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1. Algebraic Systems in CA and Properties
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Algebraic Systems arising in CA

Given a regular (?) nj, x ny system matrix A = [4;], .,
and arhs f = [fi] , ER™ find u = [uy] , € R

i=1,...,n 7j=1,...n

Au=f (1)

where n = nj, = n., = O(h~%) - nr of dofs = nr of eqgns,
h - discretization parameter, d - space dim. (PDE in Q c R9).

Possible system matrices in CA:

A = D - diagonal matrix (mass lumping)

A =M - mass matrix (MK3= Kaltenbacher 3)

A = K - stiffness matrix (MK3)

A =M + vy At C + By (At)?K - Newmark matrix (MK3)

A = K — w?M - time-harmonic case (SM=Marburg)

A = B - fully populated BEM matrices (SM): n;, = O(h—(4=1)
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Model Problem from MK3

B Mixed BVP for Poisson equation (v = 1):

ou

on ~ nonTn (2)

B Weak formulation: Find v € V,,_ : a(u,v) = l(v) Vv € V)
Findu € V,, :={ve HY(Q) : v = u. onT.} such that (:)

/Vu'Vvdx:/fvdqu/ qnv ds (3)
Q Q I'n

forallv e V= {ve H(Q) :v=0o0nT.}, where

—Au=finQ, u=u,:=00nT,,

HY(Q) = {v € Ly(Q) : Iweak Vv € Ly(Q)}

denotes the Sobolev space that is equipped with the norm

ol := ([0l + [of? = /Q jof2dx + /Q Voldx
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Model Problem from MK3: !

Lax-Milgram Lemma delivers existence and uniqueness
provided that the following assumptions are fulfilled:

1. rhs £(-) is a continuous (bounded), linear functional:
1)l < ([1fllo + ellanll o)) 0], Yo € Va,
2. bilinear form a(-, ) is continuous (bounded) on V;:
la(u, v)| < Tulltllvlly = p2 llullillvll, Yu,v e Vo,
3. bilinear form a(-,-) is V, elliptic (coercive):
a(v,0) = [of} = L1+ )l = ol o € Vo,

by Friedrichs’ inequality: ||v|jo < cp(Te)|v]1, Yo € Vp.

J~U
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Model Problem from MK3: FEM

B FE-Scheme: Find u" € V! : a(u”, ") = £(v") Vol € V!
Find u”(x) = 327 u;Nj(x) + Zj " g1 Ue (X)) N (x) € VLt

/ Vul . Vol dx = / foldx + / g ds (4)
Q Q I'n

for all v € Vg := span{Ny, Ny,..., Ny, }.

B Since the FE basis is chosen, the FE scheme (4) is
equivalent to the solution of a linear system of equations:
Find u = [u;]; € R"h=eq;

=1,...,np
=/ ©)
where K = I:Kij:li,j:17-..,nh’ Kij = fQ VNJ - VN, dx

f =iz, fi = Jo fNidx + fr qnNNi ds
- Z] =nNeq+1 Kljue(xj)
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Structural Properties of K

B Large scale: nj, = O(h~%) = 105,...,10° dofs in practice !
M Sparse: K;; = 0Vi,j: suppN; NsuppN; = g, i.e.
NNE = Number of Non-zero Elements = O(h~%) = n,
B Band resp. profile strucure, i.e.
K;; = 0if |i — j| > b, = bandwidth = O(h~=(@~1)), BUT
band resp. profile depend on the numbering of the nodes !
— Heuristic algorithms of band or profile optimization like
O Cuthill-McKee algorithm
O Reverse Cuthill-McKee algorithm
O Minimal degree algorithm
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Heredity Properties of K

B Heredity relation:
(Ku, v) := (Ku,v)gn = a(u”,v") Vu, v & u, 0" € Vi (6)

B Consequences:
1. a(uh, o) = a(v, ut) Vuh, " € VI = K = KT
2. a(v™,v") >0Vl € VI \ {0} = K is positive definite !
3. MK3 model problem (3): K = K* > 0is SPD
since af(.,.) is symmetric and even Vj-elliptic.
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SPD Stiffness Matrix K: Spectral Properties

Let us assume that a(.,.) is symmetric, V;-elliptic and
Vo-bounded as in our MK3 model problem (3):

B Consequences:
1. Kis SPD
2. K has n = n;, positive real eigenvalues (EV) \; with the
corresponding eigenvectors ¢, : Ky, = Avp,
O<Ai < <...< A\,
Pir Py o P

where the eigenvectors are orthogonal, i.e.

(fi’fj) = (fi’fj)R" - 5i7j (7)
3. Spectral condition number:
A Amax (K)

ra(K) := K2 K2 = )\7711 B Amin(K) ©
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SPD K: Eigenvalue Estimates

B Rayleigh quotion representation:
1. Maximal eigenvalue \,, = \nax(K) of K:

_ (Ku, v)
Amax (K) = max o)

P: (Ku,v) = a(v",v") = (K% 1) < 3 Anax(K) (0%, v°)
2. Minimal eigenvalue \; = A\pin(K) of K:
(Kv,v)

. — mn ——-—= > d
Ann(K) = mip, (v, v) =l 1o

< cph?? 9)

P: (Kv,v) = a(v",v") > pu [0} = pua]|v"[|§ = p1 (M, v)
B The spectral condition number estimate

k) = =) < 2

=K S g h?2 (11)

is sharp wrt h, i.e. k2(K) = O(h~2) for h — 0 (example).
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Example: —u" = fin(0,1), u(0) =u(l) =0

Let us consider the 1d example
—u’(z) = f(z), 2 €(0,1), u(0)=u(l)=0 (12)

yielding the FE stiffness matrix

2 1 0 -+ .- 0
—1 2 -1
1 0 -1
K=- (13)
-1 0
: . 0o -1 2 -1
0 -+ - 0 —1 2
for hat functions Vy, ..., N, —,—1 on a uniform grid
O=xzo<z1<...<p1<zp=1withz;y; —z;=h=1/n.

2
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Example: —u" = fin(0,1), u(0) =u(l) =0

B Eigenvalues: )\, = #sin? &%, k=1,2,....n—1=Tn—1
B Eigenvectors: P, = [V2nsin(kmih))i=1, . n-1, k=1,n—1

B Minimal eigenvalue:

4  olm 4  o7mh
AL = hsn 5y = 750 = O(h)

B Maximal eigenvalue:

4 s(n—1)m 4 ,mh 1
/\n_l—hsm o —hcos 5 =0(h™)

B Spectral condition number:
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Outline

2. Gaussian Elimination, LU and Cholesky Factorizations
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Carl Friedrich Gauss (1777- 1855)
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Gaussian Elimination: Idea

Let us write our system (1) Au = b in detail as

Ag(;)ul + AS_OQ)UQ + -+ A(O) = bgo)
ARu + Auz + -+ AR, = b
A+ AQuy + o 4 A(O}Vun = .

Use the first egn to eliminate u; from the other egns:
Ly = Ay /Ag(i% 1=2,...,n,
AS]I) :AE?)_ i1U1j7 Z.7j:27‘_.’n’
Cl = bgo) = bl

b = — Lier, i,j=2,...,n
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Gaussian Elimination: Idea

Let us write our system (1) Au = b in detail as

Unur + Upus + -+ + Uppun, = ¢
W+t A — )
Ay b b A = )

Use the first egn to eliminate «; from the other eqgns:
Uy =AY =41, j=1,2,...,n,
Lil == Agtl))/Ag(P, 1= 2, o,y
A(l) = A(O) — LUy, 4,5 =2,...,n,

ij ]
c1 = b(10) - bl
bgl) = bz(-o) —Licr, 4,5 =2,...,n.
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Gaussian Elimination: Algorithm

If we simply replace superscript (0) by (k — 1) and (1) by (k),
then we arrive at the Gaussian Elimination Algorithm

Algorithm (Gaussian Elimination Algorithm)

Initialization: A = 4, p©) =p
Forward Elimination:
fork =1 step 1 untiln — 1 do
fori =k + 1 step 1 untiln do
Ly = A4/
bz(k) _ bgkq) _ Likb/(fkil)
for j = k + 1 step 1 until n do
AR = AW — LAl
endfor
endfor
endfor
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Gaussian Elimination: Storage scheme

The intermediate results after £k — 1 can be stored as follows:

Ui
Loy

L

Ui
Uaa

Ugr - Unn
Uy -+ Uy
Lisr Af Y oapy
Lngy AWD o gy
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Backward Substitution

After n-1 steps, we obtain the upper triangular system
Uu=c

with the upper triangular matrix

Un Ui - Uip— Uin c1
0 Uyp -+ Upn Uan co
U= : 0o . : : und ¢ =
Un—l,n—l Un—l,n Cn—1
0 0 - 0 U en

which can easily be solved by backward substitution:

n
Up — Cn/Unn; U; = (Ci— Z UijUj)Uii/, 1= n—l,n—2,. . .,1.
Jj=i+1
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Feasibility and operation count

B Feasibility via pivoting strategies:
To avoid Uy = AF, ' = 0, i.e. division by zero, we propose
a pivot search in the remainder matrix A (*—1):
1. Total pivoting: column and row exchange defined by
5" € {k, .. on}y  JARH > AT Vi =k,
2. column pivoting: column exchange
3. row pivoting: row exchange

B Operation count: SAXPY (ax + y) operations:
1. Forward elimination A = LU: = O(n®) = (n — 1)2 4+ ... + 12
2. Forward substitution c =L~ 'b: ~ O(n?)=(n—1)+... +1
3. Bachward substitution 2 = U~!c: ~ O(n?)
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Gaussian Elimination as LU factorization

B Exercise: Show that the n-1 Gaussian elimination steps
are equivalent to the LU factorization of A, i.e. (n = 3)

1 0 0 U U Usg
A=LU-= L21 1 0 0 U22 U32 )
Ly1 Ly 1 0 0 Uss

with the entries L;; and U;; generated by the Gaussian
elimination algorithm.
B Therefore, the solution of Au = b is equivalent to

1. factorization: A = LU by means of O(n?) ops
2. forward substitution: Lc = b by means of O(n?) ops
3. backward substitution:Uu = ¢ by means of O(n?) ops
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ILU Factorization as Preconditioner

B If we compute the coefficients L;; and U;; in the Gaussian
Elimination Algorithm only for the indicies

(Z,j) EMDMpyzg = {(l,]) : Aij 75 0}

and set them to zero otherwise, then we obtain an
Incomplete LU factorization of the form

A=LU+R, ie.,ingeneral, C=LU # A.

In particular, R =0 if M = {(¢,5) : 4,7 =1,2,...,n}, and
the LU and ILU factorizations coincide.

CISM Course Computational Acoustics 20/26



ILU Factorization as Preconditioner

B If we compute the coefficients L;; and U;; in the Gaussian
Elimination Algorithm only for the indicies

(Z,j) EMDMpyzg = {(l,]) : Aij 75 0}

and set them to zero otherwise, then we obtain an
Incomplete LU factorization of the form

A=LU+R, ie.,ingeneral, C=LU # A.

In particular, R =0if M ={(4,7) : 4,7 =1,2,...,n},and
the LU and ILU factorizations coincide.
B But who knows what it’s good for ?
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ILU Factorization as Preconditioner

B If we compute the coefficients L;; and U;; in the Gaussian
Elimination Algorithm only for the indicies

(Z,j) EMDMpyzg = {(l,]) : Aij 75 0}

and set them to zero otherwise, then we obtain an
Incomplete LU factorization of the form

A=LU+R, ie.,ingeneral, C=LU # A.

In particular, R =0if M ={(4,7) : 4,7 =1,2,...,n},and
the LU and ILU factorizations coincide.

B But who knows what it’s good for ? We can hope that
C = LU can be used as a good preconditioner for A
in iterative methods =—> see NL2 and NL3
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Special Matrices: Band and Profile Matrices

B Exercise: Show that
Lij=0 and U; =0 V]i—j| > by,

if A;; =0 forall |i — j| > b, = bandwidth !
B Results:

1. The bandwidth of A remains in the LU factors L and U of
A, but zero coefficients within the band of A can turn to
non-zero coefficients of L and U. This is call “fill-in”!

2. Factorization needs O(b?n) ops, whereas
For- and backward substitutions need O(b,,n) ops only !

3. Storage requirement is of the order O(b,,n).

B Similar results hold for profiles (sky lines): The row /

column resp. column / row profils of A remains in the LU
resp. UL factorization of A.
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Special Matrices: Symmetric Matrices

The LDL factorization of a symmetric and regular matrix A
can be found by comparing the coefficients (n = 3):

1 0 0 Dy 0 0 1 Lo Lz
A = Loy 1 0 0 Doy 0 0 1 Lsgo
L31 L32 1 0 0 D33 0 0 1
D1 D11Lay Dy1L3
= Lo1 D1y L3,Dy1 + Doy Lo1L31D11 + L32Doao

L31D11 La1Loi D1y + LsaDos L3, D1y + L34 Dag + D

Algorithm (LDL? factorization: Algorithm)

j = 1,...,77,.' Djj :Ajj — .174:;11 L?kak .
i=j+1,...,m Ly = Dj(Ajy — 24—y LixLizDyr)
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Special Matrices: SPD Matrices

The Cholesky factorizations LL” or UUT of a SPD matrix A
can also be found by comparing the coefficients (n = 3):

Li; 0 0 L1 Lo Lis
A = L12 L22 0 0 L22 L23
L1z Loz Lss 0 0 Lgs

L3 Ly1Lyo Li1Lys

= LioLq1y L3, + L2, LyoL13 + LaaLo3
LisLy1  LisLig + LogLoy  Lig+ L34+ L3,
Algorithm (Cholesky factorizations LL*: Algorithm)

Lyy = /Ay, forj=2stepluntiindoLy; = Aij/Li;
ifj>2theni=2,...,5—1: Ly = L (A — Y475 LysLiy);

ij = \/Ajj = Zi;ll sz endfor
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Outline

3. Sparse Direct Methods
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Sparse Direct Methods

B Sparse direct methods like
J nested disection methods
O multifrontal methods
use special elimination strategies:
1. ordering step: reorder the rows and columns
2. symbolic facorization: nonzero structure of the facors
3. numerical factorization: L and U
4. solution step: forward and backward substitution
B Software:
[J SuperLU (left-looking)
O UMFPACK (multifrontal)
0 PARDISO (left-right looking)
0 MUMPS (multifrontal)
B References:
1. |. Duff: Direct Methods for Sparse Matrices, 1987.
2. T. Davis: Direct Methods for Sparse Linear Systems, 2006.
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Summary
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Linear systems of algebraic equation arising in CA
Properties of the system matrices

Gaussian elimination as basic idea of direct methods
Gaussian elimination and LU factorization

ILU factorization as preconditioner

Band and profile matrices

LDLT factorization for symmetric matrices

Cholesky factorization for SPD matrices

Sparse direct methods
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