
CISM COURSE
COMPUTATIONAL ACOUSTICS
Solvers
Part 4: Multigrid I

Ulrich Langer and Martin Neumüller
Institute of Computational Mathematics
Johannes Kepler University Linz
Udine, May 23-27, 2016

Outline

1. A first idea

2. Two-grid cycle

3. Multigrid cycle

4. Numerical examples

Summary

CISM Course Computational Acoustics 1/25

Outline

1. A first idea

2. Two-grid cycle

3. Multigrid cycle

4. Numerical examples

Summary

CISM Course Computational Acoustics 2/25

A first idea
Idea: Analyze the damped Jacobi method in more detail
Simplification: 1d-Poisson problem:

� Ω = (0, 1), V0 continuous and piecwise linear functions

� Find u ∈ V0 :
∫ 1
0 u
′(x)v′(x)dx =

∫ 1
0 f(x)v(x)dx ∀v ∈ V0

Linear system:
Ku = f,

with

K =
1

h


2 −1

−1 2 −1
.

−1 2 −1

−1 2

 and f =

[∫ 1

0
f(x)Ni(x)dx

]nh

i=1

.

CISM Course Computational Acoustics 2/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 0

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 1

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 2

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 3

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 4

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 5

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 10

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 15

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 20

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 25

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 30

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 35

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 40

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 45

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 50

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 55

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 1:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 60

CISM Course Computational Acoustics 3/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 0

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 1

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 2

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 3

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 4

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 5

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 10

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 15

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 20

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 25

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 30

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 35

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 40

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 45

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 50

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 55

CISM Course Computational Acoustics 4/25

A first idea
Damped Jacobi method

u(k+1) = u(k) + αD−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� Use f = 0 and u(0) = [rand(0, 1)]nh
j=1.

� Apply Jacobi method for α = 2
3 :

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: k = 60

CISM Course Computational Acoustics 4/25

A first idea
Observations:

� In all cases the error is converging very slowly
� For α = 2

3 the error is getting smoother

Explanation: Fourier expansion: Kφ
i

= λiφi with

λi =
4

h
sin2

(i π
2n

)
and φ

i
=
[√

2n sin(ikπh)
]nh

k=1

→ e(0) := u(0) − u =

nh∑
i=1

αiφi.

Error propagation:

e(k+1) = S e(k) =
[
I − αD−1K

]
e(k) =

[
I − αD−1K

]k nh∑
i=1

αiφi

=

nh∑
i=1

αi

[
1− αh

2
λi

]k
φ
i

=

nh∑
i=1

αi

[
1− 2α sin2

(i π
2n

)]k
φ
i
.

CISM Course Computational Acoustics 5/25

A frist idea
Estimate: ∣∣∣∣1− 2α sin2

(i π
2n

)∣∣∣∣ for i = 1, . . . , n− 1

� i = n
2 , . . . , n− 1:∣∣∣∣1− 2α sin2

(i π
2n

)∣∣∣∣ ≤ max {|1− α| , |1− 2α|} =
1

3
for α∗ =

2

3
.

� i = 1, . . . , n2 :∣∣∣∣1− 2α sin2
(i π

2n

)∣∣∣∣ ≤ max
{∣∣∣1− 2α sin2

(π
2n

)∣∣∣ , |1− α|}
= O(1− απ

2

2
h2) ≈ 1.

� → fast reduction of the high oscillating error components

� → almost no reduction of the smooth part of the error

CISM Course Computational Acoustics 6/25

Outline

1. A first idea

2. Two-grid cycle

3. Multigrid cycle

4. Numerical examples

Summary

CISM Course Computational Acoustics 7/25

Two-grid cycle

Idea: Damped Jacob method + subspace correction step:

� The damped Jacobi method leads to a “smooth” error

� → the correction has to be smooth

� A smooth correction can be good approximated on a
coarser grid

Algorithm Two-grid cycle
Require: Approximation u(k)

1: Apply smoothing procedure→ u(k+1/3)

2: Apply subspace correction→ u(k+2/3)

3: Apply smoothing procedure→ u(k+1)

CISM Course Computational Acoustics 7/25

Subspace correction
� Given smoothed approximation u(k) ∈ V0 ↔ u(k) ∈ Rnh

� Cosider subspace comming from a coarser grid: W0 ⊂ V0

coarse grid with W0

fine grid with V0

Subspace correction:

w(k) ∈ Rnh ↔ w(k) ∈W0 : a(w(k), v) = `(v)−a(u(k), v) ∀v ∈W0,

with equivalent system of linear equations

KC w
(k)
C = r

(k)
C

� Connection w(k)
C ∈ RnC ↔ w(k) ∈ Rnh?

� Connection r(k)C ∈ RnC ↔ r(k) = f −Ku(k) ∈ Rnh?

CISM Course Computational Acoustics 8/25

Connection w
(k)
C ∈ RnC ↔ w(k) ∈ Rnh?

For any w(k) ∈W0 ⊂ V0

w(k) =

nC∑
i=1

wCi N
C
i or w(k) =

nh∑
j=1

wjNj .

Basis transformation:

W0 3 NC
i =

nh∑
j=1

P [j, i]Nj , with P [j, i] ∈ R for j = 1, . . . , nh.

w(k) =

nC∑
i=1

wCi N
C
i =

nC∑
i=1

wCi

 nh∑
j=1

P [j, i]Nj


=

nh∑
j=1

[
nC∑
i=1

P [j, i]wCi

]
Nj =

nh∑
j=1

[
Pw

(k)
C

]
j
Nj .

Hence we have

w(k) = Pw
(k)
C , with prolongation matrix P ∈ Rnh×nC .

CISM Course Computational Acoustics 9/25

Connection r
(k)
C ∈ RnC ↔ r(k) ∈ Rnh?

Consider the coarse grid residual

r
(k)
C ∈ RnC ↔ 〈R(k), v〉 := `(v)− a(u(k), v) for all v ∈W0.

We have

r
(k)
C [i] = 〈R(k), NC

i 〉 = 〈R(k),

nh∑
j=1

P [j, i]Nj〉

=

nh∑
j=1

P [j, i]〈R(k), Nj〉 =

nh∑
j=1

P [j, i]r(k)[j] =
[
P> r(k)

]
i
.

Hence we have

r
(k)
C = P> r(k) =: R r(k) = R

[
f −Ku(k)

]
with the restriction matrix R := P> ∈ RnC×nh .

CISM Course Computational Acoustics 10/25

Grid transfer operators
Basis transformation:

W0 3 NC
i =

nh∑
j=1

P [j, i]Nj , with P [j, i] ∈ R for j = 1, . . . , nh.

0 1 2 3 4

NC
2

0 1 2 3 4 5 6 7 8

N3 N4 N5

For example:

P [3, 2] =
1

2
, P [4, 2] = 1, P [5, 2] =

1

2
.

CISM Course Computational Acoustics 11/25

Grid transfer operators
Prolongation and restriction matrices:

P =



1 0
1
2

1
1
2

1
2

1
1
2

1
2

. . .
1
2

1
2

0 1


and R = P>.

� P and R are sparse matrices

� → Grid transfer is of optimal complexity

CISM Course Computational Acoustics 12/25

Two-grid cycle
This results in the following algorithm:

Algorithm Two-grid cycle
Require: Approximation u(k), f

1: Pre-smoothing: u(k) = Sν(u(k), f)

2: Compute defect: d(k) = f −Ku(k)

3: Restriction: dC = R d(k)

4: Solve coarse problem: KCwC = dC
5: Prolongation: w(k) = PwC
6: Correction: u(k) = u(k) + w(k)

7: Post-smoothing: u(k) = Sν(u(k), f)

� Convergence?

� What to do if coarse problem is still to large?

CISM Course Computational Acoustics 13/25

Two-grid analysis
Two possible ways:

� Fourier analysis (using eigenvalues and eigenvectors of K)
→ additive splitting

� Multiplicative splitting

Need: iteration matrix for the error
Start with smoother: damped Jacobi method:
Consider exact solution u ∈ Rnh and approximation u(k) ∈ Rnh .
Then we have

e(k+1) := u(k+1) − u = u(k) + αD−1
[
f −Ku(k)

]
− u

= u(k) − u+ αD−1K
[
u− u(k)

]
=
[
I − αD−1K

]
e(k) =: Se(k) = . . . = Ske(0).

CISM Course Computational Acoustics 14/25

Two-grid analysis
Coarse grid correction:

e(k)cor :=
(
u(k) + w(k)

)
− u = e(k) + w(k) = e(k) + PwC

= e(k) + PK−1C dC

= e(k) + PK−1C R d(k) = e(k) + PK−1C R
[
f −Ku(k)

]
= e(k) −PK−1C RK e(k) =

[
I −PK−1C RK

]
e(k)

=: Te(k).

Error of the two-grid cycle:

e
(k+1)
tg = Sν TSν e

(k)
tg = Sν

[
I −PK−1C RK

]
Sν e

(k)
tg =: M e

(k)
tg .

Estimate:

||e(k+1)
tg || ≤ ||M|| ||e(k)tg || ≤ ||M||k ||e

(0)
tg ||.

CISM Course Computational Acoustics 15/25

Two-grid analysis
First attempt:

||M|| = ||Sν TSν || ≤ ||T|| ||S||2ν .

We know

||S||ν = [1−O(hα)]ν → 0 for ν →∞.

But:

||T|| = sup
06=v∈Rnh

||T v||
||v||

= sup
0 6=v∈Rnh

||
[
I −PK−1C RK

]
v||

||v||

≥ sup
0 6=v∈Rnh

K v∈ker(R)

||
[
I −PK−1C RK

]
v||

||v||
= 1.

Overestimation of
||M||?

CISM Course Computational Acoustics 16/25

Two-grid analysis
Better splitting:

||TSν || = ||TK−1KSν || ≤ ||TK−1|| ||KSν ||.

� Approximation property

||TK−1|| ≤ c hδ

� Smoothing property

||KSν || ≤ η(ν)h−δ with η(ν)→ 0 as ν →∞.

Then we have convergence

||M || ≤ ||TSν || ≤ c η(ν) < 1,

for ν ∈ N large enough.

CISM Course Computational Acoustics 17/25

Two-grid analysis
Assumptions:

� d-dimensional Poisson problem
� Some regularity assumptions (→ restriction for the domain

Ω)

Theorem (Approximation property)

||TK−1|| ≤ c1 h2−d.

Theorem (Smoothing property)

||KSν || ≤ c2
ν
hd−2.

→ convergence of two-grid cycle for ν large enough!
CISM Course Computational Acoustics 18/25

Outline

1. A first idea

2. Two-grid cycle

3. Multigrid cycle

4. Numerical examples

Summary

CISM Course Computational Acoustics 19/25

Multigrid cycle
What to do if coarse problem is still to large?
Idea: Approximate the solution of the coarse grid problem by
another two-grid cycle→ repeat this idea recursively

→ Need: hierarchy of grids

level ` = 0, V 0
0

level ` = 1, V 1
0

level ` = 2, V 2
0

level ` = 3, V 3
0

� System matrices K` on each level ` = 0, 1, . . . , L.
� Restriction matrix R` between level ` and level `− 1

� Prolongation matrix P` between level ` and level `− 1

Solve
K` u` = f

`
for ` = L.

CISM Course Computational Acoustics 19/25

Multigrid cycle

level ` = 0

level ` = 1

level ` = 2

level ` = 3

Algorithm MGCycle
Require: u`, f `
1: if ` = 0 then
2: Coarse grid solver: u` = K−1

` f
`

3: else
4: Pre-smoothing: u` = S`(u`, f `)

5: Compute defect: d` = f
`
−K` u`

6: Restriction: d`−1 = R` d`
7: Initialize: w`−1 = 0

8: for i = 1, . . . , γ do
9: MGCycle(w`−1,d`−1)

10: end for
11: Prolongation: w` = P` w`−1

12: Correction: u` = u` + w`

13: Post-smoothing: u` = S`(u`, f `)

14: end if

CISM Course Computational Acoustics 20/25

Multigrid cycle

Possible cycles:

� γ = 1 V-cycle: cheapest cycle→ analysis for general
problems difficult

� γ = 2 W-cycle: more expensive→ analysis easier

CISM Course Computational Acoustics 21/25

Multigrid cycle

Full multigrid cycle (Nested iteration)
Idea: Start with coarsest level→ use as initial guess for the
next finer level:

Algorithm Full multigrid cycle
1: Coarse problem: u0 = K−10 f

0

2: for ` = 1, . . . , L do
3: Prolongate: u` = P` u`−1
4: Apply multigrid-cycle: MGCycle(u`, f `)

5: end for

� Adaptivity→ construction of the finer grids

� Non-linear problems→ good initial guess

CISM Course Computational Acoustics 22/25

Outline

1. A first idea

2. Two-grid cycle

3. Multigrid cycle

4. Numerical examples

Summary

CISM Course Computational Acoustics 23/25

Multigrid - example
� Ω = (0, 1), deocmposed with constant mesh size h` = 2−`

� Find u ∈ V0 :
∫ 1
0 u
′(x)v′(x)dx =

∫ 1
0 f(x)v(x)dx ∀v ∈ V0

� Prec. CG-method, rel. residual error reduction ε = 10−8

MDS MG
level dof nh iter time [s] iter time [s]

3 9 5 - 5 -
4 17 11 - 6 -
5 33 16 - 7 -
6 65 20 - 7 -
7 129 22 - 8 -
8 257 24 - 8 -
9 513 26 - 8 -

10 1 025 26 - 8 -
11 2 049 27 0.0015 8 0.0014
12 4 097 29 0.0029 8 0.0024
13 8 193 29 0.0060 8 0.0049
14 16 385 30 0.0131 8 0.0103
15 32 769 32 0.0315 8 0.0255
16 65 537 33 0.0668 9 0.0558
17 131 073 33 0.1377 9 0.1273
18 262 145 34 0.3147 9 0.2359
19 524 289 34 0.6527 9 0.4715
20 1 048 577 35 1.3391 9 0.9583

CISM Course Computational Acoustics 23/25

Outline

1. A first idea

2. Two-grid cycle

3. Multigrid cycle

4. Numerical examples

Summary

CISM Course Computational Acoustics 24/25

Summary

� Two-grid cycle
� Coarse grid correction
� Grid transfer operators
� Two-grid analysis

� Multigrid cycle

� Numerica experiments

CISM Course Computational Acoustics 24/25

References

[1] W. Hackbusch.
Multigrid methods and applications, volume 4 of Springer
Series in Computational Mathematics.
Springer-Verlag, Berlin, 1985.

[2] U. Trottenberg, C. W. Oosterlee, and A. Schüller.
Multigrid.
Academic Press, Inc., San Diego, CA, 2001.
With contributions by A. Brandt, P. Oswald and K. Stüben.

CISM Course Computational Acoustics 25/25

	1. A first idea
	2. Two-grid cycle
	3. Multigrid cycle
	4. Numerical examples
	Summary

