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Chapter 1

Introduction

The boundary element method (BEM) is a numerical method for solving
partial differential equations (PDEs), based on the following steps.

1. Reformulation of the PDE as boundary integral equation(s). These are
integral equations where the unknown only lives on the boundary of the
computational domain, and they are constructed using the fundamental
solution of the underlying differential operator.

2. Discretize the boundary integral equations.
3. Solve the discrete equations.

4. If necessary, reconstruct a quantity of interest from the discrete so-
lution, e.g. the solution inside the domain from the (approximated)
Cauchy data on the boundary.

In this introduction, the BEM approach is sketched in a couple of examples
(without going into details). This should provide an overview on the whole
lecture.

Model Problem To show the main ideas of BEM, we consider a simple
model problem. Let © C R? (d = 2 or 3) be a bounded domain with boundary
[ := 0Q. We want to find u : £ — R such that

—Au = 0 in Q,

u = gp onl,

(1.1)

for a given Dirichlet trace gp, i.e., we want to solve the Dirichlet boundary
value problem for Laplace’s equation.
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Fundamental Solution The fundamental solution to the Laplace operator
—A is given by

U (e, ) —5=log |z — y| ford =2,
x,yY) =
Y L1 ford =3.
4 |z—y|
A characteristic property of this fundamental solution is that
_AxU*(x> y) = (5y(fE),
where 0, denotes the Dirac delta distribution. Furthermore,

AU (z,y) = 0 Vy#u

in the strong sense (note that U*(z, y) is C* unless z = y).

B Boundary Integral Equations

Indirect Approach We make the following ansatz for the solution wu :
Q= Rof (1.1):

u(zr) = /FU*(x, y) w(y) ds, for x € Q, (1.2)

~ s
g

=: (Vw)(z), single layer potential

for some (yet unknown) density w : I' — R. Indeed, u fulfills the homoge-
neous Laplace equation (at least for smooth w):

—Ax/U*(x, yw(y)ds, = /—AxU*(x, y) w(y)ds, = 0 Vr € Q
T F%/_/

(we are allowed to switch integration and differentiation because = # v).
Now, we take the trace of (1.2) for x € I'. As we will show later on (non-
triviall),

u(z) = (Vw)(z) = /FU*(.CE, y)w(y)ds, forxel.

J/

TV
single layer potential operator

Hence, in order to fulfill the Dirichlet boundary conditions in (1.1), the den-
sity w : I' = R must satisfy

Vw = gp on I (1.3)

This is a boundary integral equation (BIE) of the first kind (see the definition
below). From the solution w of this equation, we can reconstruct the solution
w of (1.1) using formula (1.2).
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Definition 1.1. Let M be a domain or manifold and let s denote the vol-
ume/surface measure. An equation of the form

a(x)u(x) + /M k(x, y)u(y)ds, = f(z) for z € M

is called integral equation of
e first kind, if a =0,
e second kind, if Vo € M :a(x) >0 (or Vo € M :a(x) <0).

The operator K defined by
(Ku)(x) :== / k(x, y)u(y) ds, for x € M
M
is called integral operator with (integral) kernel k(z, y).

Direct Approach Green’s second identity states that

ov ou

—uA A — a2 g
/Q uAv 4+ vAudr /r uan+vandsx

for all (sufficiently smooth) u, v :  — R, where n is the outward unit normal
vector on I'. Setting (formally) v(x) := U*(x, y) with y € €2, we obtain that
for all y €

/l— AU (z, y)l u(r) dx + /Q U*(z, y) Au(x) dx

=0y ()
J . . ou
= —/Fu(:c) 8nmU (x, y) dsz—i-/FU (x, y) an(:c) ds,

Without worrying about correctness, we interpret the first integral as an
evaluation of the delta distribution ¢,. If u is a solution of the homogeneous
Laplace equation in €2, then

uy) = [V [~ du)] do— [ [0 )] uia) ds,
Y o (1.4)

+/U*(x, y) —(x) ds, Yy € Q.
r a’n,

=y1u
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Equation (1.4) is called Green’s third identity or representation formula. It
represents the value of u in the interior of {2 in terms of the Cauchy data

oul = [E] er
71U n

on
i.e., the trace of u and its normal derivative.
We now take the trace of (1.4) for y € I' (again non-trivial, because the
singular case z = y is included). The outcome is:

u(y) = (L=o)uly) — (Kyu)(y) + (Vyu)ly)  Vyer,

where o is a positive function with values in (0, 1), K is an integral operator,
and V is the single layer potential operator from above. In case of a smooth
boundary, 0 = 1/2. For smooth functions v,

(ko)) = [ [ n)]ow)ds,

0ny

double layer potentzal operator

When inserting the Dirichlet boundary condition vou = gp, we obtain a first
kind BIFE for the unknown normal derivative t := vy u:

Vt = (ol + K)gp on I'. (1.5)

The left hand side of (1.5) is of the same form as in (1.3). However, there
is a difference: whereas the unknown w in (1.3) is a possibly unphysical
function/density, the unknown ¢ in (1.5) is the normal derivative. In many
applications, t = Ju/0n is already the quantity of interest.

If needed, the entire solution in €2 can be reconstructed using (1.4).

Further Approaches

1. The indirect approach above was based on the single layer potential.
We can also use the double layer potential ansatz

/aan*xy ()dsy for x € Q,

-~

Wv )(x), double layer potential

!This integral has to be understood in the sense of the Cauchy principal value!
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for some density v : I' =& R. One can show that —~AWwv = 0 in Q.
Taking the trace for x € T" yields

You = (=1+0)v+ K.
Inserting the Dirichlet condition, we obtain the second kind BIE

(m1+0) [+ K)v = gp on I

2. Formula (1.5) was derived by taking the trace “y0(1.4)”. We can also
use “y1(1.4)”. Without going into details, this yields

mu = Dyu+ (ol + K')7u, (1.6)

where D and K’ are boundary integral operators (called hypersingular
integral operator and adjoint double layer potential operator, respec-
tively). Inserting the Dirichlet condition, we obtain the second kind
BIE

(-1+o0)[+K')t = —Dyp.
for the unknown normal derivative ¢t = du/0on.

3. Similar techniques can be applied for the Neumann boundary value
problem of Laplace’s equation. Two examples:

(a) We can use the trace of the representation formula (1.4) (explained
in the direct approach), insert the given Neumann data du/dn =
gn, and obtain the second kind BIE

(el + K)you = Vgn on T,

for the unknown trace you.
(b) Inserting the Neumann condition into (1.6), we obtain the first
kind BIE

Dyu = (1—0)—K')gv  onT.

An Exterior Problem Often, the PDE is given in an exterior domain.
Let Q" C R? be a bounded domain and let Q¢ := R4\ Q™ denote its
complement. The exterior Dirichlet problem for the Laplace equation reads

—Au =0 in Q¢
u = ¢gp on I' := 90,

lu(z)] = O(|=|™) as |x| — oo (radiation condition).
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Under appropriate assumptions, one can show the following Green identity in
Q=t: if  fulfills the homogeneous Laplace equation in Q2 and the radiation
condition, then

ou

wr) = [ [t ]uto)ds, - [0 o) e ds, e o,

where n is the unit normal vector on ' pointing into Q%* (i.e., outward to
Qnt). Taking the trace yields

u(y) = (1—o)uly) + (Ky5"u)(y) — (Vi7'u)(y)  VyeT,

where 7w denotes the exterior trace of w at I' and +$*u = Ju/dn the

exterior normal derivative. Inserting the Dirichlet condition yields the first
kind BIE
Vt = (—ol+ K)gp on I,

for the (exterior) normal derivative t = du/0n.

Rigorous Study In this lecture, we clarify in which (Sobolev) spaces we
have to work and how to derive the BIEs. Our starting point will be the weak
formulation of an elliptic PDE, and we will need to use the theory of dis-
tributions. Furthermore, we will study the (unique) solvability of the BIEs.
This requires a closer inspection of the four boundary integral operators V,
K, K', and D that appeared above.

B Discretization
All the previous BIEs are of the form r
Bv =g on I, (1.7)

where B is an operator mapping functions on
I to functions on I'. In order to discretize, one
considers a mesh of the boundary I

F = O’Tj.
j=1

Two approaches are common: collocation and
Galerkin BEM.
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Collocation BEM In the collocation method, one considers approxima-
tions v, of the form

Uh(‘r) = ZUjXTj7
j=1

where X, denotes the characteristic function. Of course, we cannot expect
B, = g to hold on the whole boundary. Instead, we choose a set of test
points {y;}j=1., CT (e.g., with y; € 7;) such that

(Bup)(yi) = 9(vi) Vi=1...n.

This leads to a linear system of equations for the coefficients [v;]7_;.

Galerkin BEM In the Galerkin BEM, we first rewrite (1.7) as a variational
problem. Let X be a Hilbert space of function where the solution v is sought.
In many cases, B: X — X" and g € X*. Then (1.7) is equivalent to

findv e X : (Bv,w) = (g, w) Yw € X.
For a finite-dimensional subspace X, C X, we apply the Galerkin principle:
find vy, € X, : (Bop, wp) = (g, wp) Ywy, € Xp,.

The choice of X} depends on the BIE under consideration and on the un-
known w (which could, e.g., be a Dirichlet trace qou or a Neumann trace
t = Ou/0n). If the unknown is a Neumann trace, one can use a piecewise

constant ansatz:
n
Vp = E (] X.,_j .
Jj=1

Again, this leads to a linear system of equations for the coefficients [v;]

n
=1

’ Collocation BEM ‘ Galerkin BEM ‘

Easier to implement:
evaluation of single integral
assembling faster

Harder to implement:
evaluation of double integral
assembling costy

In general, non-symmetric system
matrix, even if B is self-adjoint.

If B is self-adjoint, then the system
matrix is symmetric.

Stability and convergence on poly-
hedral surfaces still an open ques-

tion, in particular for first kind
BIEs.

Stability and convergence can be
analyzed similarly to FEM, e.g.,
using Céa’s lemma and interpola-
tion error estimates.

For reasons above, we will focus on the Galerkin BEM in this lecture. A priori

error estimates for the Dirichlet and Neumann problem are to be derived.
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BEM vs. FEM A direct comparison of FEM and BEM has to be done
with care. Rule of thumb: if FEM works efficiently, then use it. However,
there are situations where the construction of a “volume” mesh is difficult,
e.g., for exterior problems.

B Further Topics (not all covered in this lecture)

More General PDEs The major part of the lecture is devoted to the
Poisson equation,

—Au = f.
Most of the results can be generalized to the second order PDE
—div(AVu) + b-Vu+cu = f,

with constant coefficients A € R4 (A > 0), b € R, and ¢ € R, but
this introduces more technicalities. Special case: the Helmholtz equation
Au + r*u = 0. The exterior Helmholtz problem (modelling acoustic waves)
is very often solved by BEM in practice. Another prominent application of
BEM are electromagnetic waves (governed by Maxwell’s equations).

Calculation of Matrix Entries The entries of the Galerkin BEM matri-
ces are double integrals with singular kernels. In rare cases, explicit formulae
can be found. In general, one has to approximate either one or both integrals
by quadrature.

Fast BEM Of course, we want to assemble and solve the BEM systems
efficiently. But as will turn out, the BEM system matrices are dense, which
causes trouble in particular for three-dimensional problems. However, the
matrices can be approximated by data-sparse matrices, or at least the matrix-
vector product can be realized in quasi-optimal complexity. Such techniques
are summarized under the keyword fast BEM.

Conditioning of System Matrices An efficient realization of the matrix-
vector product makes the system amenable to iterative solvers. Therefore,
one has to study the condition number.

BEM-FEM Coupling In a direct comparision of BEM and FEM, there
are pros and cons for either of the two methods. In some situations, one
wants to exploit the advantages of both “worlds” (mariage a la mode): use
FEM in one part of the domain and BEM in the other part. On the interface,
one needs to couple correctly.
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Variational Framework

Before we come to boundary integral equations, we need to fix the starting
point. This is the weak formulation of an elliptic 2nd order PDE in a bounded
domain as well as in its exterior. Therefore, we need Sobolev spaces (on
domains and boundaries) and trace operators. We briefly discuss solvability
of certain boundary value problems.

2.1 Sobolev Spaces

2.1.1 Lipschitz Domains

Throughout the whole lecture (and in contrast to many textbooks), by a
domain , we understand an open and connected subset of R¢, where d = 2
or 3. Note that our definition does not include boundedness. The boundary
is denoted by

=00 = Qn(R*\ Q).

We discuss smoothness assumptions on the domain §2.
Definition 2.1 (Lipschitz hypograph). Let © be of the form
Q= {zeR : zy<(21,...,79.1)}
with a Lipschitz continuous function ¢ : R~ — R, i.e.,
IM =const: [C(2)) —C(y)| < M |2’ —y/| V!, € RTL
Then €2 is called Lipschitz hypograph.
Apparently, the boundary of a Lipschitz hypograph is parametrized by
I = {(«,¢(2)): 2’ € R,
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Definition 2.2 (Lipschitz domain). A domain €2 is called a Lipschitz domain
if its boundary I' is compact and if there exist finite families {W;}7_, and

{€;}5_, such that

(i) {Wi}7_, is a finite open cover of T, i.e.,

W, C R? are open sets and I' C Ui Wi, ‘/\

(i) each €2; can be transformed to a Lipschitz
hypograph (with function (;) by rotation

plus translation, %

N
(i) W;nQ=W,;NQ; foreach j =1,...,n. \\\i

We shall give a second definition of Lipschitz domains (cf. [Sauter/Schwab,
Def. 2.2.7], [Grisvard, Def. 1.2.1.2]), which is slightly weaker than Defini-
tion 2.2 and thus called weakly Lipschitz domain.

Let B, := {£ € R? : [¢] < r} be the open ball of radius r around the
origin and define
Sa

Bf == {¢€€B,: & >0} - ygg
BY .= {¢£€B,: =0} '

B, = {¢€€ B, :£{ <0} BT / (SRR

where &, is the d-th coordinate.
Definition 2.3 (weakly Lipschitz). We call a domain Q weakly Lipschitz if
its boundary I' is compact and if there exists a finite open cover {U;}7_, of
I' and bijective functions y; : By — U] such that

(i) x; and Xj_l are Lipschitz continuous,
(i) x;(By) =U;NQ,
(iff) x;(By) =U;NT,
(iv) x;(By) =U; N (R Q).
In this definition, B, may be replaced a suitable bounded open set B C R?

that can divided similarly into subsets B*, B, B~ with & > 0, & = 0,
&a < 0, respectively.

Note that R? is (weakly) Lipschitz (I' = 0)), and that a domain Q is
(weakly) Lipschitz if and only if R?\ © is (weakly) Lipschitz.

Many polygons and polyhedra are Lipschitz domains. Some counterex-
amples are shown in Figure 2.1: in (a) the graph fails to be Lipschitz, in (b)
the boundary fails to be on one side, and in (c¢) the boundary fails to be a
graph at all. However, domain (c) is weakly Lipschitz.
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(a) (b) (©)

Figure 2.1: (a)—(c) are not Lipschitz domains, (c) is weakly Lipschitz.

Lemma 2.4. A Lipschitz domain is weakly Lipschitz.

Exercise 1. Prove Lemma 2.4 by providing Uj, x; in terms of W;, Q;, ;.
You don’t have to carry out geometric issues in detail.

Lemma 2.5 (Rademacher). A weakly Lipschitz domain €2 has a surface
measure s on I' and an outward unit normal vector n that exists s-almost
everywhere on I, with n € L*°(T).

The proof uses the fact that a Lipschitz continuous function is Fréchet
differentiable almost everywhere and its gradient is in L°.

Exercise 2. Show that for a Lipschitz hypograph © C R?, R3, the surface
measures are ds = /1 + |[('(x1)[2dz; and ds = \/1 + |V (21, 22) 2 d(x1, 22),
respectively. In both cases, calculate the unit normal vector n.

We will mostly use the (weaker) Definition 2.3 of Lipschitz domains.
Sometimes, we will require higher smoothness of the boundary:

Definition 2.6. We call a domain €2 to be of

e class C* (for k > 1) if Q is weakly Lipschitz and if the functions y;
from Def. 2.3 satisfy y; € C* and xj_l € Ck,

e class C™! (for k > 0) if Q is weakly Lipschitz and x;, Xj_l are in Ck1,
i.e., k-times differentiable and the k-th derivatives Lipschitz continuous,

2.1.2 Distributions

Recall that
C(Q) = {ue C™(Q) :supp(u) CC Q}

denotes the C* functions with compact support in €, where supp(u) :=
{x € Q:u(z) #0} for u e C(Q).
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Let L () denote the set of measurable functions u :  — R that are
integrable over every compact subset of (2. One can show that if for two
functions uy, us € Li (),

/ulfbda: = /qubda: Vo € C5°(Q), (2.1)
Q Q

then u; = uy almost everywhere on (2.

Schwartz Distributions
Definition 2.7. D(Q2) := C°(2). We say that a sequence ¢, in D(f)
converges sequentially to ¢ € D(Q); we write
¢n _>D(Q) Cb,
if for all compact subsets K C €2 and for all multi-indices «,
0%¢, — 0%¢ uniformly in K.
Definition 2.8. The set of Schwartz distributions is given by
D*(Q) = {¢ : D(Q) — R : linear and continuous},
where 1) is said to be continuous if
On =D ¢ = Y(pn) = V().
For the evaluation of a distribution at a function, we write
(W, $)a == (@)  for ¢ € D(Q), ¥ € D(Q).
If the domain € is clear from context, we omit the subscript €.
Example 2.9. For y € €2, the Dirac delta distribution ¢, is given by
(5, 6) = oly)  for ¢ € D(Q).
Definition 2.10. Any f € LL () induces a distribution f € D*(£2):

loc

(f. 0) = /qusdx for ¢ € D(Q).

If a distribution is induced by a function f as above, we call it regular.
The Dirac delta distribution is not regular. One can show that the linear
map f — f is one-to-one. Hence, we may identify locally integrable functions
with their corresponding distributions.

Definition 2.11. The distributional derivative 0% € D*(2) of a distribu-
tion ¢ € D*(Q) is defined by

(0°¢, ¢) = (=1)N(, 0%¢)  for ¢ € D(Q).

(The distributional derivative of a distribution is again a distribution.)
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More Distributions

Definition 2.12. £(Q2) := C*(f2). We define sequential convergence (in
symbols: ¢, —¢) ¢) and continuity analogously to Def. 2.7 and set

E(Q) == {¢¥:E(Q) — R: linear and continuous}.

Apparently,
D(Q2) C E(), E*(Q2) C D*(Q).

Definition 2.13 (tempered distributions). We define the Schwartz space of
rapidly decreasing functions

SRY) == {p € C™(Q) : sup |z* (0°p)(z)| < co V multi-indices o, B},

xER4

where @ := z{t 25?25 for o = (au,...,aq). We equip S(RY) with the
following sequential convergence,

Gn —smey ¢ = Vo, 2%(0%¢y,) — 2%(0°¢) uniformly in R?,

With this convergence, we can define continuity and define the space of tem-
perate distributions

S*(RY) := {¢: S(R?) — R : linear and continuous}.
Apparently,
DRY) c S(RY) c ERY), &R c S*(RY) c D*(RY).

Fourier Transform

For u € LY(RY) we define its Fourier transform' Fu by

(Fu)(§) = u§) = /Rd e~ 2Ty (1) da for ¢ € RY.

The adjoint F* operator is defined by replacing —i above by 7. One can show
that if u € C(RY) and u, u € LY(R?), then F*Fu = u = FF*u. Elementary
calculations show that for ¢ € S(R?),

~

(FO9)(&) = (127€)* 9(€),  (F*(—i2mz)*¢())(€) = 9°6(€).

Consequently, F : S(R?) — S(R?) is a (sequentially) continuous operator
and F* : S(R?) — S(RY) is its (sequentially) continuous inverse.

'For a precise definition, one must actually use spaces LP(R?), S(R?), etc. with values
in C rather than R.
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Plancherel’s Theorem™ The formulae (Fu,v) = (u, Fu) and (F*u,v) = (u, F*u)
are valid for u, v € S(R?), and they are used to define (consistent) extensions

F:S*(RY = S*(RY,  F*:8*(RY) — S*(RY).
Plancherel’s Theorem states that

F:L*(RY — L*RY),  F*: L*(RY) — L*(RY),
and that these maps are inverse to each other. Furthermore,

(Fu, Fo)p2 ey = (U, ) p2ray = (F U, F ) L2 (ra) for u, v € L*(RY),

and consequently, || Fu| p2ray = [[ull2®e) = [[F ull 2 ey

2.1.3 Sobolev Spaces on a Domain
First Definition

Recall that L*(Q) = {v : @ — R measurable :||v||2(q) < oo}, where

ol = (/ of?dz)’
Q

Since L*(Q) C L}, such functions are (regular) distributions.
Definition 2.14. (i) For any k € Ny we define?
H*(Q) := {ve L*Q):0% € L*(Q) V multi-indices a, |of < k},
equipped with the inner product
(v, w) gro Z / 0% 0°w dx
lal<k
and the induced norm ||v[| () = (3|q1<4 Jo 10%0] dz)/?.
(ii) For s € RT of the form s = k + o with k € Ny, o0 € (0,1), we define
H*(Q) = {ve H* Q) : |v

He(@) < 00},

|0%u(z) — 0*u(y)|? 1/2
[vlme0) = Z// |x_y|d+2o d:vdy) '

|a|=F

where

equipped with the norm [[v|zrs(q) := (|v][7x(g) + v Fo)'? (which has

an associated inner product).

2The spaces as defined in (i), (ii) are usually denoted by W*:2(Q2), W*2(Q). Denoting
them by H*(Q) is justified by Def. 2.17 and Thm. 2.18 below.
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Lemma 2.15. For s € Ry, the space H*(Q) is a Hilbert space. C>®(Q) is
dense in H*(QQ) with respect to the || - |

Hs(Q) -norm.

Definition 2.16. For s € R", we set

Hi(Q) == (@)™ (closure of C°(Q) wort. || - [lae(c)-
Equipped with || - || g=(q), this is a Hilbert space. H{(Q) = H(Q) = L*(Q2).

Note that the above definitions include the case 2 = R? (they actually
require only that  is a non-empty open set).

Second Definition

For s € R, we define the Bessel potential J° : S(R?) — S(R?),
Ju(z) = / (14 €2 () e svde  for x € RY,
R4

where @ := Fu € S(R?) denotes the Fourier transform of u € S(R?). Hence,

(FTu)(€) = 1+ ue),

and so J* can be thought of a kind of differential operator of order s. We
extend the Bessel potential to J° : S*(R?) — S*(R?) by

(T, ¢) == (¥, T°¢)  for ¥ € S*(RY), ¢ € S(RY).

Exercise 3. Show that (7%, ¢) = (¢, J*¢) holds for ¢, ¢ € S(R?) such
the extension is indeed justified.

Definition 2.17 (alternative (usual) definition of H*). For s € R, we define
H*RY) = {uec S*(RY) : J%u € L*(RY)},
with inner product (J°u, J*v)2ge). For an open set 0 C R?, we define

H*(Q) == {u € D*Q): u=wvq for some v € H*(R?)},

equipped with norm ||u|

Hs(Q) = inf H’U|

s (rd). Both spaces make
vEH*(RY),u=v|q

into Hilbert spaces.

Theorem 2.18. If Q) is (weakly) Lipschitz, then Def. 2.14 and Def. 2.17 of
H*(Q) are equivalent for s € Ry, i.e., the two definitions lead to identical
sets of functions and the norms are equivalent.
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Dual Spaces

For s € R{, let

H* ()", Hi(Q)
denote the respective duals with the usual dual norm. In the literature,
Ho(Q)* is sometimes—but not always—denoted by H~*(£2).

Recall that we identify functions in Li.(f2) with their associated distri-
butions. In that sense,

D(Q) C H{(Q) C H*(Q) C L*(Q) € H*(Q)* C H(Q)* € D*(Q).

2.1.4 Sobolev Spaces on the Boundary

Let Q be a weakly Lipschitz domain. Because of Lemma 2.5, we have a
surface measure s and can therefore define

L*(T) := {v:T — R : s-measurable and / [v|*ds < co}.
r

The definition of Sobolev spaces on I' is more technical than on 2.
Recall the finite open cover {U;}%_; and the associated bi-Lipschitz func-
tions x; : By — Uj. We now define the restrictions

X; : Bg — UJ nr: (517 R 7£d—1) = XJ(gla s 7£d—170)
(here we treat BJ as a subset of R*™'). Let {f;}7_, be a partition of unity
subordinate to {U; NT'}i_,:

B; ' — [0, 1], Zﬁj =1lonl, supp(B;) C U;NT.
j=1

One can show that such a partition always exists, even with 8; € C'°, see
[McLean, Cor. 3.22]). Therefore, we can achieve that f; o £ is Lipschitz

continuous on Eg and has support compact in BY. Functions u : ' — R can
be localized using this partition of unity:

supp(Bju) C U;NT.
We now define the pullback of such a localized function:
(Bju) o X : BY — R.

We use this pullback to define smoothness of the original function u : I' — R.
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Definition 2.19. For a C*~1! domain € (i.e. weakly Lipschitz if k = 1) and
for s € [0, k], we define

H(T) == {ue L*T): (Bju)ox} € H(BY) Vj}.

One can show that the above definition is invariant of the actual choice of
the “coordinate system” Uj, x;, B;. This invariance property is lost if s > k.

A natural norm would be (Y7, [|(8u) o x| ES(BQ))UQ’ but this norm
depends on the choice of the coordinate system. The definition below intro-
duces an nvartant norm.

Definition 2.20. For a C*~1! domain Q2 with boundary I' and for s € [0, k],
the Sobolev-Slobodeckij norm ||v||gs(ry is given as follows.

(1) For k € No,
oy = D lvallzzq,

|| <k

where v, : I' — R are defined using differentiation in B2:
va(z) = D E((B)ox))E),  for &= (x)) (w).
j=1

If z € U;NT for some j, then the corresponding term in the sum above
is skipped.

(ii) For s = k + o, with k € Ny and 0 € (0,1),

|Ua($) _ Ua(y)|2
ﬁis(r) = Z (HUCXH%?(F) +/ |x — y|d_1+2‘7 ds, dsy,

la| <k /e

0]

The spaces H*(I') with the above norm are Hilbert spaces.
Important special case s = 1/2:

v(z) —v(y)|?
[0lZ/2y = 10Ze@) + [0l R@y, [0lnee = /F/Fwdsx dsy

and H'*(T') = {v € L*(T) : ||v|| 172y < 00} (intrinsic norm).
Definition 2.21. For 2, I', and s as in Definition 2.19,
H=(T) := H* ()"

equipped with the usual dual norm.
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2.1.5 Sobolev Spaces on a Manifold

Definition 2.22. Let I'y C I" be an open submanifold of the boundary I' of
a weakly Lipschitz (or C*~1! domain), and let s € [0, 1] (or [0, k], resp.).

(i) H*(I'v) == {yr, : v € H*(I')}, equipped with the norm ||v|
fined analogously to Def. 2.20, replacing I' by T';.

Hs(]_"l) de-
. Y.
(i) Hy(Ty) =Dy ", ~

where D(I'y) := {v;r : v € D(R?), supp(v;r) C I'1}.

For s = |s] + 0 and o # 1/2, the extension by zero of a function v € H§(I';)
from T’y to ' belongs to H*(I"), but in general not for o = 1/2!

(iii) H*(y) = D) "™ = {ur, v € H(T), supp(v) C Ty}

The extension by zero of a function from H*(I';) to I' always lies in H*(I").
Equipped with the norms

[ullgseyy = fAollaswy,  Nullgse, = lullasw,  (2:2)

veH(T)
’Ulr‘l =u

where @ denotes the extension by zero, H*(I'), H*(T) are Hilbert spaces.
For o < 1/2, H*(I'y) = H{(I'1) = H*(I'1). For o > 1/2, H*(I'y) = H{(I").

Remark 2.23. If I'; is “Lipschitz relatively to I'”, then intrinsic norms for
H*(T'y), HY?(T';) (equivalent to the norms in (2.2)) are given by

— 2 1/2
( / [u(z) — u(y)| ds. dsy) 7
r, Jr, |CL’ _ y|d—1+25

u(z) — u(y)|? / Ju(z)]? 1/2
(/1“1 r, |z — y|? dsy dsy + r, dist(z, oI'y) ds”) '

respectively, for s < 1 (and analogously defined for s > 1).

Definition 2.24. Let I'y C I' be as in Definition 2.22 and set

H(Ty) = H* ()",  H*T)) = H*T,)*

(this definitinion is conistent with Def. 2.21, because H*(I') = H*(T') for the
closed boundary I').
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2.1.6 The Trace Operator
Theorem 2.25 (trace theorem). We define the trace operator

Y : CF(Q) = C(I) tu— upr.

If1/2 < s < k and if Q is a C*~Vl-domain, then vy has a unique extension
to a bounded linear operator

Yo : H¥(Q) — HY2(T).

In particular, there exists a constant Cy, (depending on Q and s) such that

||’70U| Hs=1/2(T) < Cy ||U||HS(Q) Yu € HS(Q)
If Q is weakly Lipschitz, then vy is bounded for 1/2 < s < 3/2.

Theorem 2.26 (inverse trace theorem). Let 2 and s be as in Thm. 2.25.
Then the trace operator vy has a bounded right inverse

E:HVAT) —» H(Q)  with  ~yEw=w Ywe HY3T).
In particular, there exists a constant Cyp (depending on 2 and s) such that

[Ew]

H5(9) < Cit Hw| Hs=1/2(T) Yw € H871/2(F).

Remark 2.27. 1. Theorem 2.25 and Theorem 2.26 imply that the trace
operator 7o maps from H'(Q2) to H/2(T') and is surjective.

2. The statements of Theorem 2.25 and Theorem 2.26 hold as well if I is
replaced by I'y C T'.

3. The trace operator is not continuous from H'/?(Q) to L*(T')!

4. For 1/2 < s < k, H{(Q) = {v e H(Q) : 7(0%) =0 V|a| < s—1/2}
(non-trivial, see e.g. [McLean, Thm. 3.40]).

Occasionally, we write ur and up, instead of you and (you)r, .

Exercise 4. (a) Show that ||ul, g2y == inf ||v][g1(q)is an equivalent
veHY(Q)
v|F:u

norm to ||u| g1/2ry (provide the constants of equivalence).

(b) Prove that the infimum in (a) is attained at a unique function. Hint:
show that the quadratic functional v +— (v, v)p1(q) is convex and
bounded from below.
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2.1.7 Compact Embedding

Theorem 2.28 (Rellich). Let 2 be weakly Lipschitz. For 0 < s < t, the
inclusions
H'(Q) C H*(Q), HYT) c H*(T)

are compact (where in the second case,  must be a C*~1-domain andt < k).

2.1.8 Poincaré and Friedrichs Inequalities

Theorem 2.29 (Poincaré’s inequality). Let Q2 be a bounded weakly Lipschitz
domain. Then there exists a constant Cp (depending on ) such that

lull2@) < Celulgi@ — Yue HY(Q), /de = 0.
Q
Proof: (a) Indirect proof based on the compact embedding H'(Q) C L?*(Q). (b) For

special domains, direct proofs are available. E.g., if € is convex, then Cp = diam(Q2) /.

Remark 2.30 (other Poincaré inequalities). 1. If [’y C T" is a submani-
fold of positive surface measure, then the inequality from Theorem 2.29
holds for all u € H'(Q) with [l uds =0 (with a different constant).

2. For the boundary I' of a weakly Lipschitz domain, there exists a con-
stant C» (depending on I') such that

lullowy < Chlulagy  Vue HAD), [uds=o.
r
Theorem 2.31 (Poincaré-Friedrichs inequality). Let Q0 be bounded and let
'y € T' be a submanifold of positive surface measure. Then there exists a
constant Cr (depending on 2 and I'y) such that

ullz2) < CF|ulp (g Vu € H'(Q), wyr, = 0.

Remark 2.32. The classical Friedrichs inequality is formulated for I'y =T'.
In that case, C'r can be expressed explicitly in terms of diam(2). Often, the
terms Friedrichs and Poincaré inequality are interchanged in the literature.

Exercise 5. Show (a) that the seminorm |ul, yi/2ry :=  inf  [v|p1(q) is
veEH(Q)
’U‘F:u

equivalent to the seminorm [ug1/2(ry, and (b) that the infimum is attained at
a unique function (called the harmonic extension of w). Hint: use the trace
theorems, Poincaré’s inequality, and Remark 2.30.
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2.2 Interior Boundary Value Problems

Throughout this section,  C R? shall denote a bounded domain that is
weakly Lipschitz.

2.2.1 The Distributional PDE

For simplicity, we consider a linear second-order partial differential operator
Lu = —div(AVu) + b-Vu + cu, (2.3)

with constant coefficients A € R b =0, and ¢ € R, such that £TA¢ > 0,

Sym?
where div denotes the (distributional) divergence operator,

d d OF.
divF = Z@-Fj = Zﬁ_xj
j=1 j=1 J

Remark* 2.33. The results of this section can be generalized to more gen-
eral coefficients A € L>(Q)4:¢, b e L>(Q)?, and ¢ € L>*(Q) such that A is
strongly elliptic:

g >0: ETA@)E> € VEERIVzeQae.
In the weak formulation, we are interested in solutions u € H*(2) of the
distributional PDE
Lu = f in D*(Q2), (2.4)
where f € HY(Q)* C D*(Q). Typically, even f € L*(2). Equation (2.4) is
naturally associated to the bilinear form

a(u, v) := / AVu-Vv+cuvde, (2.5)
0

because

(Lu, ¢) = a(u, @) Vo € D(Q). (2.6)

(Actually, for more general coefficients, (2.6) is used to define Lu € D*(Q2).)
The bilinear form is H'-bounded:

Ja = const :  |a(u, v)| < @||ullgo) v @ Vu, v € H'(Q).
By (2.6) and since D(Q) is dense in Hy (L), (2.4) is equivalent to
a(u, v) = (f, v) Vv € Hy(Q). (2.7)

Apparently, the test functions in (2.7) do not see what’s going on the bound-
ary I'.
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2.2.2 The Conormal Derivative

For u € H*(Q), we see that AVu € H'(Q)? (because A = const) and
Lu € L*(Q2). We define the conormal derivative

mu = Y(AVu)-n e L*(1), (2.8)
where n € L*>°(T") is the outward unit normal vector.
Lemma 2.34 (Green’s first identity).
a(u, v) = (Lu, v)r2q) + (71U, You)L2(n) vu € H*(Q), ve H'(Q).
Proof. On bounded, weakly Lipschitz domains, Gauss’ theorem holds:

/F-nds = /diVFdx VF € CY(Q)“.
r Q

By the trace and density results, this formula also holds for all F' € H! ().
We choose F' := v AVu. By Gauss’ theorem and the product rule,

d
/vAVu-nds = /Zaj(vAVu)d:c
r Qi

= / Z [0;0(AVu) +v0;(AVu)] da

— /Vv-(AVu) dx+/vdiv(AVu) dzx.
Q Q

The results follows now from the definitions of a(,-), L, 7o, and ;. O
Remark* 2.35. With the same techniques, one shows that
a(u, v) = (u, Lv)r2) + (You, mv)2ry  Yu € H'(Q), v € H*(Q).

If b # 0, the above formula has to be modified, replacing Lv by L*v :=
—div(AVu) — div(bv) + cv and 10 by J1v := (A Vv) - n+ (b n)yv.

Unfortunately, the condition v € H?*(2) does not hold in general for
solutions of (2.4). The next two theorems help to define a weak conormal
deriative.

Theorem 2.36. For v € HY(Q) with div(AVu) € L*(Q), there exists a
unique linear functional g € H=Y/?(T') such that

a(u, v) = (Lu, v)r2q) + (9, Yov) Vv € HY(RQ).
For u € H*(Q), g = yiu. Furthermore, there exists a constant C' such that
9l m-120) < C ([[ulla o) + |div(A V)| 12(0) -
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Proof. (1) We define g € H~Y2(T') = HY?(T')* by

(9, ) = a(u, E¢) — (Lu, £¢)r2(q) for ¢ € HY(I),

where £ is the right inverse of 7y (see Theorem 2.26).
(2) We show the identity in the lemma. Given v € H'(2) arbitrary but fixed,
consider the function

vy = v — EYv.

Since 1EYv = Yov, we have Yovg = 0 and so vy € H} (). From the density of
D(Q) in Hj(2) and the definition of the distributional divergence, it follows
that

a(u, vo) = (Lu, vo)r2(q) -
By that identity, the definition of g, and because v = vy + Evyv,
a(u, v) = a(u, vo) + a(u, Eyyv)
= (Lu, vo)r2@) + (Lu, E0v)r2@) +(9; Y00)-

N J
-~

=(Lu,) 120
(3) We show boundedness of g: for (arbitrary) ¢ € HY2(T),
g, &) < la(u, £6) + (Lu, £¢) L2l
- ‘ /QAVU V(E6) + div(AVu) £ da:‘

IN

a|ullmo) 1€AIN @) + [|div(A V)2 [|E¢]| 20
< max(@, 1) (JJull o) + |4iv(A V) |2y ) €8]l o -

Due to the inverse trace theorem, |[£¢[|g1() < Crrl|@||gi/2ry. By the defini-
tion of the dual norm,

w0

< max(a, 1)01T(||u||H1(Q) +[|div(A vu)||L2(Q)).
peH/2(T)\{0} ||¢||H1/2(F)

~~

:3||9HH71/2<F)

(4) We show that ¢ is unique. Suppose that both ¢g; and gy satisfy the
conclusions of the lemma. Then the difference g, — g1 € H~/?(T") satisfies

(92 — g1, Yov) = 0 Vv € HY(Q).
Since the trace operator 7, is surjective onto H'/?(T"), this implies that
(=g, ¢) = 0 Voe HVI),

and so g = ¢ in the sense of H~/2(I"). This also shows that the construction
of ¢ is actually independent of the particular choice of £. n
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Definition 2.37 (weak conormal derivative). We define
H; () :={ve H(Q): div(AVu) € L*(Q)},

and the weak conormal derivative ~yyu := g for u € H; () and g from Theo-
rem 2.36, we obtain the bounded linear operator

v s HL(Q) — H7Y2(I).
This definition is consistent with (2.8).
We obtain Green’s first and second identity “for free”: for u, v € H'(Q):
a(u, v) = (Lu, v) 20 + (nu, you) if Lu € L*(S),
(Lu, v)r2) — (u, Lv)29) = (1o, You) — (yu, you) if Lu, Lv € L*(1).

(If L includes b - V, then the second formula has to adapted.)
In rare cases, we need a further generalization of the conormal derivative:

Theorem 2.38. For u € H' () and f € H (Q)* with
Lu = f inD*(Q),
there exists a linear functional g € H=Y/%(T') such that
a(u, v) = (f,v) + (g, wv) Vo€ H'(Q).
Furthermore, g 1s uniquely determined by uw and f and

g2y < Clullme) + 1 fllm@-)-
Exercise 6. Prove Theorem 2.38 (analogously to the proof of Thm. 2.36).
Definition 2.39. For u € H'(Q) and f € H'(Q)* with Lu = f in D*(Q),

the weak conormal derivative v,(u, f) € H~Y*(T') is given by g as from
Theorem 2.38.

Warning: for a general function u € H*({2), the conormal derivative cannot
be defined anymore. The minimal additional assumption for u € H'(Q)
seems to be Lu € H'(Q)*.

Restriction to I'; C I. Any functional g € H~'/?(T") can be restricted to a
functional g, € HY2(T;) = HY?(T';)*, given by

<g|1"17 ¢> = <ga $> for ¢ € ﬁl/z(rl)a

where ¢ € H'Y2(T") denotes the extension of ¢ by zero from I'; to I' (see
Def. 2.22). Hence (yiu)ir, € H-Y/?(T}) is well-defined too.
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2.2.3 Boundary Value Problems

Suppose that the boundary I' of €2 splits into two
disjoint parts,

such that 'y is “Lipschitz relatively to I'” (the
special cases I'p = @) and T'y = () are allowed).
Using the notations of Sect. 2.2.1 and Sect. 2.2.2,
we can define boundary value problems (BVPs).

Mixed boundary value problem Find v € H'({) such that
Lu = f in D*(Q),
You = gp in HY*(Tp), (2.9)
yiu = gy in HY3(Ty),

for given data f € H'(Q)*, gp € H/?>(I'p), and gy € HV/?(T'y). If I'p =T,
(2.9) is called first or Dirichlet BVP, if I'y =T, second or Neumann BVP.

Third/Robin boundary value problem Find u € H'(Q) such that
Lu = f in D*(Q),
Nu+ Bypu= g in H™'*(T),

for given data f € H'(Q)*, g € H~Y/2("), and 3 € L>(T).
Note that H'/2(T") ¢ L*(T') ¢ H~'/(T"). For B = 0, (2.10) reduces to the
Neumann BVP.

Exercise 7. (a) Show that (2.9) is equivalent to
find u € H' (), ur, =9gp: alu, v):(f, v) Yo € H(Q),

where H},(Q) := {v e H'(Q) : v, = 0}. How is f defined?
(b) Derive the variational formulation which is equivalent to (2.10).

(2.10)

Solvability using the Lax-Milgram theorem (discussed in the Lec-
tures Numerical Methods for Partial Differential Fquations and Numerical
Methods for Elliptic PDEs.) If the bilinear form a(-, -) satisfies

da>0: a(v,v) > Q||v||?{1(ﬂ) Vv € HH(Q), (2.11)
then problem (2.9) has a unique solution.

A few special cases:
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1. ¢ > 0: condition (2.11) is fulfilled.
2. ¢=0, |Ip|>0:(2.11) fulfilled (Friedrichs’ inequality).

3. ¢=0,Tp =0 (pure Neumann problem): (2.11) fulfilled for v € H'(Q),
Jovdz = 0 (Poincaré’s inequality). Problem (2.9) is then solvable if
and only if

<f> 1>+<9N7 1> = 0.

In that case, the solution is unique up to an additive constant.

4. If 8 is uniformly positive, i.e., 5(z) > By = const > 0 for all x € T" a.e.,
then the Robin problem (2.10) is uniquely solvable.

2.2.4 Fredholm Theory*

This subsection is only a minimal collection. For more details see the lecture
Integral Equations or e.g., [McLean, Ch. 2]. Let X, Y be Banach spaces.

Definition 2.40. A bounded linear operator B : X — Y is Fredholm if
1. range(B) is closed in Y,

2. ker(B) and the factor space Y ange(5) are finite-dimensional.

The index of B is then defined by

index(B) := dim(ker(B)) — dim(Yrange(B))-

Theorem 2.41 (Fredholm’s alternative). Suppose that B : X — Y s Fred-
holm with index(B) = 0. Then there are two, mutually exclusive possibilities:

(i) The homogeneous equation Bu = 0 has only the trivial solution u = 0.
In this case,

(a) foreach f €Y, the inhomogeneous equation Bu = f has a unique
solution u € X,
(b) for each g € X*, the adjoint® equation B*v = g has a unique

solution v € Y*.

(ii) The homogeneous equation Bu = 0 has exactly p linearly indepent
solutions uy, . ..,u, for some finite p > 1. In this case,

(a) the homogeneous adjoint equation B*v = 0 has exactly p linearly
independent solutions vy, ..., v,

3The adjoint operator B* : Y* — X* is defined by (B*f, v) = (f, Bv) for v € X,
f €Y* (in the complex case, one has to add conjugation).
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(b) the inhomogeneous equation Bu = f is solvable if and only if the
right-hand side f satisfies (f, v;) =0 for j=1,...,p,

(c¢) the inhomogeneous adjoint equation B*v = g is solvable if and
only if the right-hand side g satisfies (g, uj;) =0 for j=1,...,p.

Let V C H be two Hilbert spaces such that V' is dense in H and
|ullg < Clully  YuelV.

The prominent example is H = L?(2) and V a closed subspace of H'(f2).
We identify H with its dual H*. Then we may write

VCcHCV"

and we say that H acts as a pivot space for V. Note that the duality product
(-,) : V*xV = R is a consistent extension of the inner product (-,-)y:

(u, v) = (u, v)g VueV CcV*, veV

Definition 2.42. 1. We say that a bilinear form b(-,-) : V. xV — R
fulfills a Garding inequality (on V with respect to H), if there exist
constants ¢ > 0 and C' < oo such that

b(v, v) > clolli —Cloly  YveV.

2. A bounded linear operator B : V — V* is called coercive® (on V with
respect to the pivot space H) if its associated bilinear form (B-, -) fulfills

a Garding inequality.
Theorem 2.43 (Garding implies Fredholm). If H acts as a pivot space for

V', if the bounded linear operator B : V. — V™ is coercive on V', and if the
inclusion map V- — H 1s compact, then B is Fredholm with index zero.

Example 2.44. Problem (7) is equivalent to
find ug € HH(Q) :  alug, v) = (f, v) —a(Egp, v) Vv € HH(Q),

={f,v)
where £gp is a suitable extension of gp from I'p to 2; see also Exercise 7. It
is further equivalent to the operator equation Bug = f, where B : Hj(Q)) —
Hp(Q)* is defined by (Bv, w) = a(v, w). Since a(v, v) + (1+|c]) [[v]|720) >
min(Apin(A4), 1) ||v||§{1(9) for all v € H'(Q), it follows that B is coercive.
With the fact that H},(Q) is compactly included in L*(2), it follows that B
is Fredholm with index zero, and so Fredholm’s alternative holds.

4Note that a bilinear form b(-, ) is called coercive (or elliptic, or positive and bounded
from below), if b(v, v) > b||v||#. In that case, the associated operator B is often called
elliptic.
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The next theorem and corollary show that for the whole range of ¢ € R,
Case (ii) in Fredholm’s alternative only occurs a countable number of times.

Theorem 2.45 (spectral theorem). Let H act as a pivot space for V, as-
sume that H 1is infinite-dimensional, and that the inclusion map V. — H
1s compact. If the bounded linear operator S : V. — V* is self-adjoint and
coercive, then there exist sequences (v;)jen € V' and ()j)jen € R such that

(i) Sy = Ay,
(i) the eigenvectors (vj)en form a complete orthonormal system in H,
(111) the eigenvalues satisfy Ay < Xy < A3 <--- and \; = 00 as j — o0,
() Su=73"72, Nj(u, vj)v; for eachu € V.

Corollary 2.46. Let the assumptions of Theorem 2.45 hold and let A € R.
If X & {\1, Ao, A3, ...}, then the operator S — A\ : V' — V* has a bounded

wnverse. In particular, the equation
Su—Au = f
is uniquely solvable for all f € V*.
With this result, we can discuss cases of (2.9) where ¢ < 0.

Exercise 8. Show that there exist eigenvalues \; < Ay < - and corresponding
(non-trivial) eigenfunctions (v;)jeny € H'(£2) such that

—div(AVv;) = \ju; in D*(Q),
Yov; =0 in HY2(T'p),
mv; =0 in H12(Ty).
Hint: use Example 2.44 and Corollary 2.46.

In the situation of Exercise 8, one can even shown that Ay > 0. If ', =T,
we call \; a Dirichlet eigenvalue, if I'y = I" a Neumann eigenvalue.

We conclude: provided that —c & {\1, Ag, ...}, problem (2.9), i.e.
—div(AVu) +cu = f in D*(Q),
YU = gp in HY2(T'p),
MU = gy in HY2(T'y),

is uniquely solvable. Otherwise, a solution exists if and only if the data
satisfy

<f, ’Uj) + (gN, ’VOUj>FN = <’71’Uj, gD>pD fOI' all] Wlth )\j = —C.

In particular, the Dirichlet/Neumann problem for the Helmholtz equation
—Au — k?u = f is uniquely solvable if k2 is not an eigenvalue. Otherwise it
is only solvable under the above compatibility condition.



Chapter 3

Boundary Integral Equations

In this chapter, we develop boundary integral equations that reformulate the
interior boundary value problems from Section 2.2.

To this end, we derive a representation formula for H' functions that sat-
isfy a distributional PDE, where we make use of the fundamental solution.
Since the fundamental solution acts on the whole of R¢, we use a trick: we
let the function of interest satisfy the distributional PDE inside and outside
of the (bounded) domain 2 and allow it to be discontinuous across the in-
terface I' (while still being a distribution). For this setting, we derive the
co-called transmission property. Furthermore, we obtain the representation
formula, which is composed of volume and and surface potentials involving
the fundamental solution.

Taking traces of the representation formula leads to the boundary integral
equations, which relate the Cauchy data, i.e., the trace and the conormal
derivative. We show that the involved operators are indeed integral operators
and study some of their properties. In that part, we restrict ourselves mostly
to the Laplace equation.

3.1 The Transmission Property
Let Q C R be a bounded (weakly) Lipschitz domain and define
Q=0 Q% .=RI\ Q.

int

In order to emphasize expressions related to Q™ we write 7', 4" for the
two trace operators from Theorem 2.25 and Sect. 2.2.2. Applying the trace
theorem to Q°** we obtain the (bounded) trace operator

,ygxt . Hl(QeXt) N H1/2(F)

29
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t
n QSX

Figure 3.1: Interior/exterior domains 2, Q®%: unit normal vector n.

The results of Sect. 2.2.2 (see Def. 2.37) hold for Q" as well, leading to the
(weak) exterior conormal derivative

W HL Q™) — H V(T

However, we use a switch in the sign, such that

/ AVu-Voudr = —/ div(AVu) vdr — (v¥u, v&) Yo € H'(Q™),
Qext Qext
(3.1)

for u € H} (Q%Y). If w € H*(Q), then 7¥u = 4™ (A Vu) - n, where n is
the unit normal vector outward to Q™ i.e., inward to Q.

Remark™* 3.1. In the analogous way to Thm. 2.38, Def. 2.39, one obtains the
generalized conormal derivative v$*t(u, f) € H=V2(T') for u € H'(Q),
fext c Hl(Qext)* with Lu = fext in D*(QeXt)_

To summarize, for a function
u e H(Q™UQ™) = {ue L*(R?) : ygm € H'(Q™), uge € H'(Q)},

that fulfills
Lu = fint in D*(Qint>7

3.2
Lu = fext in D*(QeXt), ( )
for given functions f* € L2(Q"), f¢ € L2(Q%), we have
/ AVu-Votcuvde = | fodet (57", ') Yo € HH(Q™),
Qint Qint
=: a™(u, v)

/ AVu-Vu+cuvdr = / [ vdr — (W, 45M) Yo € HY(Q™).
Qext Qext

N J/
-

ext (

=: a"™(u, v)

(3.3)
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Definition 3.2. For v € H'(Q™ U Q) fulfilling (3.2), we define the (com-
posed) distribution

fe  HRY : (f v) = ' fintvd$+/ [ vdr for v € H'(R?),
(Qint Qext

and the jumps

[vou] = vgmu — y(i)ntu € HI/Z(F), (3.4)
[viu] = 49— € HYA(T).

If A =TI and u piecewise smooth, then [y;u] = %umext — %umim. Note that
foru € HY(RY) :  ~AMu =%, [yu] =0,
for € D(RY) : %' =170, [n1¢] =0.

In such a situation, we simply write you, v1¢ for the respective traces.

Exercise 9. For v € H'(Q"™ U Q™) show that u € H'(R?) if and only if
[Youl = 0.

Remark* 3.3. The identities (3.3) and Definition 3.2 of f € H*(R?)* can
be generalized straightforwardly to f" € H'(Q")* and f&' € HY(Q™)*,
but one must replace the volume integrals by (f™, v)gm and (f° v)gext,
and use the generalized conormal derivatives v (u, f) and v$(u, fo).

From (3.3) and Definition 3.2, we conclude that
a™(u, v) +a™(u, v) = (f, v) — {[n1u], Yov) Yo e H'Y(RY).  (3.6)
Apparently, v € H'(Q"* U Q') C §*(RY) C D*(R?), so u is a distribution.
Therefore, the distributional derivative Lu is in S*(R?) C D*(R?) as well,
and fulfills?
(Lu, @) = (w Lé) Ve DR or SERY)

Definition 3.4. We define the adjoint trace operators

v HV2(T) = E5RY) - (yiw, ) = (w, yp) for p € ERY), we H 2(T),
NEHYA(D) = EXRY (i, @) == (mp, v)  for p € ERY),v € HY(T).

In general, L on the right-hand side has to be replaced by its adjoint L*.
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Theorem 3.5. Suppose that u € H'(Q™ U Q™) fulfills (3.2). Then
Lu = f+lwul —lnu]  in DR,

Proof. Let ¢ € D(R?) be arbitrary but fixed. Then the properties of the
distributional derivative imply

(Lu, ) = (u, Lyp) = /thu(Lgp)dx—l—/Qmu(Lgo)dx =: (%x). (3.7

By Green’s first identity (Lemma 2.34 applied in Q™ and Q% separately
with w — ¢ € D C H? and v +— u € H'), we obtain

(4) = a™(u, 9) = (ne, w'u) + a™(u, @) + (e, 5" u).
We substitute (3.6) into that identity and use Definition 3.2 of the jump:

(*) = (£, o) = (Inul, 1w9) =(ne, w"w) + (ne. 15" - (3.8)
= (e, [ou])

Combining (3.7), (3.8) as well as Definition 3.4 of the adjoint trace operators,
we obtain

(Lu, o) = ([, 0) = {(wlnul, ©) + (riloul, #),
which concludes the proof. O
Remark 3.6. Theorem 3.5 shows that Lu = f in D*(RY) if and only if

[vou] =0 and [y;u] = 0.

Outlook: Our next goal is to apply a fundamental solution G to the identity
Lu= f+~f[vu] —v[71u] of Theorem 3.5, such that we get

u = Gf +Gyihou] — Grlnul,
i.e., we can represent u in terms of f and the Cauchy data. If we set ujgext = 0
and f** = (, we obtain

u = Gf" = Gyiwtu+ Grn™u.

This is known as Green’s third identity (cf. (1.4) in the introduction) and will
yield the desired boundary integral equations when applying trace operators
to it.
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3.2 Fundamental Solutions

Definition 3.7. A linear operator G : £*(RY) — D*(R?) is called fundamen-
tal solution of the differential operator L iff

LGu = u = GLu Vueg*(Rd).
If G is an integral operator with kernel G(z, y) = G(x — y), i.e.,

(Gw)(x) = /IRd Gz —y)w(y)dy (for w sufficiently smooth), (3.9)

then G is called fundamental solution as well. In such a situation, G above
is often called volume potential or Newton potential.

In the following, we provide fundamental solutions for a few specific dif-
ferential operators.

e Laplace operator: Lu = —Au:
—Llog|z| ford=2,
G(z) = { .7 _
= for d = 3.
47 |z|
o Lu= —div(AVu):
1 1
G = for d = 3.
(Z) 4 det(A) 2TAz o
e Helmholtz operator: Lu = —Au — k?u:
1 efin|z\
G(z) yE— or 3, k>0
For d = 2, in general, one has to use Hankel or Bessel functions. For

derivations, we point to the lecture Partial Differential Equations as well
as [Evans, Steinbach, McLean)].
In all above cases, G can be shown to be a distribution fulfilling

Gw = Gx*xw for w € S*(RY), (3.10)

where x is the distributional convolution operator (without going into the
details of its definition). Moreover,

G:S(RY) — S(RY),  G:S*(RY) — S*(RY), (3.11)
LG = id = GL  in S*(RY), (3.12)

and

(G, ) = (¥, Gp) Vo eS(RY), pe SR
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Remark* 3.8. Fundamental solutions can e.g. be derived using the Fourier
transform. If Gw = G * w with G € S*(R?), then

LG=GL=id <+ LG=GL=§ <+ LG=1,

where Z(f) = ¢TAE + ¢ is the symbol of the differential operator L and
G := FG the Fourier transform of GG. Thus, G should be the inverse Fourier
transform of 1/L. However, there are some technicalities, see [McLean].

In this lecture, we do not check/prove (3.11)—(3.12). However, we show
that the convolution integral in (3.9) is well-defined for w € S(R?).

Definition 3.9. For a compact d-dimensional domain/manifold M, an inte-
gral kernel k£ : M x M — R is called weakly singular if k(z, y) is continuous
at all z # y € M and if there exist constants C' > 0 and a > 0 such that

k(z, )] < Clo—y]*™"  Va#yeM.

Lemma 3.10. For the fundamental solutions on page 33, the integral

(Go)@) = | Ge—yey)dy  forpe SR xR,

R

exists as an improper integral.
Proof. We fix z € R? and consider the ball Br(x) with radius R € (0, c0).
1. On Bg(x), the integral kernel k(z,y) := G(z — y) is weakly singular.
2. Hence,

[ ce-pe | < Il [ G-yl

Br(z) Br(z)

Using the estimate from Def. 3.9 and transforming to polar/spherical coor-
dinates (around the center z), one sees that the bound is finite. This shows
that the (improper) integral is absolutely convergent.

3. On the remainder R?\ Bg(z), G is smooth and
/ Gz —y) ply)dy = / 2 7G(2) 2 p(x - 2) d.
RA\BR(x) RN\ BR(0)
Since ¢ is rapidly decreasing, 2°¢(z — 2) has bounded L*-norm. Choosing
(3 suitably, the integral over z=#G(z) can be bounded. ]

Exercise 10. Work out the details of the proof of Lemma 3.10.

The technique shown in the proof of Lemma 3.10 can be used for any
integral with weakly singular kernel.
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3.3 Representation Formula and Potentials

As in Section 3.1, let u € H*(Q™ U Q) fulfill (3.2), i.e.
Lu= fint in D*(Qint), Lu= fext in D* (Qext)7

with fint/ext c L2(Qint/ext) (OI‘ Hl(Qint/ext)*).

3.3.1 Representation Formula (Green’s 3rd Identity)

Theorem 3.11 (representation formula). Letu € H(Q™UQ™) fulfill (3.2).
If u has compact support in R, then

uw = Gf +G7lou] - Gylnul . in S*(RY).
Proof. 1f u has compact support, it follows immediately that
u € S*(RY), Lu € S*(RY).

Furthermore, vi[you] € £*(R?) C S*(R?) and vi[yu] € £*(RY) C S*(RY).
Repeating the arguments from the proof of Theorem 3.5 yields

Lu = f+%ou] —wlnu] ST RY).
The desired formula now follows simply by applying G. m

Definition 3.12 (surface potentials).

single layer potential V= Gy : HYXI) - S*(RY
double layer potential W = Gvi . HYYI) — S*(RY

Corollary 3.13. Ifu € HY(Q"™) fulfills Lu = fi" in D*(Q™), then
uw = Gft— Wv(i)ntu + VAity in QM (3.13)
where G " denotes the application of G to the extension of f™ by zero.

The (interior) representation formula (3.13) relates the solution u to the
int int

right-hand side f™ and the Cauchy data (yu, y™u). We now would like
to decode (3.13) for smooth arguments.

Volume potential From the proof of Lemma 3.10, one can conclude that

(Gf™)(x) = / Gz —vy) f™(y) dy for fi* e L=°(QM), x € o

Qint
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Single layer potential For ¢ € S(R?) and w € L>(T),

(Grow, p)sixs = (Ww, GP)sixs = (w, YGp)r

~——

e - / @ [ Gl et dyds,

:/Rd/ (x) ds, (y) dy.

G(y—z)

(3.14)

Warning: exchanging the two integrals is only valid if both inner integrals
exist and the integral of G(x — y) w(z) p(y) over R? x T' exists (Fubini). As
we shall see in the (proof of) next lemma, this is indeed the case.

Lemma 3.14. For the fundamental solutions on page 33,
(Vw)(z) = /G(z —y)w(x)ds, forw e L=(T), (3.15)
r
where right-hand side exists as an improper integral for all v € R?. Moreover,
Vw € C(R?) (for w e L=(T)).

Proof. Step 1. We show that the integral exists. Fix w € L>°(I') and x € T
(for z € T', the integral contains no singularity and thus exists).

Recall that Q™ was assumed to be

weakly Lipschitz with boundary I'. B, U
Let U, be a neighborhood of x such X

that there exists a bi-Lipschitz map B° ¢

X : By — U, such that X(Eﬁ) =In0, w

and x(0) = x.

Due to the parametrization of curve/surface integrals,
| Gle-puwas, = [ 6o - x©)ae e ds
rnu, B2

where W(§) = w(x(£)) and J is the suitable Gram determinant depending
on the gradient of x|pz. Due to the assumptions on w and x;,

weL®By), JeL®BY).
This shows that

)/F% x—y)w(y)dsy| < |[J D L~s2) / 1G(x(0) — x(€))] de .

<00 "~
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The fundamental solutions under consideration fulfill
Gz —y)| < Clz—y/* "  forz,ycl,,
with C' > 0, a > 0. Since y and y~! are Lipschitz,
CTHO—¢] < [x(0) = x(&)] < Clo—¢ Ve By,

where C'is a generic constant. Using both properties, we get

() < [ WO -x@r e < 0 [ e

2
BO

With similar arguments than in the proof of Lemma 3.10 / Exercise 10, one
sees that the (d — 1)-dimensional integral on the right-hand side exists.

Step 2. Continuity of the integral on R?\ T is seen rather easily. For x € T’
and 7 € R?, assume that U, from Step 1 is chosen with diam(U,) = & and
T € U,. Splitting the joint integral in |(‘~/w)(:1:) - (Vw)(%)‘ into a part (I)
over I'\ U, and a part (II) over I'N U,, using the triangle inequality and the
same arguments as in Step 1 yields that part (I) "% 0 and part (II) < Ce”.

Step 3. Splitting the total integral over R? x I' into one over B x I' and a
remainder (where Br DD Q™ using that G(x — y) is weakly singular with
respect to Br x I', and employing analogous techniqes as in Step 1, one can
conclude that the product integral exists = Fubini is applicable.

Step 4. (3.15) now follows from (3.14). O

Exercise 11. Complete Step 2 of the proof above.

Double layer potential Here, matters are more complicated and will be-
come clear later on. At least, we see rather easily that for v € L>(T"),

(Wv)(x) = /r [AV,G(z —y) - n(y)]v(y) ds, Ve e RI\T. (3.16)

Summary For v € H'(Q™) N L>(Q"), fint € L°(QM) and A = I, the
representation formula (3.13) decodes to

u(x) = /Qint Gz —y) f™(y) dy + / [ainyG(x —y)]uly) ds, (3.17)

r
du int
—/FG(:U—y)a—n(x)dsy Vo € Q™.
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3.3.2 Further Properties of the Volume Potential

By Definition 3.7, . . ,
L™ = D),

i.e., the volume/Newton potential is a solution of the inhomogeneous PDE.

Lemma 3.15. Let g, pa € CP(R?) be cutoff functions that equal 1 in a
neighborhood of Q™. Then, for any s € R, the operator

1Ghs + HS Y (RY) — HL(RY)
is linear and continuous. In particular, p1;Gus : HY(RY)* — HY(RY).
Proof. Using Fourier transform, see e.g. [Steinbach, McLean]. O
Corollary 3.16. For fi"* € H'(Q™)* Gfint € HY(Q™M), and
G . HY(Q™) — HH(QM)
15 a linear and continuous operator.

Exercise 12. Prove Corollary 3.16 (by using the result of Lemma 3.15).

3.3.3 Properties of the Surface Potentials
From Def. 3.12 and Def. 3.4, for ¢ € £(R?),

(LVw, 9)pe = (LG wgw, P)pe = {w, Yog)r -
=id

If we choose ¢ € D(Q™), the term on the right-hand side vanishes. The
analogous property holds for the double layer potential. We summarize:

Lemma 3.17. For any w € H~Y*(T) and v € HY*(T),
LVw =0, LWuv =0  inDQ"™) and D*(Q). (3.18)

By their original definition, the surface potentials map into distributional
spaces. Lemma 3.18 below discusses mapping properties in Sobolev spaces.

Exercise 13. Prove that v : H~Y2(I') — H'(R?)* is linear and continuous.
Hint: Tt suffices (why?) to show that there exists a constant C:

[(gw, ©)] < Cllwllg-rem llelmes — Yw e HYAT), ¢ € SRY).
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Lemma 3.18 (mapping properties). Let pu; € C°(R?) be a cutoff function
that equals 1 in a neighborhood of ¥™. Then

(@) mV:HYT) - HY(RY,
(@) W : HY*(D) — HY Q" U Q=)
are linear and bounded operators.
Proof. (i) Let po € C5°(R?) be a second cutoff function with pigr = 1. From
the definition of ¢, we see that for any ¢ € H~Y2(T), ¢ € £(RY),
(0, ) = (¥, 0e) = (U, op2p) = (WY, 12p) = (K235, ©),
and so Y = poyiah. For w € H-Y/2(T),

Lem, 3.15 X.
1 Gravow [[piwey < Cllpwlggey < Cllwllg-izr -
—

:Q'y{jw:vw

(ii) Fix v € HY2(T'). Let A be large enough (A 4+ ¢ > 0), such that the
Dirichlet BVP

Lu+Mu = 0 in D*(Q™),
Yty = v in HY?(TI)

has a unique solution v € H'(Q™). As Exercise 14 below shows, there exists
a (generic) constant C' such that

int

HUHHl(Qth) < CHUHH1/2(F)> [l UHH*U?(F) < CHUHHW(F)- (3.19)

We define ujgext := 0 such that u € L*(R%). Then

Lu = —Xu in D*(Q™) and D*(Q™),
and so Theorem 3.11 implies
u = —AGu+ W [ou] =V [11u] in D*(RY).
=— :_’Yintu
Summarizing,
Wov = —u— AGu + Vyinty in D*(RY). (3.20)

To bound u1Wv, we just need to bound the H'-norms of the (cut) individ-
ual three terms. This is done using (3.19), Lemma 3.15, and part (i); see
Exercise 15 below. [l
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Exercise 14. Prove (3.19). Hint: use the estimate |ully < C|f|lv+ from
the Lax-Milgram theorem, where f € V* a(u, v) = (f,v) Vv € V with
a(-,-) coercive and bounded on the Hilbert space V.

Exercise 15. Complete the last step of the proof above, i.e., the step af-
ter (3.20). Hint: Estimate ||p1Gu|| g2(re) using Lemma 3.15 with s = 1 to get
an intermediate bound in terms of ||u|p2(gint).

Remark* 3.19. For v, w € L>(T),
Vw, Wo e C¥(RI\T).

This is seen from (3.15), (3.16) and the fact that G(z — y) is C* for all
x # y € RY. The above property even holds for v, w € L'(T).

Since the surface potentials map to H' and fulfill the PDE, we can apply
trace operators to them.

Lemma 3.20 (traces of the surface potentials). The operators

WV HTVAT) = HYAT), MV HYAT) - HOVA(D),
Ny HY2(T) — HY2(D), N HY2(TY) = H-V2(D)

and the corresponding ones with the exterior traces are linear and continuous.

Proof. The properties for 4"V, 7MW follow immediately from Lemma 3.18
and the trace theorem (Thm. 2.25).

Due to (3.18) and Thm. 2.36, the interior conormal derivatives of Vw, Wo
are well-defined in H~"2(I") and depend linearly and continuously on these

functions. The total continuity follows now again from Lemma 3.18. O

Exercise 16. Prove the corresponding statements for the exterior operators.
Warning: The definition of 4$** cannot be used directly, because Vw, Wov ¢
H'(Q*%). Hint: work on the bounded domain Q%' N By with R sufficiently
large such that I' C 9(Q** N Bg).

The next lemma shows if and how jumps of the above traces occur across
the interface I'.

Lemma 3.21 (jump relations).

(i) [vwVw] = 0 (i) [mVw] = —w Yw € HY2(T),
(zit)  [voWv] = v () [mWwv] = 0 Yo € HY*(T).
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Proof. (i) follows immediately from Lemma 3.18.

(i) For fixed w € HY2(I), set u := Vw = Gygw. On the one hand,
Theorem 3.5 (together with (3.18)) implies that

Lu = 0+ [you] =glmu] — in D*(RY),
=0

and so (using Def. 3.4),

(Lu, ¢) = —(Imu], vop) Yo € DRY).
On the other hand,

(Lu, p) = (LG vw, v) = (w, vp) Yy € D(RY).
=id

Combining the two last identities yields

—({[nul, we) = (w,0¢) Ve e DRY).
Since vo(D(R?)) is dense in HY/2(T"), it follows that — [y, Vw] = w in H~Y2(T).

(iii) Let u be as in the proof of Lemma 3.18. Applying the trace operators
to (3.20) yields

[voWv] = — [rou]l =A[vGu] + [ VA™u] = v,
=—v =0 =0

where we have used p;Gu € H*(R?) and jump relation (i).
(iv) Applying the conormal derivatives to (3.20) yields

[ W0l = = [yu] =A[nGul + [mVAtu] = 0,
:_,yintu =0 :_,Yintu
where we have used p;Gu € H*(R?) and jump relation (ii). O

3.4 Boundary Integral Operators

Taking traces (73, vi"*) of the representation formula (3.13), we obtain two

equations from the PDE  Lu = f"* in D*(Qnt):

%i)ntu _ ,y(i)ntg fint i %i)nt’W ,y(i]ntu + ,y(i)ntf/",yilntu in HI/Q(F>7
~—— ——" ~——
= No = —(1-0) [+ K =V

,yilntu _ ,yilntg fint . ’7i1ntW ,y(i)ntu+ ,yilntv ,yilntu in H_l/Q(F).
~— —— ~——

IINl = =D — 0']—|—K/
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The function o will be discussed in more detail in Section 3.4.3 below. For
Lipschitz domains, o = 1/2 almost everywhere on T'; in particular, o = 1/2
in the sense of H*'/2(I"). It will turn out that V, K, K’, and D have integral
representations, and are thus called boundary integral operators.

Definition 3.22 (boundary integral operators).

’ name ‘ relation ‘ mapping property
Newton potential N N 1= ine HY(Qint)* — HY2(T)
Newton potential N} N = Aint HY(Qint)* — H-1/2(T)
single layer potential V| V := Aty H-Y2(T) — HY*(T)
double layer potential K | —(1 — o) + K = fyé)ntW HY2(I') — HY2(I)
adjoint double layer ol + K' = fyilmv H—1/2(F) — H—l/ﬂ(r)
potential K’
hypersingular integral D= —7}“th[7 HY2(T) — HY*(I)
operator D

All these operators are linear and continuous, which follows from Lemma 3.17,
Lemma 3.18, and the mapping properties of the two trace operators ™, ~int.

We will study the integral representations and properties of V., K, K’,
D in detail. Before, however, we have a closer look to the two boundary

integral equations

3.4.1 The Calderdon Identities

With the notations above, the two boundary integral equations for the inte-
rior PDE read

Wl _[Q-ol-K V][] [ Ao
|: ,Yilntu :| - |: D 0.I+K/ ’Yilntu + leint . (321)

=:C

The block operator C is named after Calderén.
Lemma 3.23. The (interior) Calderén operator C is a projection: C* = C.

Proof. Let (¢, ¢) € HY?(I') x H‘l/Z(F)Ee arbitrary but fixed. Then, due
to Lemma 3.17, the function v := V¢ — W¢ fulfills

Lu = 0 in D*(Q™).
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Taking traces of u and using Def. 3.22, we get

'Yém _ mtv w _ th 90
*V =—(1-0)I+K t
1nt 1nt int7r7 ’71 u 1/}
N = V p— MW
\v/ \.v_/
L =cl+K' =—D )

(3.22)

Moreover, since u solves Lu = 0, the representation formula (3.13) delivers

|: ,yint :| ,)/int : ( ' )
Inserting (3.22) into (3.23) proves the assertion. O

Exercise 17. Use the projection property of the Calderén operator C to
show the following algebraic identities (here with o = 1/2):

VD= 31+ K)(31 - K), VK =KV,
DV =(1iI+K')3I-K'), K'D=DK.

3.4.2 The Single Layer Potential (1)

Recall the single layer potential operator
V= %V : H YD) — HY(D).

Lemma 3.24. For w € L>*(I"), we have the representation
/ G(x — y) ds, Veel

as a weakly singular surface integral.

Proof. The result follows immediately from Lemma 3.14, where we showed
that for w € L>(I),

(Vw)(x) = /FG(QS —y)w(y)ds, Vz € RY,

and that the resulting function is continuous. O]
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3.4.3 The Adjoint Double Layer Potential (K')

Definition 3.25. For x € I', we set

(@) = lip 2BLD) N D] :
T S oB) o™

1
_ ds.
250 2(d — 1)m et /yegﬂz_y,_e ’

This function describes how much of the domain Q™ is inside of I'. For a
(weakly) Lipschitz domain, o = 1/2 almost everywhere on I" (due to the fact
that I' is “differentiable” almost everywhere).

Theorem 3.26. For w € L>*(I"), we have the representation
YtV = (ol + K'w in HV(I),

with the adjoint double layer potential operator

(K'w)(z) = lim MWaG(x —y)w(y) ds, .
=0 Jr\B. ()

(The limit above realizes the Cauchy principal value integral.)

Proof. For the sake of a clear presentation, we present the proof only for
the case A = I, ¢ = 0. The general case can be obtained with the same
techniques.

Fix w € L®(T) ¢ HY2(T) and set u := Vw. Recall from Lemma 3.17
that LVw = 0 in D*(Q™). Hence, for ¢ € D(R?), due to Green’s identity
(Thm. 2.36),

(W™u, Weo)r = | Vu-Veds
ant

= / Vx(lim/ Gz —y)w(y) dsy> -Vo(z)dr
Qint €20 J\B.(x)

= w(y) lim / V.G(x —y) -Vo(x)dx|ds,,
/F (v) HO( ) (z—y) V() ) y

where we have used that (Vw)(z) contains a (con-
vergent) weakly singular integral, and changed the
integration order (without going into details).
For a moment, let y € I" be fixed. For sufficiently
small €, the domain Q2 \ B.(y) is Lipschitz, and
so Green’s identity yields
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/Q V.G(x —y) - Vo(r)de

i\ Be (y)

4 0
= G(x — xdsx+/ G(r — x)ds,,
/F\Bs(y) [anx ( y)} SO( ) OB (y)NQint [anaz ( y) 90( )

where n is outward to  \ B.(y). Combining the last two identities, we get

e—0

(. . J/

0
(it At = / w(y) lim - Glo — y)]ela) ds ds,
r M\B.(,) ~“Me

— (1)

0
+ [ w(y) lim G(x — xr) — ds, ds
Jowtm [ 5o e - pw] sy
=: (I,
+/w( ) lim [ 0 G(x—y)]go(y) dsy dsy .
r e—0 8Be(y)ﬂﬂint 5’71;5

J/

We treat the terms separately.

Term (I): Exchanging limit and integration (no details), we obtain
~ [ [ oy o) sy plo)dse = (' 3l
r I'\B.(z) ”x

\ — Ko@)

Term (II)_:
m,| < o) - o) | %Gl —y)|a
max x) — T — Sy
T 2EDB=(y)nQint 7 P 9B, (y)naint | 0Ny 4
=0 =t (%):
We show now that (x). is bounded.
We first compute V,G(z —y) (for L = —A):
1 1 1 z—y
d=2: V,Glz—-y) = ——V,1 —yl = —— —
(z —y) 5 Valogle —y| AP kp—
1 1 B 1 1 T —y

le—yl  Ar|r -y e -yl
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Since n is outward to Q\ B.(y), n, = {4=; for 2 € 9B.(y) N Q™, and so

1 T —y T —y 1

0
G — . — — 17d.
oY) = T =y eyl =1 Y
Hence,
1 1—d 1 1-d
o= grgr [ e s < [ s -
27T(d—1) 9B: (y)NQint S~ QW(d_l) 0B:(y)
Therefore, |(I).| = 0.

Term (I[)_: With the computation above, we get

0
m e = / G(x — Yy Yy ds,
m. = [ [eee- st

1 e—0

= 90(3/)/ ey ds, 5 e(y) oly).
OB (y)NQint 27T(d 1)W—/

=

Adding up the results for all the terms and using that u = 1% yields
(M Vw, 7tehr = (K'w, 75%e)r + 0+ / w(y) o(y) o(y) ds, -
r

The assertion now follows from the density of 4i*(D(R?)) in HY2(I'). O

3.4.4 The Double Layer Potential (K)
Theorem 3.27. For v € HY/2(I') N L>(T'), we have the representation

('y(i)“th)(a:) = (=14 o0(x)) + (Kv)(z) forx el

with o as in Definition 3.25 and the double layer potential operator

(Kv)(x) = lim [yin;G(m — y)}v(y) ds, .
=70J1\Be ()
Proof. Works with similar techniques as the proof of Theorem 3.26 [
Exercise 18. Show that for v € H/?(I') N L>°(T") and w € L>(T),
(w, Kv)r = (K'w, v)r. (3.24)

Hint: use Theorems 3.26 and 3.27.

From Exercise 18, one can easily conclude by a density argument that
(3.24) holds also for v € H'/?(T') and w € H~/2(T"), which means that K is
indeed the adjoint operator to K.
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3.4.5 The Hypersingular Integral Operator D

Recall that .

D = —MW . gY3(T) — HV*(T).
Mapping H'/? to H~'/2, this operator has the flavor of a differential operator
(of order 1). It is hard to find an integral representation for it.

First we sketch that a straightforward technique fails. For L = —A, for a
smooth function v and Z € Q™ one can show (using the computations from
the proof of Theorem 3.26)

1 ( —y)-ny

(Wo)(F) = ————lim

— ds,, .
A1) o fopey oyt W

In order to get (Dv)x, we have to apply —n, - V, to the above expression
and send z to x € I'. Exchanging formally the two limits and computing the
normal derivative yields

~ 1 g =N (z—y) n.(x—y)n
hm—/ [— Y 4d YNo(y)ds, .
e—0 2m(d — 1) I\ B. () |z — y|d |z — y[d+2 (y) dsy

However, the above limit (realizing a possible Cauchy principal value) does
not exist in general, because the kernel is so (“hyper”) singular.

Lemma 3.28. If L = —A, the hypersingular integral operator admits the
following representation for v € HY*(T) N C(T):

0 0
(Dv)(x) = ~ A /F [8—%G(x — y)} [v(y) — v(:v)]dsy Ve eT,
to be understood as a Cauchy principal value integral.
Proof. See, e.g., [Steinbach, Sect. 6.5] O]

In the next chapter, we shall give an alternative representation of D which
is very practical in implementations of boundary element methods.

3.4.6 Further Mapping Properties*

The operators V', K, K’, and D are so-called pseudo-differential operators of
integer order. For Lipschitz domains and for any s € [—1/2,1/2],

V- H71/2+S<F) N H1/2+S<F>7
K : HY/?*3() — HY**(T) K': HY23(I) — HY#+s(T)
D : HY*(I) — H~Y/2+5()

are continuous mappings. Hence, K and K’ are pseudo-differential operators
of order 0, V' is of order +1 (a smoothing operator), and D is of order —1 (a
differential type operator). A proof is found in [Costabel].
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3.5 Boundary Integral Equations

3.5.1 The Interior Dirichlet Problem

Theorem 3.29. Let f™ ¢ L2(Q™) (or HY(Q™)*) and gp € HY?(T) be
grven.

(i) If u € HY QM) is a solution of the interior Dirichlet problem

L u = int n D* Qint
int f . 152 ) } (325)
YwWu = ¢gp in H'*(I)

then the conormal derivative t := vyi"u € H=Y/2(T') is a solution of the
boundary integral equation

Vt = (oI + K)gp — Nof™  in HYX(I), (3.26)
and u has the integral representation

w=GfM—Wgp+Vt  inQ" (3.27)

(i) Conversely, if t € HY?(T) is a solution of the boundary integral equa-
tion (3.26), then formula (3.27) defines a solution v € H'(Q™) of the
interior Dirichlet problem (3.25).

Proof. (i) The fact that (3.25) implies (3.27) has been shown in Corol-
lary 3.13. The (interior) Calderdn identities (3.21) imply

W = (1= o) = K)o +V uu + Nof™,
~—~— ~—— \,t./
=gp =gp =

from which we conclude (3.26).

(ii) Suppose that t € H~'/(T) solves (3.26) and that u is given by (3.27).
The results of Section 3.3 guarantee that u € H'(Q™) and that

LGf™ = f in D*(Q™),  LWgp=LVt=0 inD"(Q™).
Hence, the distributional PDE Lu = f in D*(Q™™) holds. Finally,

(3.27) in — ~  (3.26)
You =" %G M= W gp + WVt = gp.

=No =(—140)I+K =V
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3.5.2 The Interior Steklov-Poincaré Operator

Assume that the interior Dirichlet problem (3.25) with f = 0 has a unique
solution u(gp) for every gp € HY?(T') (this is e.g. the case for ¢ > 0. We
denote the corresponding conormal derivative by

S™ gp = n"u(gp).

The corresponding operator S is called Steklov-Poincaré operator of the in-
terior Dirichlet problem.

Exercise 19. Show that under the above assumption ¢ > 0, the operator
Sint . {Y2(T) — H~Y2(T) is linear and continuous.

As we will show later on, the Steklov-Poincaré operator can be expressed

in terms of the four boundary integral operators.

3.5.3 The Interior Neumann Problem

Theorem 3.30. Let f™ € L2(Q™) (or H'(Q™)*) and gy € H V(T be
given.

(i) If u € HY(Q™) is a solution of the interior Neumann problem

Lu = fint in D* (Qint) } (328)

N = gy in H=/2(T)
then the trace v := yu is a solution of the boundary integral equation
Dv = [(1—0)]—K'|gy —Nif™  in HV2(D), (3.29)

and u has the integral representation

u = Gf™ - Wu+ Vgy in Q" (3.30)

(i) Conversely, if v € HY?(T') is a solution of the boundary integral equa-
tion (3.29), then formula (3.30) defines a solution u € H'(Q™) of the
interior Neumann problem (3.28).

Exercise 20. Prove Theorem 3.30. Hint: analogous to the proof of Theo-
rem 3.29.
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3.5.4 Mixed Boundary Value Problems*

For simplicity, we treat here only the case fi* = (.
For 00" =T =T'p UTly, let gp € H/?('p) and gy € HY/?(I'y) be
given. Let u € H'(Q™) be the solution of the mixed BVP

Lu = 0 in D*(Qnt)

W = gp in H'/(T'p) (3.31)
gnN n H71/2(FN)

int —

U

1. Recall that functions in H'/2(I'p) can be extended to functions in H/2(T).
Therefore, there exists

gp € H'*(T),  gprrp = gp

2. Recall that H~Y/2(I") = H/2(I')* and that any functional in H~*/2(T") can
be restricted to one in H~/2(I'y). Therefore, there exists a functional

gy € HV2M) . (gn, v)r = (g, v) Yo € H2(Ty).
(Note that neither the extension gp nor gy are unique.)

Theorem 3.31. (i) Let u € H' (™) be a solufion of (3.31) and let gp
and gy be as above. Then the functions

v = Wu—gp € ]:71/2(I‘D),
to = Wu—gy €H VAIy)=H"y)

fulfill
[—l;( };1 “ﬂ - [OI_fK (1_0_){/_[{/} Bﬂ (3.32)

as a system of boundary integral equations in ﬁl/z(FD)* X ]:T_l/z(FN)*,
and u has the integral representation

w o= G _W(gp+v)+ V(gy +10)  in Q™. (3.33)

(ii) Conversely, if (vo, to) € HY*(p) x H™Y2(T'y) solve (3.32), then for-
mula (3.33) defines a solution uw € H'(Q™) of (3.31).
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3.5.5 Second Kind Integral Equations*
The single layer boundary integral equation (3.26),

Vt = (oI 4+ K)gp — Nof™

for the interior Dirichlet problem and the hypersingular boundary integral
equation (3.29), '
Dv = [(1-0)] - K'lgy = Ny f™

of the interior Neumann problem are both Ist kind integral equations. They
were both derived from using one (specific) line of the interior Calderén
identity (3.21).

Using the respective other line, leads to the 2nd kind boundary integral
equation

[(1—0)] —K'|t = Dgp+N.f™  in H-V*(T)

int

for the conormal derivative ¢ = ™ u of the interior Dirichlet problem with
Dirichlet datum gp and to the 2nd kind boundary integral equation

(ol + K)v = Vgy +Nof™  in HY*(I)

int

for the trace v = ;" of the interior Neumann problem with Neumann
datum gy. Similarly to Theorems (3.29) and (3.30), the overall solution u
can be reconstructed by a representation formula in both cases.

3.6 Exterior Problems

We are interested in solutions of the (for simplicity) homogeneous exterior

PDE
Lu =0 in D*(Q°). (3.34)
Corollary 3.32. If u € H'(Q%) fulfills Lu = 0 in D*(Q%"), then
w o= WAty — VAot in QO (3.35)

Proof. Choosing f™ = f** = 0 and wgip, = 0, we obtain from Theo-
rem 3.11 that

u =W [yu] =V [yu] inS*(RY.
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In particular,

(U7 SO)LQ(Qext) = (/va(e))(tu — ‘A//vfy?(tu’ ('D)LQ(QeXt) VSD c CgO(QeXt).
Since CS°(Q) is dense in L2(Q°), identity (3.35) holds in the sense of
LQ(QeXt>, D

Warning: if the coefficient ¢ in the differential operator L is zero or negative,
then H'(Q%) is (usually) not used as solution space, because it has the
“wrong” decay behavior towards infinity for physically relevant problems.
Hence, for ¢ > 0, we need a different solution space. We shall discuss in
detail the case ¢ = 0 and comment only briefly on the case ¢ < 0. For a more
comprehensive treatment of exterior problems we refer [Steinbach, Sect. 7.5],
[McLean, p. 234ff], and [Sauter/Schwab] (where each reference has its own
particular focus).

3.6.1 The Exterior Laplace Problem

Throughout this section, we assume that

Definition 3.33 (space of bounded energy). For R > 0 define Q& := Q=N
Bgr(0) and set

—ext

Hp (%) = {ve L (Q ):VR>0: Vjgext € H' (99}
The space of bounded energy (for the exterior Laplace problem) is given by
Hp(Q2%) = {ve Hp (™) : / Vo|* dz < 0o}
Qext

For v, w € HL(Q%™) we can still evaluate the exterior bilinear form

a

o, w) = Vv - Vwdz.
Qext

Lemma 3.34 (without proof). The space H(Q%™) equipped with norm
i

1/2
s ey = (/ Vol + 1 d)
B Qext ]_ + p(l’)

1s a Hilbert space, where

x| log || if d =2,
p(x) = .
|| if d = 3.
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Hence H(2%Y) can be considered a weighted Sobolev space. Furthermore,

—oxty |l aext)

Hp(Q™) = C5o(Q™) ,

and for d = 3, the seminorm | - [g(qesy is equivalent to || - [| g1 (qext)-

—ext

Exercise 21. Assume d = 3 and show that if u € C*(Q ) fulfills

u(@)] = O(lz™")  as x| = oo,
then u € HEL(Q).
Now is a good time to discuss the behavior of the two surface potentials
at infinity (which we didn’t do so far).
Decay Behavior of the Surface Potentials

Theorem 3.35. Let L = —A and assume that for d = 2, we use the fun-
damental solution kernel G(x) = —1/(2n)log |z|. Then for v € HY*(T) and
we H VT,

~ — L (w, Dr log|z| +O(|z|™Y) ifd =2,
(Vw)(z) = {Oirﬂf\_l) )r loglz| + O(fI™) ;d:&} as |x| — oo,

(Wo)(z) = O(lz|" %)  as |z| — .
In general,

Wo € HLQ™),
if d=2 and (w, 1)r =0,

Vu e Hp () { or if d = 3.

Proof. Assume 0 ¢ Q™" and x € Q¢ with || > max(1, 2diam(Q2™)). Then,
for any y € T,

z| < |z —y|+yl < |z —yl+diam(Q™) < |z —y|+ izl

andso |v—y| > 1z
(a) Single layer potential for d = 3:

(Vo)) = | [ Gle—nut)ds| < 16—l ol e

-~
<Cr HG($_.)“H1(Qint)
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A short computation reveals that
|G~ Wnamy = 1 [ lr=sl Pyt [ Ja-sltdy < Clal .
Qint%/—/ QintH/—/
<4|z|-2 <16|z|—*

(b) Single layer potential for d = 2. We choose § € Q™. A Taylor expansion
gives

log |z —y| = log|z|+ % for some 7 € R
r—Y
Therefore,
(Vw)(a) = ——/log\a:—y\ y)ds,
G —2)-y
= ——logx / )ds ——w(y)ds

— (%)

Analogously to (a), one shows that |(>x<)| < Cwll g-1r2qrylz] ™!
(c) Double layer potential for d = 2 and d = 3. Recall that for z as above,

—~ 0
(Fo)w) = [ GGla =) s,
As we showed in the proof of Theorem 3.26,
0 1
—G . - = . 1—-d

Hence, with the above assumptions on z and v,

0 _
T < (50 =g Il < Clal'~ ol

(d) The HEL(Q™")-membership properties of the surface potentials now fol-
lows from Exercise 21. O
Representation Formula The trace operator 4§ can be extended to
HE(Q), and the conormal derivative v{*u can at least be (well-)defined
for u € HL(Q™Y), Au = 0 in D*(Q%%), such that

Vu-Vodr = —{(7"u, 75) Yo € Hy(Q%). (3.36)

Qext

Also, the transmission property from Section 3.1 and the representation for-
mulae from Section 3.3 can be extended to the larger space.
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Theorem 3.36 (without proof). Letd = 3. Ifu € HL(Q™Y) fulfills —Au = 0
in D*(Q%Y), then

u = Wrdu—VA&tu  in Q%

For d = 2, a suitable constant term has to be added to the right-hand side
(namely (Weq, Y& u)r, cf. Def. 3.42 below).

Remark 3.37. For d = 2, L = —A, and (w, 1)r # 0, the single layer
potential Vuw grows logarithmically towards infinity as |x| — oo. This is a
particuliarity of the two-dimensional Laplace operator, reflected by in the
following facts:

e For d = 2, the fundamental solution kernel itself grows towards infinity.

e One can show that
1€ Hy(Q™) ford=2

(but 1 ¢ HL(Q™) if d = 3). Hence, for u € HL(Q2°") with —Au = 0
in D*(2%*), we obtain (from (3.36) with v = 1) the condition

(v, )r = 0. (3.37)
The analogous condition (yi"u, 1)r = 0 holds for the interior Laplace
problem (for either d = 2 or 3). One may say that in 3D, the space
HE(Q%*) owns something like a Dirichlet condition at infinity, which is
not present in 2D. Correspondingly, a solution of the exterior Neumann
problem in 2D is only unique up to constants, whereas the exterior

Neumann problem in 3D is uniquely solvable.

e Comparing the compatibility condition (3.37) with Theorem 3.35, we
see that the term (w, 1)r in front of log |z| vanishes anyway if w is the
conormal derivative of a solution.

3.6.2 The Exterior Helmholtz Problem*

For L = —A—k2I, d = 3, one often uses the Sommerfeld radiation conditions
0
u@)| = Oal™),  |5= —iku| = O]  as |z > ox,
w

where w = x/|z|, cf. [Sauter/Schwab]. They essentially state that u is an
outgoing wave. An appropriate (complex-valued) solution space is

2 2
—ex + |VU($)’ ou .
Hl Qext ::{ Ll 0 t :/ |U(l’)| e
e A W u et PR
For more details see [Sauter/Schwab], [McLean, Ch. 9].

2
dr < oo}.
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3.6.3 Exterior Calderdon Identities

In the following, we restrict ourselves to the (homogeneous) exterior Laplace
problem in 3D.
From Definition 3.22 and the jump relations (Lemma 3.21), we get that

,Ygxtv — ‘/’ ,Ygxtw — O'I—l-K,

N N (3.38)
WYV = (=1+0) + K, VWW = —D.

The representation formula from Theorem 3.36 and the relations (3.38)
lead immediately to the exterior Calderén identies

YW | ol + K -V Yoty
|:’}/th'&:| - |: _D (1 _ 0)[ _ K! ,.fotu ) (339)

~~
—(Cext

/

and one can show that C™' is a projection.

Remark* 3.38. The same formulae hold for the general differential operator
L with ¢ # 0 for d = 2 and d = 3. For the Laplacian in 2D, a suitable constant
term has to be added to the first line of (3.39) (namely (weq, 7§ u)r, cf.
Def. 3.42 below).

3.6.4 Exterior Boundary Integral Equations

Assume again that d = 3 and L = —A. Using the first line of (3.39), one
can derive the boundary integral equation

find t € H-Y*(T) : Vt = [(c = 1D)I+ Klgp  in HY*(')  (3.40)

for the conormal derivative ¢ := 4§« of the solution u of the exterior Dirich-

let problem
Lu=0 in D*(Q%), Y&y = gp in HY?(T).
If t € H-Y/2(T) solves (3.40), then
u = ng — Vit

defines a solution of (3.40) (where the correct solution space has to be used).
The analogous steps lead to the boundary integral equation

Dv = —(ol +K')gy  in HV*T)

for the exterior Neumann problem.
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3.7 Ellipticity of V and D

Recall that the boundary integral equations for the interior/exterior Dirich-
let/Neumann problem have the form

findt € HY?(T): Vt = g in HYX(I), (3.41)
findve HY*I): Dv = g, in H YT, (3.42)

where the right-hand side (g; or g2) depends on the given data. Recall that
V:HY2T) — HY*T) and D : HY?> — H~Y2(T') are self-adjoint opera-
tors. Hence, we can write (3.41)-(3.42) in variational form with symmetric
bilinear forms:

findt € H-V3T): (1, Vt)p = (7, g))r V1€ H Y*T), (3.43)
find v e H/2(T): (Dv, o)r = (g, p)r Yo € HV*(T). (3.44)

In this section, we shall investigate if/when V', D are elliptic, or in other
words, if/when the bilinear forms associated to V', D are coercive. If they
are, the Lax-Milgram theorem will imply the well-posedness of (3.41), (3.42).

3.7.1 Ellipticity of V
Definition 3.39 (H, '/*(T')). We define

H 2T = {we HYXD) : (w, 1)r = 0}.

*

Theorem 3.40 (ellipticity of V). Let L = —A. Then there exists a constant
cy > 0 such that

vw e H AT ifd=2
w, Vwr > ey ||w|%_1 ’
< o2 e fwll-eg {Vw e HVAT) ifd=3.
Proof. Assume that w € H=/2(T) if d = 3, and w € Hy "*(T) if d = 2. We
define u := Vw. From Theorem 3.18, we see that ujgm € H'(Q™). From
Theorem 3.35, we see that uges € Hp(Q%).
Since —Au = 0 in Q™/** we obtain from Def. 2.36 and (3.36)

Vu-Vodr = (™u, ¥y*v)r Yo € H(Q™),
Qint

/ Vu-Vodr = — {7, ) Vv € HE(Q%).
Qext



CHAPTER 3. BOUNDARY INTEGRAL EQUATIONS o8

Choosing v = u and using the jump relations (Lemma 3.21), we obtain

/ VulPdr = (v™u—~+u, yu r = (w, Vw)r. (3.45)
R4 N——— N~~~
=—[nu]=w :70‘7w:Vw

The expression on the left-hand side is usually referred to the total energy
(of the potential Vw). For the special case of the Laplacian, we can adapt
the proof of Theorem (2.36) and show that

. . 1/2
||’7intu||H_1/2(F) < Cf?(/ﬂ t |Vu|dx> (3.46)

1/2
el < ([ (Fulds)” (3.47
cht

ext

where O O are the constants of the interior /exterior inverse trace the-
orem. Combining (3.45) and (3.46) yields

(w, Vw)r = / |Vu\2dx+/ |Vul? dx
Qint Qext
> (Cy)~° ||yimu||§{,1/2(r) + (O~ ||7§Xtu||12qfl/2(r)

> min{ (G2, (CH 2} (I ulld 2oy + 07l 2raqry)-
(3.48)

V

From the jump relations and (3.48), we conclude that

||wH§{—1/2(r) = ||'7i1ntu_7thuH?{—1/2(r) <2 <||7i1ntu‘|?{—1/2(r)+||’7thuH12q—1/2(r)>-

with oy = 1 min{(C§") 2, (C5H)~2}.

O

Exercise 22. Prove the first line of (3.46) for all u € H'(Q™) with Au = 0 in

D*(QM*). Hint: use Step 1 in the proof of Thm. 2.36 to define the functional
.

Theorem 3.40 implies that V is H~'/2?(I')-elliptic in 3D and at least

H{1/2(F)—ellip‘cic in 2D. In order to see what happens on the “rest” in 2D,
we first observe that

H YY) = H-Y*T) @ span{lr}, (3.49)

This implies (w, Vw)r > ¢y ||w\|§{,1/2(r)

where 11 denotes the constant function on I' with value one. Moreover, each

w € HY2(T") can be decomposed uniquely: w = w; + wy with
1 1
wy = w— m<wa 1>F € H*_I/Q(F)a Wo = m(wa 1>F = const,

where [T = (1, I)r = (1, 1)2r) = [ ds.
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Lemma 3.41 (equilibrium density). For L = —A, there exists a unique
distribution we, € H~Y?(T) such that Vwe, = const and

B —-1/2
(w, Vweg) = 0 Ywe H,*(T), } (3.50)

(Weqy 1) = 1.

Exercise 23. Prove Lemma 3.41. Hint: Step 1. Decompose weq = wo + w1
as above. From (3.50), compute wy, and derive a variational equation for
w;. Use Lax-Milgram to show existence and uniqueness of w; € H; (1),
Step 2. Using (3.49), show that there exists A € R (compute its value!) such
that

(W, Viweg) + Mw, I)p = 0 Vw € H V().

and conclude from this that Vwe, is constant.

Definition 3.42. The distribution weq from Lemma 3.41 is called equilibrium
density.

Apparently, (Weq, Vweq) = (VWeq) (Weq 1)-
—— H,l_/
=const =

Lemma 3.43 (without proof). Let L = —A and d = 2. If diam(Q™) < 2,
then (Weq, Vweq) = Vweq > 0.

The source of the condition is the estimate Vweq > — 5= log(2diam(Q™)).

Remark* 3.44. For d = 2, the value Vwe, depends on the diameter of
Q" because we have chosen the particular fundamental solution G(z) =
— o= log |z]. If we choose G, (z) = 5= log(r/|z|), and call the associated op-
erator V,., then for all w € H, Y 2(F), Viw = Vw. The equilibrium density
can be shown to be independent of r > 0, but the value V,we, can take
any value in (—oo, +00); in particular there exists a number r such that
Viweq = 0. The quantity e 2"V is called logarithmic capacity and has

been well-studied in potential theory and harmonic analysis.

Lemma 3.45. Let L = —A, d = 2, and assume that diam(Q™) < 2. Then
there exists a constant ¢y > 0 such that

(w, Vw) > ey wll3rpqy — Yw e HVA(T),

Proof. Let w € H~Y2(I') be arbitrary but fixed. There exists a unique
decomposition of w = w + fwe, with w € H*_l/2(1“) and f € R. Due to

(3.50), this decomposition is “V-orthogonal”:
(W, Vweq) = 0.
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Hence,
(w, Vw) = (W, V) + f*(Weq, Veq)
Thm. 3.40 9 9
v 11y + (Viveg) B
) Vw ~
Z min (CV #) |:”w||12qfl/2(r) + B2 ”wequI*l/?(F)} :
Weq H-1/2(I)

An elementary argument yields

||w||12q,1/2(r) < Q(Hwniﬁm(r)+52||weq||§171/2(r))-

. ~ . Vw,
with ¢y = min (CV, W)
Ul g—1/2(1)

Hence, (w, Vw) > ¢y [|wl]|?,_, >0. O

@)

Summary: Let L =—A. If d =3, or if d = 2 and diam(Q™) < 2, then V is
elliptic on the whole of H~%/2(T). In that case, the inverse V! : HY/?(T') —
H~'%(T") exists and is bounded, elliptic, and self-adjoint.

Remark 3.46. In practice, the (sufficient) condition diam(Q™) < 2 for
L = —A, d=2 can be enforced easily by a scaling of the coordinates.

Remark* 3.47. If Lu = —div(AVu) + cu with ¢ > 0, then V is H~Y/2(T)-
elliptic (without any restrictions). For ¢ < 0, V' is Fredholm with index zero,
which implies that V is coercive with respect to the pivot space L*(T).

3.7.2 Ellipticity of D
Definition 3.48 (H/*(I)). Let L = —A. We define
HY(T) = {v€ H(T) : (teq, v)r = O}.
Apparently, we have the unique decomposition
HY*() = HY*(T) @ span{lr}.

Exercise 24. Show that V' maps H;l/Q(F) to Hi/Z(F) and is an isomorphism
between these spaces.

Theorem 3.49. Let L = —A. Then there exist positive constants cp, ¢cp > 0
such that
(Dv,v) > cp \vﬁ{l/g(r) Vv e HY4(I), (3.51)
<DU, U> > 5D ||U||§{1/2(F) Yo € Hi/Q(F), (352)

and ker(D) = span{1r}.
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Proof. Step 1. The proof of (3.51) is similar to that of Theorem 3.40. We set

u = Wo. This time, ujgexe € HE(Q™Y). From the jump relations and Green’s
identity, we obtain

ext ext int int

( Dy o) = (=, [wul}) = =0 u 5% + (™, 15 w)

=—’)/1Wv
= / |Vu|2da:—|—/ |Vul? dx.
Qext Qint

Using the interior trace theorem and Poincaré’s inequality, we get

2 .
H1 (th)

< (C(‘érnt)2 (1 + CP(Qint>2) ’u‘?—]l(gint) y

|’7(i)ntu|§{1/2(1“) = h/(i)ntu i EQint 21/2@) S (C;?t)Q HU’ . ﬂﬂint

i.e. the interior trace inequality holds with the respective seminorms. With
similar (but not completely analogous) techniques, one can show that

ext

176 U|?{1/2(r) < C|U|§11(Qext)

for some constant C' € (0, co). Combination of the last three results yields
(Dv, v) = 2cp (|78Xtul?ql/2(p) + |7¢ijntu|§11/2(r)) > cp |75 —"u |12ql/2(p) )
—_————

where 2c¢p = min((C2)?(1 + Cp(Q™)%) L, C1) > 0.

Step 2. We show that ker(D) = span{1r}. Apparently, the constant function
1ot solves the homogeneous Laplace equation in Q™ with Dirichlet datum
Ir and 7™ 1w = 0. Consequently, the representation formula yields

lom = —Wlp+0,

and thus, 0 = —'yilntWh = Dl1r, which implies span(1r) C ker(D). However,
since span(1r) is the kernel of the seminorm |- |12 and because of (3.51),
the kernel cannot be larger.

Step 3. Recall that H,/?(T') has codimension 1 with respect to H'/?(T). Using
e.g., Sobolev’s norm theorem, one can show the Poincaré-type inequality

lollzry < Clolmeey Vo€ HY2(D).
With this inequality, (3.52) can be derived straightforwardly from (3.51). O

Remark* 3.50. If Lu = —div(AVu) + cu with ¢ > 0, then D is elliptic on
the whole of H/2(I).
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3.7.3 Solvability of Two Boundary Integral Equations

Single Layer Boundary Integral Equation Assume that L = —A and
that either d = 3, or d = 2 and diam(Q™) < 2. Then the boundary integral
equation

find t € HY2(T) : Vt = ¢ in HY*(I)

admits a unique solution due to Lax-Milgram.

Hypersingular Boundary Integral Equation Assume that L = —A.
Then the boundary integral equation

find v € HY4(I) : Dv = ¢ in H~Y3(I)

is solvable if and only if g» € H, "/ (). The solution v is unique up to an
additive constant.

Exercise 25. Show the statement above.

In case of the interior Neumann problem, g, = (%I — K')gn. As one can
show (see Sect. 3.7.4 below), the usual compatibility condition (gy, 1)r =0

implies g, € H, '/*(I).

3.7.4 Properties of K and K’ *

Let L = —A. Then the operators 11 + K are isomorphisms between HA(T)
and Hi/Q(F), and 37+ K’ are isomorphisms between H*_I/Q(F) and H;1/2(F).
Furthermore,

ker(31 + K) = span(1r), ker(1] + K') = span(weg),
(%] - K)lp =1r, @I — K')Weq = Weq.

Furthermore, there exists a contraction constant cx € (%, 1) such that
(L=clvlv < NGI£ K)oy < exllolvs Vo e H(D),

where V! denotes the inverse of Vg1 and lvlly-1 = v/ (V~1v, v). The
contraction property can, e.g., be used to show existence and uniqueness
of the 2" kind integral equations from Sect. 3.5.5 via Banach’s fixed point
theorem.

If the boundary I' is smooth, then K, K’ are even compact operators,
however this property is lost for general Lipschitz domains.
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3.8 Steklov-Poincaré Operators*

Let L = —A and assume, for simplicity that d = 3. Let S™ : H'/?(T") —
H~Y2(T") denote the interior Steklov-Poincaré operator from Sect. 3.5.2. Re-
call the interior Calderdn identities (3.21) for the homogenoeus PDE:

Yul [ -K 1% ity
Ay | D I+ K Aty |

Since ity = Sty and because V is invertible, we obtain the two alter-
native representations

S" = VIIGI+ K) = D (I + KW (G + K), (8:53)

where the second one reflects (again) the self-adjointness of S™. Based on
Theorem 3.49, one can show that S™ is elliptic with respect to the H/2(I')-
seminorm.

Analogously, one can show the representation

-8 = V'iI-K) = D+ (- K)W(3iI-K) (3.54)

for the exterior Steklov-Poincaré operator. The operator —S®* is H'/2(T)-

elliptic. Furthermore,
V—l — Sint _Sext.



Chapter 4
Galerkin BEM

In this chapter, we discuss how to construct a Galerkin boundary element
method based on a surface triangulation of the boundary I'. For the specific
case of two boundary integral equations for the Laplacian, we provide a priori
error estimates. Finally, we discuss some properties of the boundary element
matrices.

4.1 Construction of Galerkin BEM

4.1.1 Surface Triangulations

Throughout this chapter, we assume that I' splits into disjoint parts {I'; }é\[:l,

N
I' = Ufj’ FJﬂFkZQ) fOI‘j;"él{f7
j=1

where each part I'; is the image of a (d — 1)-dimensional parameter inter-
val/polygon Q; under a diffeomorphism (; (bijective, (j, Cj_l e C'). We now
consider standard triangulations of the parameter domains Q;:

o for d = 2, Q; splits into simple intervals,

o for d = 3, Q; splits into triangles.

Let 7; denote the images of these elements under the respective mapping ¢;,

such that 1
nj,

I' = U?27
i=1

where n§' denotes the total number of elements. The resulting (global)
nel
mesh/triangulation of I' is denoted by 7, (I') = {7;},%4.

64
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g

@ o .

(polar coordinates, angle)

Figure 4.1: Hlustration of a meshing a circle, Example 4.1 (b). Left: Mesh
of the 1D parameter domain Q. Right: Resulting surface mesh of T'.

Figure 4.2: Illustration of surface mesh in 3D (slightly exaggerated).

Example 4.1. (a) If I'; are already a straight lines (d = 2) or flat faces
(d = 3), then 7; are straight line segments or flat triangles, respectively.

(b) Let I' be the circle B;(0) C R2. Using polar coordinates, we transform
the interval Q := [0, 27) to I" with ((¢) := (cos(¢p), sin(¢)). We subdi-

vide Q into subintervals (¢, @ri1), €8, wr == 27k/nS k=0,...,ns.
The resulting surface mesh 7;(I") consisting of n§! arcs is illustrated in

Figure 4.1
(c) For an illustration of a 3D mesh consisting of curved triangles, see

Figure 4.2.
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Definition 4.2. 1. The global mesh 7,(I") is called conforming if the in-
tersection of two different elements 7;, 7; is either empty, or a vertex of
both elements, or (for d = 3) a (possibly curved) edge of both elements.
(By a vertex/edge we mean the image of the corresponding parameter
vertex/edge) In particular, hanging nodes are not allowed.

2. We define the local and global mesh size by

el

hi = |74, h = I%X hy .

3. A family {7,(I") }1, of surface meshes is called shape regular if

e the corresponding families of parameter meshes are shape regular,
i.e., p; > ch;, where h; is the diameter of the corresponding pa-
rameter element and p; the radius of the largest inscribed ball in
the parameter element, with uniform constant ¢ > 0, and if

e the geometry mappings (;, (; ! have uniformly bounded gradients
and determinants.

In that case, diam(r;) ~ h; ~ h; ~ p;.

4. A family {T7,(T')}, of surface meshes is called quasi uniform if it is
shape regular and if there exists a uniform constant ¢ > 0 such that

hi>ch Yi=1,...,n.

In the following, we assume that 7,(I") is conforming and shape regular.

4.1.2 Trial Spaces

Let T,(I';) :== {7 € To(I") : 7 C I';} denote the restriction of 7,(I') to I'; and
let P* denote the space of ((d — 1)-variate) polynomials of degree < k. We
define the spaces

Sp) == {we L*D):w,o¢ eP’ VreTu(ly), Vji=1,...,N},
Sp(D) == {vell):v,0eP VreT(ly), Vi=1,....,N}L
The functions in SP(T') are piecewise constant with respect to T,(T") and

typically discontinuous. The functions in S}(T') are continuous and may
informally be called piecewise linear.
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Lemma 4.3. The trial spaces above fulfill
STy c HTAI), Sy € HYA(D),
i.e., they are conforming to the spaces involved in Problems (3.41) and (3.42).

A natural basis of SP(T') is given by {¢? ?El, where

1 ifzemn
0 . (3
#i(®) {O else.

Let x) denote the vertices (nodes) of T,(I") and nj** the total number of

vertices. Then a natural basis of S}(T) is given by {cp}c}zzt ,where
pr € SiD),  wilz) = Ok

4.1.3 Galerkin BEM

Recall the boundary integral equations for the homogeneous interior Dirichlet
and Neumann problem:

findt € H'V*(D): (r, Vtyr =(r, 3] — K)gp)r Vre€ HV*D), (4.1)

find v e HY2(T) : (Dv, o)r = (31 — K')gn, o)r Vo € HA(T).  (4.2)
The corresponding Galerkin formulations read

find t, € SH(T) = (7, Vitp)r = (1, 31 — K)gp)r  Vmn € SH(T), (4.3)

find v, € Sp(T) : (Dup, en)r = (31 — K')gn, on)r Veon € Sp(T).  (4.4)

For the other boundary integral equations involving V' or D, one can of course
proceed analogously.

4.1.4 Matrix-Vector Form

For simplicity, assume that the data of (4.1), (4.2) fulfills gp € S(T') and
gy € SY(T), and let

el
Ipn € R, Inn € R

denote the coefficient vectors with respect to the natural bases.
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We define the matrix

[Vh]l . 90]7 V@z) fOI' Z .] - ]' 21

// x —y)dsy, ds,,

where for the second line, we have used Lemma 3.24 and the fact that ¢?,
@] € L>(I"). Moreover, we define the matrices

K i ?7[( ;
Knli (¥ . f’“>r fori=1,...,n5, k=1,...,n°"",
(Mplii = [p¢) ) ds

and
[Dulre == (Dgy, o)r for k, 0 =1,... n)"".

With these notations, (4.3), (4.4) are equivalent to
find t, e R" :  Vipt, = (LM, — Kp,)

gD,h’
find v, € R™™ : Dyv, = (M, — K)

(4.5)

Inn (4.6)
in the sense that the coefficient vectors ¢, v, correspond to ¢, v, resp.

Calculation of matrix entries will be discussed briefly in Sect. 4.3 below.
The conditioning of V}, and D), is the subject of Sect. 4.4. Sufficient storage
and application of boundary element matrices is treated in Chapter 5.

4.2 A Priori Error Estimates

In this section, we provide with a priori estimates for the errors ¢t — ¢, and
v—uy, of the Dirichlet and Neumann problem, (4.1)—(4.4). Under the assump-
tion that the exact solution (¢ or v) is sufficiently smooth, we shall obtain
convergence as the mesh parameter h — 0.

4.2.1 The Dirichlet Problem

Assume that the single layer potential operator V' is elliptic (cf. Sect. 3.7).
From Céa’s lemma, it follows immediately that the solutions ¢ € H~'/2(T")
and t, € SY(T) of (4.1) resp. (4.3) fulfill

t—th|| - < C inf |t— - , 4.7
| nll o 2 =S whégg(F)H Wi || g 1/2(T) (4.7)
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where C'is the reciprocal of the constant of boundedness and ellipticity of V'
with respect to the norm || - || y-1/2(p.

Similarly to standard FEM, we aim at an error bound of the form C' h®
under the assumption that ¢ is smoother than H~Y2(I" ). Recall, however,
that ¢ is the normal derivative of the solution u. Since I' is only piecewise
smooth and the normal vector is discontinuous, we cannot expect t € H*(T")
with s > 0.

Piecewise Sobolev Spaces

Definition 4.4. Following [Steinbach|, we set
H: (D) = {v € LX) : v, € H*(Tj)} for s €0, 1],

HH for s € (0, 1],
] 1 _Hs(l" )*

equipped with norms

J 1/2 J
Pl = (X Iolewy) Il == D lwsllgaqr,
j=1 j=1

Lemma 4.5. Let w € H_3(T') with s > 0 and define the linear functional w
by (w, v)r = Zj.v:l(wj, vr,)r;- Then w € H=*(T') and

@l -sr) < Nwll gz -

If we identify w and w (which is justified), we can say that the embedding
H;;(F) C H=*(T") is continuous (whereas the flipped embedding H*(T') C Hg,,(I') is

continuous for s > 0).

Proof*. By definition of the dual norm and of w,

. (@, v)| L (wy, o)
@y = sup I < sup DS
verrs O\ Vllas)y ~ vemsangoy = 0llam)

'U) ’UF
< sup Z Jr Yl

veH (O\{0} o, llas o)
J
[(wy, v))|
= sup I = ”wHH;;(F)' u
1 vi€H(T)\{0} HUIF |H5(F)

Exercise 26 (for doctoral students). Show that
H () C Hp_wl/2(F) for s € [, 1],

and that the embedding is continuos.
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An Approximation Result for S

We study the approximation qualities of S} on each boundary part I'; sepa-
rately.

Theorem 4.6 (approximation by Sy). Let I'; C T’ be a C*-manifold (as in
Sect. 4.1.1). Then, for any Sobolev indices o € [—1, 0] and s € [o, 1], there
exists a constant C' independent of h such that

inf w— whllgery < Ch7||lw
A vy < OBl

Hs(T;) Yw € HS(F])

If s > 0, the norm on the right-hand side may be replaced by the seminorm
\w|gs(r;). Also, the same estimate holds if the norm on the left-hand side is
replaced by the “tilde” norm ||w — wa| gor,)-

In order to prove Theorem 4.6, we use a quasi-interpolation operator.

Definition 4.7 (quasi-interpolant). The operator Qy, : L*(T';) — S)(T;) is
defined by

(Qh v, Uh)L?(rj) = (U7 Uh)m(rj) Vo, € S}?(Fj)-
We may also replace I'; by I'.

Apparently, for an element 7 € T, (I"), we have that

(Qnv);r = ﬁ/Tvds, (4.8)

i.e., the value of Qv on 7 is the mean value of v over 7. This also shows
that Quuy, = vy, for all v, € S*(T;) and so, Q, is a projection onto Sy(L;).

Lemma 4.8. For u € H*(I';) with s € [0, 1], we have the error estimates

HU - QhuH%ﬂ(Fj) S C Z hzs’U 12113(7.) y (49)
r€Th(T;)
lu—Quullz2er;y < Ch°|ulmsr;), (4.10)
where h, = |74~V denotes the local mesh size of T and |u|go(ry := |Ju|z2().-

Proof. Beforehand, we show that (4.10) follows from (4.9):

lu—Quullier, < C Y B Juliey < OB 3 Julheg

7'67—h(rj) <h2s 7—6771(1—‘]')
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From the definition(s) of | - |gs(r), s € [0, 1], we see that the sum on the
right-hand side is at least bounded from above by |u %{s(rj)'

Case s = 0. By the definition of );,, we obtain the Galerkin orthogonality

(u — Qnu, Uh)LQ(Fj) =0 Yoy, € S,?(F]), (411)

showing that the projection @y, is L?*(T';)-orthogonal. Therefore, Q) must
have an operator norm < 1, or equally,

||Qhu||L2(rj) < ||U||L2(Fj)7

which proves (4.9) for the case s = 0. Indeed,
= Quulagr,y = (u— Quu, u— Quu)s
(4.11)

L2(T;
C.S.
=" (u—Qnu, w2,y < |Ju—Qunullzer, llullz2(r,

Case s € (0, 1). Let 7 € T,(I';) and = € 7. From (4.8), we obtain
2
) = @) = ule) = / s, = ([ uw) —utw)as,)

2
_ yl(d=1)/2+s
|r|2 / E- T 1/%' e ds

) ( (d—142s
y[d- 1+2s dsy ‘1’ | )dsy

<d1am(T)

!TP le

Integrating the estimate over 7 with respect to x, we obtain

diam(7)d-1+2s

7]
e e
<Ch2s

2
He(r)

Ju — Quullfzy < |u

where we have used the definition of | - |gs(;) after Sobolev-Slobodeckij (see
Remark 2.23) and the fact that diam(7) ~ h,, due to shape-regularity. This
proves (4.9) for s € (0, 1).

Case s = 1. The main idea here is to start as in the case above and to write
the difference u(x)—u(y) as a line integral over the derivative (along the line).
This directional derivative can be bounded in terms of the gradient. As an
additional difficulty, one has to transform the possibly curved element 7 to
its corresponding straight /flat element in the parameter domain. A rigorous
proof can be found in [Steinbach, Theorem 10.2]. O
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The above L?-estimate can now be used to derive estimates in negative
norms using duality and the projection property of Q.

Lemma 4.9. Foru € H*(T') with s € [0, 1] and for o € [-1, 0),

lu — Qrullfe,) < Ch77 Z h2* u
TE€TH(T;)

|lu — QhUHHU(Fj) < Ch*77|u

2
Hs(T) >

Hs(Ty) -

Proof. Using the definition of the dual norm and the fact that u — Qpu €
L*(T;) € H~Y2(T;), we obtain

The same estimates hold if ||u — Qpul? o(r;) i replaced by |lu — Qhu||2~a(r‘
J

(u — Qnu, v)r2r,)

lu = Quullaey) = sup o]
ve =7 (T;)\ {0} H=2(5)
(4.11) sup (u - Qhuv U= th)]‘g(rj)
velf—o(I;)\{0} olr=-ce
C.s. HU - QhUHL2 r;
< lu—@uulla,)  sup o] N
vel-omnfoy  NVllE=o()

We now apply Lemma 4.8 twice:

(4.9)
||U—Qhu||%2(rj) < C Z his‘uﬁfs(f)a
TEE(FJ')

(4.10) Y Y
lo = Qullzzay < Ch foluowy) < OB [0llaqr,) -

Substituting these estimates into the previous one yields the desired result.
Estimates for the “tilde” norm |[u—Qpu|| o ) are obtained analogously. [

Lemma 4.8 and Lemma 4.9 together imply the statement of Theorem 4.6
for —1 <0 <0< s < 1. A proof of the remaining case —1 < o0 < s < 0
requires another quasi-interpolation operator which is H?-orthogonal as well
as techniques from interpolation theory, see, e.g., [Steinbach, Theorem 10.4].

A Priori Error Estimates for the Conormal

Recall the Céa estimate (4.7),

t—thllpg- < C inf |t— - :
I w12y < whégg(F)H wal 12y
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Assumption: t € HS (T) for some s € [—3, 1]. By Exercise 26 (page 69),
te H;WUQ(I’). The function wy, is piecewise constant w.r.t. 7,(I'). Hence, it

follows that each restriction (¢t —wp)r, lies in H=Y2(T;), cf. Definition 4.4.
Because wy, is piecewise constant, the infimum can be localized:

Lem. 4.5+4Def. 44
1t = tall 12 < inf F)Z 1€t = wn)ir, | f-s/2r

whesl

(4.12)
< CZ inf Ht|r Wil g-12r;) -

hGSO

From Theorem 4.6, we obtain

fs(ry) for s € [—%, 0),
mer,) fors e |0, 1].
(4.13)

tr. |
inf tr. — w5 L < O RV | ITs
whESO( || |F h||H 1/2(F]) — ||t|1"]|

The combination of (4.12), (4.13), and Definition 4.4 yields the following
important result.

Theorem 4.10 (error estimate of the conormal). Let ¢ and t;, be the solutions
of (4.1) resp. (4.3), and assume that t € H3 (T) for some s € [—3, 1]. Then

It = tnll g-1r2ry < O R/t Ht”HSw(F)

In the optimal case t € H ('), we get
Ht — thHH71/2(F) = O(h3/2) as h — 0.

For piecewise constant ansatz functions, this estimate cannot be improved.

Regularity Theory*

Question: when is t € H3 (T), for s € [—3, 1] ?
Partial answer:

Lemma 4.11. Let I' be piecewise smooth (cf. Sect. 4.1.1) and suppose that
u e HY Q) with —Au = f in D*(). Then, for s € (0, 1],

we P (Q) = teH D).

Proof. From the assumption, we get Vu € H'/275(€2). One can show that the
trace operator 7y is continuous from H/*¢(Q2) to H, (T'). Since the normal
vector is piecewise smooth and t = vo(Vu - n), the assertion follows. ]



CHAPTER 4. GALERKIN BEM 74

The regularity of the solution w itself is a difficult field, see, e.g., [Grisvard,
Dauge]. In order to get u € H3/2¥3(Q), one needs subtle assumptions on

the domain and its boundary, and regularity of the Dirichlet data, such as
gp € H 1+S(F).

A Priori Error Estimates for the Reconstructed Solution

Assume a homogeneous right-hand side, i.e., fi™ = 0, let ¢ and ¢, be the
solutions of (4.1) resp. (4.3), and let v € H'() denote the corresponding
solution in the interior. Thanks to the representation formula,

w=Vt—Wyp. (4.14)

Using this identity as a motivation, we define the reconstruction u, € H()
of the solution u by

Up = Vi, — Wap. (4.15)

If t € L*>(I"), we obtain from Lemma 3.14 that the error u — 1, is continuous
in the interior of 2 and

u(z) —up(x) = /FG(x, y) [t(y) — tn(y)] ds Vo € .

Since x # T', the fundamental kernel fulfills G(x, -) € C*°(I") ¢ H?(T") for
any o € R. Hence,

u(z) —an(z)] < G2, a1t = tallzew) -

Choosing o = —%, we see that the pointwise error converges at least as good

as the error in the conormal.

Remark* 4.12. Better estimates are obtained via bounds of the error in
a weaker norm, i.e., ||t — tp||goq) with o < —31, using an Aubin-Nitsche
argument. Details can be found in [Steinbach, Theorem 12.3]. In the optimal
case t € H (T'), one finally obtains

lu(z) — up(z)| = O(R?) as h — 0, for x € Q.

One can also analyze the H!-error of the reconstruction.

Theorem 4.13. Let u and uy, be defined according to (4.14) resp. (4.15) and
assume that the bilinear form a(-,-) is Hy(Q)-elliptic. Then there exists a
constant C' independent of h such that

lu— Tl < Clit=talla-zq
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Proof. Set g, := 7ouy, (interior trace). From the properties of the surface
potentials and boundary integral operators, we obtain

gp = Vt+ I+ K)gp,
g = Vta+ I+ K)gp,
gp—ﬁh = V(t—th). (416)

Thanks to the assumption on a(+, -), the Dirichlet problem is well-posed, and
so v and uy can be characterized by

u=u+ Egp, Uug € Hol(Q) . alug 4+ Egp, vo) =0 Yy € H&(Q),
ﬁh = ag + ggh, ﬂo - H&(Q) . a(ﬂo + Sgh, ’Uo) = 0 \V/U() - H&(Q),
(4.17)

where £ is the bounded extension operator from the inverse trace theorem
(Thm. 2.26). Subtraction yields

a(ug — ug, vo) = a(€E(gn — gp), o) Y, € H&(Q).

An application of Lax-Milgram provides the estimate

~ Cq ~
luo = Gollrrri) = = 11€(gn = 9p)llme - (4.18)
where ¢,, ¢, are the constants of H'-boundedness and H;-ellipticity of a(-, -),
respectively. Finally, by the characterization (4.17) of u, uy, the triangle
inequality, and estimate (4.18), we get

Ju =t i@y < |luo —tollar ) + I€(9p — gn)l|lm1 (0

Ca _
< (C— + 1) 1E(Gn — gp)| ()

=a

C

< —“+1)O Tn — < Ot —tullg- ,

< (1) Cnlggmlmem < Clt=tallvay
=V (t—tp)

where in the last line, we have used the inverse trace inequality, identity (4.16),

and boundedness of the single layer potential operator V. O

Combining the last theorem with Theorem 4.10, we obtain the conver-

gence result
|lw =l = O(h/?+2) as h — 0,

under the assumption that ¢ € H3 (T) for s € [=3, 1]. In the optimal case,
we get O(h%/?).
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4.2.2 The Neumann Problem

For simplicity, we consider only the homogeneous Laplace equation. Anal-
ogous error estimates hold for Lu = —div(AVu) + cu with ¢ > 0. Recall
Equations (4.2) and (4.4):
findve HV2(I) . (Du, o)r = (31 = K')gn, 9)r Ve € H'A(T),
find vy, € Silz(F) : (D, on)r = ((%[ — K')gn, on)r You € S}L(F)-
Recall also that ker(D) = span(1lr) and that the Neumann data gy must
fulfill the compatibility condition gy € Hy ().
Remark 4.14. In practice, one often uses regularizations of the operator D
in order to remove the kernel, e.g.,
(a) (Dv, p)r = (Dv, P)r + (Weq, V)T (Weq, @)1,
(b)  (Dv, @)r == (Dv, p)r + [pvds [.pds.
Exercise 27. Show that when replacing D by D in the above equations, v,

vy, are still solutions of the original problems. For Choice (a), they are unique
in H}/*(T). For Choice (b), they fulfill [, vds = [ vy ds = 0.

At least, D is elliptic on the factor space H'/?(T) /ker(D), and so we con-
clude by Céa’s lemma that

vV — v < C inf |v-— ) 4.19
| h’H1/2(F) > e8I (D) | ‘Ph|H1/2(F) ( )

Theorem 4.15 (approximation of S}, without proof). Let Q be a C*!-
domain. Then, for s € (%, 2] with s < max(%, kE+1),

inf Al = enllgeey < CRT2plusry Vo € HY(T).
LthSh(F)

Combining (4.19) and Theorem 4.15, we get the following result.

Theorem 4.16 (error estimate for the Dirichlet trace). Let Q be a C*!-
domain and let v, vy, be solutions of (4.2), resp. (4.4). If the exact Dirichlet
trace fulfills v € H*(T") for some s € (%, 2] with s < max(%, k+ 1), then
there exists a constant C' independent of h such that

|U - Uh|H1/2(F) S ChS—l/Q .

In the optimal case where v € H?(T') (this is if the solution lies in
H5/2(Q)), the error is O(h*?). This result cannot be improved, at least
not with continuous piecewise linear ansatz functions.

For further estimate see, e.g., [Steinbach, Sect. 12.2].
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4.3 Calculation of Matrix Entries

4.3.1 Single and Double Layer Potential

Opposed to Collocation BEM, the Galerkin BEM requires the evaluation of
double integrals. In principle, there are three classes of evaluation formulae:

e analytic (only available for very simple situations)
e numerical quadrature (for both integrals)

e semi-analytic (analytic for the inner, quadrature for the outer integral)

Example for a Semi-Analytic Formula (Single Layer Potential)

We consider the single layer potential for the Laplace operator L = —A in
two dimensions. Assume that

e the space S (T') of piecewise constants is used for the approximation of
the Neumann trace,

e cach boundary element 7 € T,(I") is a straight line,

e the outer integral is approximated by the midpoint rule (for simplicity;
other quadrature rules are treated similarly).

Let i, j = 1,...,n§ be element indices, and let y; denote the midpoint of
element 7;. Then,

1 hopefully Ti
Vilsi = /Ti/ﬁ—%log|x—y|dsxdsy ~ —‘27T|/leog|x—yi|dsx.

We remark that the integral above equals (up to the constant factor of |7;|)
that of a Collocation BEM with collocation points in the element midpoints.

Case 1: 1 = j. Only in this case, we have to evaluate an improper integral:

hi/2 h,‘/Q
/log|a:—y,-|dsx = / log [ d¢ = ZIirr(l)/ log |£] d€
) e—0 J,

' hi/2
= 2lim ¢ log(¢) — ¢
= h;(log(&) —1) — liII(l) 2(eloge —¢),

N

-~
=0

where the last limit can be calculated with de I'Hospital’s theorem.
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|
|

|
w
Tiy1 T T Yi

Figure 4.3: Left: Case 2 with coordinate transformation. Right: Case 3.

Case 2: i # j, y; not collinear with 7;. Let x;, x;41 denote the endpoints of
7; and let us introduce a coordinate transformation as in Figure 4.3 (left):

a = |z—y "
— s = |z —y| =
cosf = |2 — uil cosf
|z — yil
n = a tanf
*) a (%)
ds, = dn = &@(taHG) df = cos29d9 =" a(1+tan*(0))do

Now, the integral can be calculated with the usual transformation rules:

2

0
(%) 2 a d
/T.log\x—yi]dsx = a/01 10g<cos€> %0 (tand) do

J

[

__sin@
cos 0

a 02 % cos® (—a)(—sinf) sinf
_— ( ) " 9] _ / a9
¢ [ & \cosa/) " 61 ¢ 0, @ cos? 0 cos 0

N

J/

= [P tan’(6)do ‘= [tang — 6]}

= a[tanﬁ <1Og (coas¢9> - 1) +0]:j
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Case 3: i # j, y; collinear with ;. Assume, e.g., that y; is on the side of x;
as shown in Figure 4.3 (right). Then,

5 4+1—vil 2541yl
/10g|x—yi|dsx = / log|n|dn = [n(logn—l)} :

i zjfyi\ |$]’_yi|

Numerical Quadrature

For continuous integrands, numerical quadrature is well-understood. How-
ever, the integral kernel occurring in Vj,, K}, is singular. Thanks to Sauter,
Schwab, and coworkers, there exists a systematic way (based on proper case
distinction) to transform the double integrals appearing in V;, and K}, to in-
tegrals over [0, 1]~ with an analytic (and therefore continuous) integrand.
The latter can be treated with conventional quadrature rules. Details can be
found in [Sauter/Schwab, Sect. 5.2] or [Erichsen/Sauter].

4.3.2 Representation of the Hypersingular Operator D

In this subsection, we treat the Laplace operator L = —A and assume again
that T is piecewise smooth with parts I'; € C* (cf. Sect. 4.1.1).

Definition 4.17 (2D surface curl). Let d = 2. For v € C'(f2), we define

o0 }

curlv := [ o

where 9y, is a short hand for 8/0z). For v € C*(T;), we define
(curlp,v)(z) = n(z) - curlv(z), forx €Ty,

where ¥ € C1(€) is an extension of v from T; to Q.

Definition 4.18 (3D surface curl). Let d = 3. For v € C'(I';) we define
(curlp,v)(x) = n(x) x Vi(z), forx e,

where 7 € C'(9) is an extension of v.
Note that —n x (n x f) = f — (f - n)n for vector fields f. So (curly,v)(x)
is (up to rotation) the projection of Vo(x) to the tangent plane defined by

Lemma 4.19. The above definitions are independent of the choice of the
extension.
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Proof* for d =2. Let I'; = {y(t) e R* : t € (0, 1)}. Then

ds, = 1/ (t)| dt, n(y(t)) = ly%m [ _y?ii(Z) } (if positive orientation).

Hence, for ¢ € D(R?),

/F'curlpjgo ds, = /oljyi%ﬂ[ —ygé/&?f) } (curl?)( Wgo

J

1 1
~ d
— [ (VD) v el - / Sl (1) ely(t) dt
0 0
We see that curlp; is essentially the tangential derivative. O]

For v € CL,(T') (with respect to the partition I' = szlfj), we define
curlrv € L(T) by

(curlpv)ir, = curlp,v, for j=1,...,J.

Theorem 4.20 (without proof). Suppose that L = —A, T' € C’;W and u,
ve HAT)NCT)NCh (D). Then, ford =2,

(Du, v)r = ——/curlpv /log]a:—y[curlpu(y) dsy ds, .

For d =3,

1 1
(Du, v)r = //cur FU| -curlpuly )dsdex.
x_

Remark 4.21. 1. In short, we may write

(Du, v)r = (curlpv, Veurlpu)r .

2. Recall that Si(I') ¢ HY*(I') N C(I') N CL,(T'). Hence, the entries of
the hypersingular matrix D), can be reduced to those of the single layer
potential matrix V.

3. A proof can be found in [Steinbach, Sect. 6.5] and is based on the
integration by parts formula

/FU(?/) curlrw(y) ds, = /FCUTIFU d5y+z v(y;(t 5(1)

if T; = {y;(t) € R? : ¢t € (0, 1)} (with positive orlentatlon). We see
that if v, w € C(T'), then the sum above can be dropped. This is the
background of phrases like “we use integration by parts for the hyper-
singular integral operator”. A similar formula holds for the Helmholtz
operator, cf. [McLean, Thm. 9.15].

1

)
0
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4.4 Complexity of Galerkin BEM

As pointed out earliear, the BEM matrices V},, Kj, D), are dense. Hence,
assembling of these matrices requires O(n?) floating point operations, where
ny, is the number of nodes/elements of the triangulation. E.g., if the solution
of the system

Vity, = (M) — Kn)gp ),

is obtained by Gauss’ algorithm, the computational work is proportional to
O(nj) = O(h™D),

where here and below, we assume that Q ~ (0, 1)? and that 7,(T") is quasi-
uniform triangulation.

For a quasi-uniform triangulation of €2, a finite element method leads to
nprem = O(h™%) many unknowns. Factorization by a sparse direct solver

(pivoting, nested dissection, etc., such as PARDISO) requires O(nz/ SEM) op-
erations if d = 2, and O(nj, pyy) if d = 3. If an optimal solver (e.g., iterative
solver with multilevel /multigrid preconditioner) the complexity (of FEM)
changes to O(n, rem). We compare:

direct iterative
2D unknowns || memory/operations || memory | operations
FEM | h=2 h=3 (sparse) h~ h~
BEM || h~! h=3 (Gauss) h=2 ?

direct iterative
3D unknowns || memory/operations | memory | operations
FEM | h~3 h=° h=3 h=3
BEM | h™2 h=6 h=4 ?

This comparison is probably unfair in many ways: (1) for FEM, extremely
good solvers have been considered, (2) in BEM we haven’t included any
reconstruction of the solution. We see, however, that in order to outperform
the FEM, in BEM, one needs

e a cheaper way to store and factorize or apply a BEM matrix, e.g.,
O(nn log®(nn)),

e a good preconditioner with comparable complexity.

For such techniques, see Chapter 5. In view of iterative solvers and precon-
ditioning, the conditioning of V}, and D}, is of interest.
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4.4.1 Conditioning of V}

Theorem 4.22. Assume that V is elliptic, that Tn(T') is quasi-uniform, and
let 'V}, denote the matrixz corresponding to V with respect to the canonical

basis of SP(T'). Then there exist constants ¢y, ¢y > 0 independent of h such
that

C1 h Hwh”?? < (Vhwy, wy)e < o htt ||EhH?2 Vw,, € R™.

Hence,

k(Vy) = O(h™).

For comparison: for a quasi-uniform triangulation of €2, the condition number
of a FEM stiffness matrix is O(h™?).

Proof*. Let wy, € SY(T) correspond to the vector w; € R™. Then
(Vawy, wy)er = (wn, Vws)r .
Upper bound. Since w;, € L*(T') ¢ H~Y2(I),

B (wh, v)r2(r) (wh, v) 2y CS.
||whHH—1/2(r) = sup T sup —— < ||wh||L2(F)-
veH/2(T)\{0} ||U||H1/2(r) veH/2(T)\{0} ||U||L2(F)

Since V is bounded in H~'/%(T),

(wn, Vun)r < Cllwnlf-sery < Cllwnllzz

<O w nl < ChH |yl

where w; = wy,, are the entries of wy,.

Lower bound. We need some tools (for details, see [Steinbach, Lemma 12.6]).

(i) We define the space of local bubble functions

el

S () = span(p}’)2; < H'(D),

where the basis functions 2 are defined via the reference interval (0, 1)
and triangle {(x, y) € [0, 1]* 1y <1 -2z} by

B . JE0=8) if d =2,
o) {5152(1—51—52) if d =3.
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(ii) We have the inverse inequality
lonllnowy < CRY2 lonllawy  You € SE(D),

which can, e.g., be obtained from an interpolation of corresponding
estimates in the L?- and H'-norm.

(iii) We define QP : L*(T") — SP(T) by the relation

/(wa)ds = /wds Vi=1,...,n§, vw € L*(T).

Ti i

It follows immediately that for all (piecewise constant) wy, € SY(T),

el

"h
(s Qo) = D i | Qfunds =l
i=1 NG ,

=il w),
(iv) The operator QP fulfills the stability estimate
1QPw| 2y < V2| w2y  Yw € LA(D).
Now,

(wh, v)r (wh, QFwn)r2(r)

QP whll gy

||wh||H—1/2(r) = sup
veH/2(I\{0} ||U||H1/2(r)

@iy |lwn ||%2(r) (i) 1 [[wn, ||%2(1") (iv)  pl/2
= B = —1/2 Z ||wh||L2(F) .
Q% whll g2y Ch=2 || Qpwnl| 2(r) CvV2

Using the ellipticity of V', the above estimate, and quasi-uniformity of 75(T"),
we obtain the desired lower bound

(wn, Vwnr 2 ev lwnllf-1emy 2 555 blwallizm

nzl
Cy 2 d 2
= —=h Yy wl|nl = b w,lln .
2 i =
2C — ~—

~pd—1

This concludes the proof. n
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4.4.2 Conditioning of Dy

Theorem 4.23. Assume that T,(I') is quasi-uniform, let Dy be denote the
matriz corresponding to D with respect to the canonical basis of SL(T'). Then
for Lu = —div(AVu) + cu with ¢ > 0, there exist constants ¢y, co > 0
independent of h such that

C1 h*! Hth?Z < (Dh Up, Qh)ﬁ < C2hd72 Hth?Q Vo, € Rivzert-

For ¢ = 0, the same estimate holds when Dy, is replaced by a suitable regu-
larization Dy, corresponding to Remark 4.14.

Proof*. Let v;, € S}(T) correspond to the vector v,. Then
(Dnoy, vp)ez = (Don, vn)r -

Upper bound. Using that D is bounded in H'/2(T") and using the inverse
inequality

onll ey < C R onl| oy
we obtain

el

(Dvn, o) S lonllipem S B HIonlEam = 270 ) lowllzag,) -
i=1

Let V; the set of vertices of 7; (< 3 many). Due to shape-regularity, each
vertex belongs to a uniformly bounded number of elements. Therefore,

Nel

D lonllfey = b 07 S O ol
i=1 keV;

which altogether implies the upper bound.

Lower bound. Since D is elliptic, similar arguments yield

el
L

(Do, o) 2 0l 2 D ImlE 2 b iz,
—_—— 1
S

where quasi-uniformity was used. O]



Chapter 5
Fast BEM*

5.1 Motivation

We have seen that the crucial problem is the storage of the matrices Vj,, K},
etc. For a quasi-uniform mesh we need O(h?@~Y) memory where we have
only O(h?~1) unknowns. The basic idea of fast boundary element methods
is to approximate the matrices with less storage amount. Here we give a
motivation why this can be possible. Let I' be the boundary of a three-
dimensional domain, let 7;, 7, 74, etc. be elements, where 7; is far away from
7 and all the remaining elements touch 7, see the figure below.

For d =3, L = —A, and the definition of V}, as in Sect. 4.1.4 we have

1 1
Vil = // — ——ds,ds,.
7 J TR 4 |I—y| Y

Since 1/|z —y| decays very fast if |z —y| becomes large, we can write |x —y| ~
|zf — a}| where z} and z}, are the centers of 7; and 7, respectively. Thus the
double integral is approximated by a constant. For an element 7, touching
T, we have

[Vh]w ~ [Vh]ik

85
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because the difference |z —z;| ~ |2} —}|. In the figure above we can approx-
imate siz double integrals (six entries of the matrix) by one constant, which
leads to a reduced storage amount. Using some tricks one can generalize this
concept.

Among many fast BEM approaches are

e wavelets (here one constructs a special basis which leads to a sparse
representation),

e the fast multipole method (using taylor expansion one can realize at
least a fast application of the matrices),

e hierarchical matrices and data-sparse approximation

For more details see e.g., [Steinbach] and [Bebendorf]. We will follow the
last approach. There the main tricks are

e low-rank matrices, and
e hierarchical clustering.

The hierarchical matrices were introduced by Hackbusch and Khoromskij.

The data-sparse approximation that we will discuss is named adaptive cross

approximation (ACA) and was introduced by Bebendorf and Rjasanow. Other
techniques and references can be found in [Bebendorf], [Steinbach], and also

online at www.hlib.org.

5.2 Low-rank Matrices
For a matrix A € R™*" we define
range(A) := {Ay:y € R"}, rank(A) := dim(range(A)) .
Lemma 5.1. (i) rank(A) < min(m, n) VA € R™*"
(11) rank(A B) < min(rank(A), rank(B)) VA€ R™? B e RP™
(iii) rank(A + B) < rank(A) +rank(B) VA, B € R™*"

Definition 5.2. We define the set of matrices with rank at most k (in short:
rank-k matrices),

RV ™ :={A € R™" : rank(A) < k}.
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Attention: R]™™ does not form a linear space because addition of two
rank-k£ matrices can increase the rank beyond k.

Lemma 5.3.
AeR™ <« FJUeR™F VeR" . A=UV'

The above representation U V' ' of a rank-k matrix is called outer product
form. Note that if we have such a representation, the matrix-vector multi-
plication

Ay = U(V'y)
———
ERFK

can be computed in O(k(m + n)) operations. Also, the storage amount of U
and V is only k(m + n).

Definition 5.4. A matrix A € R is said to have low rank if
E(m+n) < mn.

Obviously we should represent (in particular store) low-rank matrices in
outer product form.

Remark 5.5. Two low-rank matrices can be multiplied and added in low
complexity. Also the singular value decomposition (SVD)

A=UxV’

(with U € R™* 'V € R™* orthogonal and X € R*** diagonal) of a low-rank
matrix can be computed cheaply. Using that one, for A, B € R"*", the best
approximation C' of the sum A+ B with respect to the Frobenious norm, i. e,

|A+ B —C|p — min
CeRp*™

can be computed also efficiently. We refer to this approximated addition by
rounded addition. It is a similar concept to the rounded addition of fixed
floating point operations in processors, but here we do not cut the precision
of a number but the rank of a matrix. The computational complexity of the
rounded addition is O(k*(m + n)).
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5.3 Degenerate Kernels

Unfortunately, boundary element matrices cannot be approximated by low-
rank matrices (but as will turn out certain matrix blocks can). They would,
if the kernel of the underlying integral operator had a different form.

Definition 5.6. Let D;, D, be subsets of R? or a manifold I'. An integral
kernel k : Dy x Dy — R is called degenerate if there exists a constant £ € N
and functions uy : D1 — R, vp: Dy — R for / =1, ...,k such that

k

k(z, y) = Zw(x) ve(y) Ve € D1,y € Dy.
=1

The number k is called degree of degeneracy.

Suppose we have a matrix A defined by

Ay = //H(% Y) ¥i(y) wi(x) ds, ds,
rJr
and suppose we have index sets I and J and submanifolds Dy, Dy C I" with
supp(g;) C D1 Viel, supp(¢;) C Dy Vj e J.

If k (restricted to Dy x Ds) is degenerate of degree k then

k
Ay =Y | w@)eiz)ds, | vly)(y)ds, Viel jel,
=17 D1 Dy

and so the block [A;jicr, jes has rank k.
The kernels appearing in our boundary integral operators are not degen-
erate. However, we can try to approrimate them by degenerate kernels.

5.4 Asymptotically Smooth Kernels

Definition 5.7. An integral kernel x : D; x R? — R with s(z, -) € C®(R?\
{z}) for all z € Dy is called asymptotically smooth in Dy with respect to y if
there exist constants v, ¢ > 0 such that for all x € D; we have

|| |"{($7 y)|

P— Vmulti-indices a Yy € R\ {z}.

‘8;“/1@, y)| < clally
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Remark 5.8. The kernels U*(z, y) and %U* (x, y) appearing in V and K
can be shown to be asymptotically smooth.

We want to exploit this smoothness for a Taylor expansion. However, in
the vicinty of the singulary we cannot expect good convergence. Therefore
we will assume that = and y are sufficiently far away from each other.

Definition 5.9. For sets Dy, Dy and x € D; we define the distances
dist(z, Do) := inf |z — vy, dist(Dy, Dy) :== inf |z —yl.
yEDo

z€D1,y€D2
Assume now that a kernel k : D; x Dy — R is analytic with respect to
the second argument (y) and assume at least that dist(D;, Dy) > 0. Then
by Taylor’s expansion we have

Mo y) = X0 S On(, €0,) (4 — €0, Ryl )

la|<p
N

J/

= T[] ()

where ]
Rp(x7 y) = Z aag(j’%@j? £D2) (y - €D2>a
loe|>p
and &p, is the Chebyshev center of Do, defined as the center of the ball of

minimum radius that contains D,. We denote the minimum radius by pp,,
see below.

The next lemma clarifies how much error we make when cutting the Taylor
series.

Lemma 5.10. Let k : Dy X Dy — R an integral kernel which is analytic with
respect to y and let k : D; x R — R be asymptotically smooth. Furthermore,
suppose that the condition

ndist(§p,, D2) > pp,
holds for some n > 0 with 2y +v/dn < 1. Then

(2vVdn)

‘li(.%‘, y) - TP[K](J"7 y)‘ < m

|5z, €p,)|-



CHAPTER 5. FAST BEM* 90

The lemma states that if D, is sufficiently far away from D,, we have
exponential convergence of the Taylor series as p — oo. l.e. there is hope
that we can cut the series for a rather small p (which leads to a low rank
representation) and to make only a small error.

Usually, we consider integral kernels which are analytic and asymptot-
ically smooth with respect to both variables z and y. Then we use the
symmetric condition

min(le, PDQ) S ndlSt(Dh D2) (51)

instead of the condition in Lemma 5.10.

5.5 Admissible Blocks

For index sets [ = {1,...,n} and J ={1,...,m} we denote by t C I, s C J
(index) blocks. Note that the entries need not be contiguous (a block can
also look like {2, 5, 7}). For A € R™™ = R/ we define

At><s = [Aij]iet,kES,

i.e., the restriction to the block ¢ x s. Finally, we denote by [t| the number
of indices in the block ¢.

Definition 5.11. Let A;, correspond to

/ / k(z, y) ¥, (y) pi(x) ds, ds, foriet, jes,
Dy J Dy

with (J;e, suppy; C D; and Ujes suppy; C Dy. Then we call the block ¢ x s
admissible if (5.1) is fulfilled.

Lemma 5.12. For an admissible block t X s and x : Dy X Dy — R analytic
and asymptotically smooth in both variables, the matriz block A;ws (defined as
above) can be approximated by a low-rank matriz leth € RJ**. Let ¢ denote
the approximation error (with respect to || - ||r), then

k< p? =~ |loge|’,
where p denotes the order of the Taylor expansion.

The ultimate goal is to find a partition of I x J into blocks where we can
use the Taylor expansion and the low-rank approximation.
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Definition 5.13. A set P C P(I x J) (where P(-) denotes the power set) is
called partition of I x J if

IxJ=Jb, and bi#£beP = bnb=0.

A block b =t x s of a partition is called small if min(|¢|, |s|) < np where
ng is a positive parameter. Finally, we call a partition P admissible if each
block b € P is either admissible or small.

In the next two sections we construct admissible partitions of I x.J. There
we restrict ourselves to a special class of partitions which are constructed by
organizing the index sets I and J separately in a hierarchical tree structure.

5.6 Cluster Trees

Definition 5.14. (i) Let T'= (V, £) be a tree (i.e., a simple, directed,
and connected graph with no cycles). Here V and & are the set of
vertices and edges of the graph, respectively. For a vertex t € V we
define the set of sons

Sit):={t'eV:(tt)e&}.

The root of the tree is a unique vertex which is not a son of any other
vertex. We call a vertex a leaf if it has no sons. The set of leaves is

L(T):={teV:8t)=0}.

We define the level of a vertex t: if ¢ is the root, level(t) := 0, for all
other vertices ¢, level(t) is the minimal number of edges connecting ¢
and the root. Finally, the depth of the tree is then defined as

h = level 1.
depth(T") max leve (t) +

(i) A tree Ty = (V, &) is called cluster tree of a finite index set [ if the
following conditions hold:

(a) I is the root of T7,

(b) for each vertex ¢ € V we have that ¢ is a non-empty subset of I,
its sons are pairwise disjoint, and t = |J, . () t,

(c) all vertices which are not leaves have at least two sons.
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{1,2,3,4,5,6,7,8} +— root
{1,2,7,8} {3,4,5,6}

/ N\ / N\
{1,8} {2,7} {3,4} {5,6}

/N /NN N
0} {8 2 {7 8 @ B} {6} e leaves

Figure 5.1: Example of a (binary) cluster tree.

Notation: For cluster trees we identify the tree with its vertices and
write t € T instead of ¢t € V.

(iii) We call a cluster tree T balanced if

. (It
R:= min mln{—:t,tGSt
teTA\L(T)) g 1 2 €S

is bounded from below by a positive constant, independently of |I].
Figure 5.1 shows an example of a cluster tree for the set I = {1, ...,8}.

Lemma 5.15. Let Ty be a balanced cluster tree. Then depth(T) = O(log |1|).
The storage complexity of Ty is then O(|I| log|I]).

For an index set I which represents a collection of elements {7;};c;, we
want to generate a cluster tree 17 which will eventually lead to an admissible
partition of I x I (or I x J for another cluster tree T;). Here, we use the
principal component analysis (PCA). To this end we associate to each element
7; a point y; (e.g., its center of gravity).

Definition 5.16. Let ¢ C I be a block.

: ._ |7 ,
o We define the centroid m; = Ziet STl Y
e A vector w; € R |wy| = 1 where the maximum

max Z v+ (yi —me)
€t

veR? |v|=1 ;

is attained is called main direction of t.
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“hyperplane

Figure 5.2: Example of block subdivision by the principal component analysis

(d=2).

o We define the covariance matriz Cy ==Y, (y;—my) (yi—my) " € R4

Obviously, the computation of m; can be done in linear time. But how to
get the main direction? It is rather easy to see that w; is a main direction of
t if and only if |w;| = 1 and wy, is an eigenvector to the maximal eigenvalue
of C;. Thus, in order to compute w; we can form the covariance matrix C}
(in linear time) and compute its eigensystem.

Having m; and w; at our disposal we now subdivide the block ¢ (which
represents a collection of elements {7;};c;) using the hyperplane through m
with normal w;. We define the sons of ¢ in the cluster tree by

S(t) := {t1, ta}
tr:={iet:w-(yy —my) >0}
t2 I:t\tl,

see also Figure 5.2. We apply this recursively to the set I and stop if a block
contains less than n;, elements, where n,;, is a fixed parameter. This way
we get a cluster tree which we call geometrically balanced. Recall that we
assume a shape-regular and quasi-uniform mesh. Then it can be shown that
the cluster tree is also balanced in the sense of Definition 5.14(iii).

Lemma 5.17. The construction of a cluster tree Ty for a collection of ele-
ments {7; }ie1 using the principal component analysis as described above re-
quires only O(|I| log|I|) operations.

5.7 Block Cluster Trees

We now use the cluster trees from the last section to construct an admissible
partition for I x J. Let T} and T cluster trees for I and J, respectively, as
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constructed above. We define the block cluster tree Try; by specifying the
root to be I x J and defining for each block ¢ x s the sons,

0 if t x s is admissible
S[XJ(tXS> = or Sl<t):®01' SJ(S):@,
Si(t) x Sy(s)  else.

Above, S7y; indicates that the sons are to be understood with respect to
the tree Ty 7, and S; with respect to the tree T etc. Obviously, by this
construction,

depth(7T7«;) < min{depth(77), depth(T})}.

If T; and T are binary trees (each vertex has two sons or is a leaf), T}y is
a quadtree (each vertex has four sons or is a leaf).

Most importantly, by this construction the partition generated by the
leaves of the block cluster tree Ty is admissible. This is because a leaf
t X s is either admissible, or we have that ¢ or s is itself a leaf of T or T},
respectively, which implies that min(|¢|, |s|) < nmin, and so the block is small
if we choose n,;, accordingly.

A measure for the complexity of a block cluster tree is the so-called spar-
sity constant. Here, we introduce this concept only briefly, as we will just
use it once on page 96. For a block t € T} we define

CrOW(T[XJ, f;) = |{S CcCJ:txse T]XJ}

sp

Y

i.e. the number of blocks ¢ X s in the block cluster tree T;; with ¢ being
fixed. Similarly, for s € T); we define
C?Ol(T]XJ, 3) = |{t CcCl:txse TIXJ}| .

Sp

Finally, we define the sparsity constant of Ty, ; by

R TOW col
Csp(Trx) 1= max { Max Cop (Trxs, 1), max Cp (Trxs, 8)} :
One can show that if T and T); are geometrically balanced (e. g. constructed
by the PCA) and the original mesh is shape-regular and quasi-uniform, the
sparsity constant is bounded.

Lemma 5.18. Let T} and T'; be balanced cluster trees. Then the construction
of the block cluster tree Try; as described above requires only O(|I| log || +
|J| log|J|) operations.
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Figure 5.3: Example of a typical H-matrix. Approximation of the single
layer potential on a half-sphere discretized by 932 triangles. Green blocks:
low-rank blocks (black numbers: local rank used by ACA). Red blocks: dense
blocks.

5.8 The Set of Hierarchical Matrices

We will now work with the partition generated by our block cluster tree and
define a special kind of matrix related to it.

Definition 5.19. The set of hierarchichal matrices on the block cluster tree

Tr«y with an admissible partition P = L(17xs) and block-wise rank k is
defined as

H(Trwg, k) = {A e R . rank(A;xs) < k V admissible blocks txs € P} )
In short we call this set the set of H-matrices.
An H-matrix is stored as follows:

e for an admissible block ¢ x s we use the outer product representation;
the storage amount is then k(|t| + |s]),

e for all other blocks we use the conventional entry-wise storate; the
storage amount is then bounded by npi ([t] + [s])-

A typical H-matrix is shown in Figure 5.3 (for the ACA see the next section).
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We now sketch how to prove that the total storage amount Ny (A) of an
H-matrix A € H(T s, k) fulfills

Ny = O(max(k:, Nomin) (|| log |I] + |J| log|J|)) )

In order to get the storage amount we have to sum up the individual storage
amounts of each leave. In fact we will bound this by a sum over all blocks in
the tree and use the sparsity constant (see page 94):

Ny <) max(h, mg) (Jt] +1s]) < > max(k, nn) (8] + [s])

txse€L(TrxJ) txs€Trx g

< max(k, nmin {Z Z ]+ Z Z |S|}

teTr s€Ty:itxs€Tr« g seT; teTrtxse€Trx g

S Csp(TIxJ) maX k' Nmin {Z |t| + Z | |}

tET] SETJ

< C max(k, nuin) (1] log |I| + |J| log |J])) .

Many algorithms in the context of H-matrices perform the same kind of
operations blockwise. The above technique can be used to estimate the total
complexity of these algorithms.

Remark 5.20. H-matrices generalize sparse matrices. One can e.g. show
that a FEM stiffness matrix can be stored as an H-matrix even with O(n)
storage requirements. In constrast to sparse matrices, we call H-matrices
data-sparse.

Lemma 5.21. The computational complexity of the H-matriz by vector mul-
tiplication is O(max{k, nm} (/1] log|I] + |J| log|J])).

This means that we can not only use H-matrices to represent approxi-
mations of BEM matrices, but also for iterative solver, as for instance CG,
where only the application of the matrix to a vector is required. To get
quasi-optimal solvers one needs of course preconditioners, and one can in
fact generalize the known multi-level preconditioners for FEM (such as BPX
type preconditioners) also for this purpose.

However, we will not discuss that issue, but instead point out that a
whole H-arithmetic is available, similar to the floating point arithmetic in
processors. E.g. we can add two H-matrices which are defined on the same
block cluster tree by using conventional addition in the dense blocks and
rounded addition in the low-rank blocks. This way, we obtain again an H-
matrix which is an approximation of the exact sum. Multiplication is rather
straigtforward and can be based on the multiplication and rounded addition
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of low-rank matrices. With the following idea one can even approximate the
inverse of an H-matrix by an H-matrix. Consider a block ¢ split into two
sub-blocks t; and ¢ and suppose that

Ay, At 1
A, = 1t1 1t2 )
. |: At2t1 At2t2

Then by block-elimination, we have

-1 —1 —1 —1 —1 —1
Al — { Ap + A AneS 114t2t1At1t1 — Ay AneS
tt - —1 — —1
ST A A, S

with the Schur complement S := Ay, — Ay Ary, Anr,.  Using rounded
addition, multiplication and recursive H-inverse approximations for all the
involved operations, one reaches some point where blocks are small and where
one can use and form the conventional inverses exactly. With the same idea
one can derive an H-LU decomposition.

The following lemma summarizes the computational complexities.

Lemma 5.22. 1. Rounded addition of two H-matrices requires
O(|1| log || + [J]| log |J])
operations.

2. For I = J, rounded multiplication of two H-matrices requires
O(k* 1] log | 1] + & |1])
operations.

3. For I = J, the H-inverse of an H-matrix can be formed in
O(k* 1] log |I] + & |1])
operations.

4. For I = J, the H-LU decomposition of an H-matrix can be computed
m

O(k* |1 log |1])

operations. Once the decomposition is computed, solving can be done
by forward-backward substitution.
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5.9 The Adaptive Cross Approximation (ACA)

Prescribing a maximal rank and using the Taylor expansion, on could ap-
proximate our BEM matrices by suitable 7-matrices. However, (i) an error
control is hard to be achieved, and (ii) we have to write new code for the
integrals due to the Taylor expansion. In this final section we describe an
algorithm where one can reuse existing code and where one has error control.

In order to introduce this technique we formally run the following algo-
rithm for a matrix A € R™*"™,

RO =A
For¢=0,1,...
Find a non-zero pivot-element (i, jy)
1
R =R — —— (R ~m'Ri:n
011 TR (Be)rim,je (Re)io1
Until ?

Here, (R¢)1.m,;, denotes the j,-th column and (Ry);, 1., the ip-th row of Ry.
Example 5.23.

[ 0431 0.345 0.582 0417 0.455 o 0582 7 [ 0431 7"
0491 0396 0.674 0.449 0.427 S e, | 0674 || 0.354
Ry = | 0446 0358 0.583 0413 0.441 52| o583 | | 0582
0.380 0.328 0.557 0.372 0.349 0582 1 0557 | | 0.417
| 0412 0340 0516 0.375 0.370 0.516 | | 0.455
[0 0o 0 0 0 - 0 —0.008 1"
~0.008 —0.014 0 —0.033 —0.100 o, | 0100 | | —0014
Ry = | 0014 0003 0 —0.004 —0.014 5| —0014 0
~0.032 —0.011 0 —0.026 —0.087 011 o087 | | —0.033
| 0020 002 0 0005 —0.034 —0.034 | | —0.100
[0 0 0 0 0 s 0 0.016 1"
0 O 0 0 0 o 0 0.005
R, = | 0.016 0005 0 0.000 0 5 — | o016 0
~0.020 0.001 0 0.002 0 0016 1 _5.020 | | 0.000
| 0032 0030 0 0017 0 0.032 0

In the (only illustrative) example we see that we formally subtract a
“cross” build by the row and column we have chosen. Also, the absolute
values of the remaining matrix entries get smaller and smaller.

Suppose that we stop the iteration after k steps, we have

k
A = Sk—i-Rk, with Sk = ZU[U;.
(=1



CHAPTER 5. FAST BEM* 99

The matrix Sy (which is naturally provided in outer-product representation)
will be used as an approximation. Obviously, for the computation of S; we
only need to know some matrix entries on demand, i. e., we can reuse existing
code.

The remaining two questions are how to chose the pivot elements and
when to stop. We will only answer partially them. There exist algorithms to
choose the right pivot elements such that when we use the stopping criterion

e(l—mn)

S
Tz 1Skl

|ug| [vg] <

for a prescribed tolerance € and the parameter 7 from the admissibility con-
dition, we get the guaranteed error bound

A= Skllr < ellAllr.

The total computational complexity of the approximation is
O(n logn|loge[*)

with n = |I| ~ |.J] for building the approximation. The storage amount and
the complexity of the matrix-vector multiplication is

O(n logn |loge|?).

The ACA can also used for preconditioning (by choosing ¢ large, e.g., 0.1).

Software packages:
e Hlib, see www.hlib.org
e AHMED (by Mario Bebendorf)

Further reading: [Bebendorf].



Chapter 6
FEM-BEM Coupling*

For simplicity, we consider the coupling of a three-dimensional interior do-
main Q™ and the corresponding exterior domain Q¢ = R? \ﬁmt with inter-
face I', see Figure 6.1, left.

The global equation in distributional form is

find u € HL(R?) : —div(aVu)+cu = f in D*(R?), (6.1)

where

fe LR,  fla= =0,
and «, ¢ € L=(R?) fulfilling

a(x) > ag > 0, c(x) >co >0 Vo € Q™ ae.

Qjoext = a®™" = const > 0, cjext = 0.

In the above situation, neither the FEM alone is suitable (because R? is
unbounded), nor the BEM (because o and/or ¢ is non-constant).

Qext

Figure 6.1: Left: Q= Q¢ interface I'. Right: Bounded domain €2 splits
into two subdomains €y, (2,.

100
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Problem (6.1) is equivalent to

find u € Hy(R?): / aVu-Vv+cuvdr = fvdr Vv e HEL(R?).
R3 Qint

Thanks to the definition of the exterior normal derivative v§**, we have that
/ a™Vu-Vodr = —{(u, yv)r Yo € Hp(Q™).
Qext
Therefore, we can rewrite (6.1) as
find u € H'(Q™) : (6.2)

/ aVu - Vv + cuvdr —(t, ) = / fudx Yo € HH(Q™),
Qint Qint

[\

where t = %™ is the exterior conormal derivative of u®™* € H4(Q™),

fulfilling

_aextAuext — 0 iIl 'D*(QeXt)7
ext, ext int : 1/2 (63)
YUt = ygtu in H/*(T).
Remark 6.1. 1. The restrictions d = 2 and ¢y > 0 were chosen to avoid

certain technicalities, the coupling formulations below, however, can
essentially be used also for the more general differential operator Lu =
—div(aVu) 4+ cu and also for d = 2.

2. A similar coupling problem is the following. Let {2 be a bounded
(weakly) Lipschitz domain that splits into two disjoint parts 2,
(again Lipschitz) such that

ﬁ == §1U§2

with the interface I';5 := 0§27 N ISy, see Fig. 6.1, and with the usual
PDE posed in 2 with suitable boundary conditions. In that case, a
similar formulation to (6.2)—(6.3) can be derived.

6.1 Non-symmetric Coupling

Since (6.3) is an exterior Dirichlet problem, we obtain from Sect. 3.6.4 that
the conormal derivative t € H~/2(T") fulfills

Vt = (=i + K)yitu.
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Rewriting this boundary integral equation in variational form, we obtain
together with (6.2) the mixed variational problem

find (u, t) € H'(Q™) x H~ () : (6.4)
a™ (u, v) — (t, Vo) = / fode  Vve HY(Q™),
Qint
(1, 31 — K)yiuyp + (1, Vi)r = 0 vr e H-Y(T).

Adding up the two equations leads to a non-symmetric bilinear form B :
V xV — R with V= H'(Q") x H-Y2(T),
Remark 6.2. The following result can be shown (cf. [Steinbach2011]). If

a(z) > ap > 1 a™ for almost every z € Q™ then B is elliptic on V with
respect to the norm (||u||§11(91m) + ||t||fq_1/2(F))1/2.

Assume that Q is polyhedral and consider a triangulation 75, (2™). We
discretize the variable v with FEM using the space

SHQ™) = {v € C(A™) 1 v, € P17 € TH(Q™)}

of continuous and piecewise linear functions. The volume triangulation 7y, ()
naturally induces a surface triangulation 7, (") (by restriction). Using the
space
SpIT) ={we L*(T) :w, € P° Vr e T(I)},
we can discretize ?.
The Galerkin discretization of (6.4) using the two spaces above reads

find (up, tn) € Sp(Q™) x SHT) : (6.5)
a™ (up, vy) — /th vpds = fondr Vv, € SEQ™),
r Qint
<Th, (%I — K)’)/(i)ntuh>p + <Th, Vth> = 0 VTh < SS(F)

Let A, be the FE stiffness matrix corresponding to a'™(-,-) with respect to
a basis of S} (Q™) C H'(Q™) (e.g., the common hat functions). Then (6.5)

takes the form
Ap M, Up, o fh
ot L] - L8] 6

This formulation is often used by engineers.

.

Remark 6.3. If B above is elliptic (see Remark 6.2), its Galerkin discretiza-
tion (6.8) is uniquely solvable. Stability and convergence follow from Céa’s
lemma and from the error estimates for S} (™) and SP(T).
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6.2 Symmetric Coupling

In contrast to the previous section, we use the complete Calderén equations
in Q%% the Cauchy data (7w, t) fulfill

Vt+ (31 — K)v'u = 0,
t = —Dy'u+ (31— K')t.

int

Substituting the second identity into the term —(¢, v*v)r, we obtain the
following problem.

Find (u, t) € H'(Q™) x H V() : (6.7)
™ (u, v) + (Dyg"u, v v)r — (51 = K"t wto)r = / fudzx
Qint
(r, GI = K)w*w)r + (7, Vi)r =0

Yo € HY(Q™) vr e HY2(T).

When multiplying the second equation by —1, the corresponding bilinear
form becomes symmetric.

Exercise 28. Show that S((u, t), (v, 7)) = [qmaVu - Vv + cuvdr +
<D7[.1)ntu7 fY(i)ntU>F - <(%I - K/)ta /y(i)ntv>f‘ + <7-7 (%] - K)’Y(i)ntu>r + <7—7 Vt>F Is a
bounded and elliptic bilinear form on V with respect to the norm (HUH%,I(Q) +
12, )
Using the analogous discretization as in Sect. 6.1, we obtain a linear
system of the form
A+ Dy _gw@-+ﬁ@}[@h} B [ih},

W, - K, Vi (6.8)

Multiplying the last line by —1 yields a symmetric (indefinite) system matrix.
As in the previous section, convergence follows from Céa’s lemma and the
approximation estimates for S} (") and Sp(T).
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