 25 15.58 26 17.59 26 19.20 27 20.55 28 21.72 28 22.73 29 23.65

7 27 19.42 28 21.69 28 23.48 29 24.94 31 26.26 30 27.35 32 28.79

Table 4: Iteration counts (it) and condition numbers κ; Algorithm A; Yeti-footprint

r � p 2 3 4 5 6 7 8
it κ it κ it κ it κ it κ it κ it κ

1 8 1.47 9 1.64 10 1.79 11 1.94 12 2.08 13 2.22 14 2.34

2 10 2.03 11 2.25 12 2.46 13 2.65 14 2.82 15 2.94 16 3.13

3 13 2.77 14 3.04 15 3.31 15 3.55 16 3.76 17 3.95 18 4.13

4 15 3.70 16 4.03 17 4.33 18 4.62 18 4.87 20 5.09 21 5.31

5 18 4.80 19 5.19 19 5.55 20 5.87 21 6.15 21 6.41 23 6.65

6 20 6.08 21 6.52 22 6.93 22 7.29 23 7.62 24 7.91 24 8.17

7 22 7.53 23 8.03 23 8.49 24 8.90 25 9.26 25 9.58 26 9.87

Table 5: Iteration counts (it) and condition numbers κ; Algorithm B; Yeti-footprint

the condition number seems to be larger than that of Algorithm A. Here, the growth
of the condition number in the grid size looks like log2H/h. The growth in the spline
degree seems to be linear. Table 3 shows the results for the case that both kinds of
primal degrees of freedom are combined (Algorithm C). As expected, the obtained
condition numbers are smaller than those obtained with Algorithms A and B. We
observe the same behavior as for Algorithm A.
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r � p 2 3 4 5 6 7 8
it κ it κ it κ it κ it κ it κ it κ

1 6 1.22 7 1.38 8 1.50 9 1.65 10 1.77 11 1.88 12 1.97

2 8 1.43 9 1.61 10 1.78 11 1.95 12 2.10 13 2.25 14 2.39

3 10 1.84 11 2.11 12 2.34 13 2.56 13 2.74 14 2.91 16 3.09

4 12 2.48 13 2.82 14 3.12 15 3.38 16 3.62 17 3.83 18 4.04

5 14 3.32 15 3.75 16 4.13 17 4.45 18 4.73 19 4.99 20 5.23

6 17 4.41 18 4.93 18 5.37 19 5.76 20 6.10 21 6.40 22 6.69

7 19 5.73 20 6.34 21 6.86 21 7.31 22 7.70 23 8.05 24 8.37

Table 6: Iteration counts (it) and condition numbers κ; Algorithm C; Yeti-footprint

In the Tables 4, 5 and 6, we present the numerical experiments for the Yeti-
footprint (Figure 4b). Here, we observe in all cases that the growth of the condition
number in the grid size is like log2H/h and the growth in the spline degree is like√
p or slightly smaller. Opposite to the results for the triple ring, we observe that

Algorithm B performs better than Algorithm A. Again, Algorithm C yields the
smallest condition numbers, see Table 6.

6. Conclusions

In the paper, we have extended the known convergence analysis for IETI-DP meth-
ods such that it also covers the case that only edge-averages are used as primal
degrees of freedom. Moreover, we provide estimates for the condition number that
are explicit both in the grid sizes and in the spline degree. The main ingredient for
that analysis is an estimate for the discrete harmonic extension, cf. Section 4.1. The
dependence of the condition number on the grid size is the same as in any other
standard analysis. In the spline degree, the bound on the convergence number de-
pends like p log2 p on the spline degree p. Most numerical experiments indicate that
the true growth might be smaller, but one of the numerical experiments has shown
a growth similar to the upper bound from the convergence theory. Since in Iso-
geometric Analysis, only moderate values of p are of interest, the corresponding
dependence seems to be moderate.

Note that the condition number of the stiffness matrix κ(A) grows exponentially
in the spline degree. This means that the condition number of the preconditioned
IETI-DP system grows only logarithmic in κ(A), if the spline degree p is increased.
The same is observed for the grid size, since κ(A) h h−2 and the condition number
of the preconditioned IETI-DP system grows (poly-)logarithmic in h−1 or, equiva-
lently, in κ(A).

The extension of the presented method to problems with varying diffusion co-
efficients seems to be straight-forward. Our analysis for Algorithm B also allows
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the extension of the IETI-DP solvers (and their analysis) to discretizations with
non-matching patches, that are of interest for moving domains, like for the analysis
of electrical motors.
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2018-04 Matúš Benko, Helmut Gfrerer and Boris S. Mordukhovich
Characterizations of Tilt-Stable Minimizers in Second-Order Cone Program-
ming

September 2018

2018-05 Helmut Gfrerer and Jane J. Ye
New Sharp Necessary Optimality Conditions for Mathematical Programs with
Equilibrium Constraints

December 2018

2018-06 Helmut Gfrerer and Jǐŕı V. Outrata
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On Inner Calmness*, Generalized Calculus, and Derivatives of the Normal-
cone Map

October 2019

2019-04 Rainer Schneckenleitner and Stefan Takacs
Condition number bounds for IETI-DP methods that are explicit in h and p December 2019

From 1998 to 2008 reports were published by SFB013. Please see
http://www.sfb013.uni-linz.ac.at/index.php?id=reports

From 2004 on reports were also published by RICAM. Please see
http://www.ricam.oeaw.ac.at/publications/list/

For a complete list of NuMa reports see
http://www.numa.uni-linz.ac.at/Publications/List/

http://www.sfb013.uni-linz.ac.at/index.php?id=reports
http://www.ricam.oeaw.ac.at/publications/list/
http://www.numa.uni-linz.ac.at/Publications/List/

	Introduction
	The model problem
	The IETI-DP solver
	Condition number estimate
	Estimates for the discrete harmonic extension
	An embedding result
	The tearing lemma
	Condition number estimate

	Numerical results
	Conclusions

