
Special Lecture on

Boundary Element Methods

Clemens Pechstein1

Summer term 2013

1Institute of Computational Mathematics, Johannes Kepler University Linz



Contents

1 Introduction 1

2 Variational Framework 9
2.1 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Lipschitz Domains . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Sobolev Spaces on a Domain . . . . . . . . . . . . . . . 14
2.1.4 Sobolev Spaces on the Boundary . . . . . . . . . . . . 16
2.1.5 Sobolev Spaces on a Manifold . . . . . . . . . . . . . . 18
2.1.6 The Trace Operator . . . . . . . . . . . . . . . . . . . 19
2.1.7 Compact Embedding . . . . . . . . . . . . . . . . . . . 20
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Chapter 1

Introduction

The boundary element method (BEM) is a numerical method for solving
partial differential equations (PDEs), based on the following steps.

1. Reformulation of the PDE as boundary integral equation(s). These are
integral equations where the unknown only lives on the boundary of the
computational domain, and they are constructed using the fundamental
solution of the underlying differential operator.

2. Discretize the boundary integral equations.

3. Solve the discrete equations.

4. If necessary, reconstruct a quantity of interest from the discrete so-
lution, e.g. the solution inside the domain from the (approximated)
Cauchy data on the boundary.

In this introduction, the BEM approach is sketched in a couple of examples
(without going into details). This should provide an overview on the whole
lecture.

Model Problem To show the main ideas of BEM, we consider a simple
model problem. Let Ω ⊂ Rd (d = 2 or 3) be a bounded domain with boundary
Γ := ∂Ω. We want to find u : Ω→ R such that

−∆u = 0 in Ω ,

u = gD on Γ ,
(1.1)

for a given Dirichlet trace gD, i.e., we want to solve the Dirichlet boundary
value problem for Laplace’s equation.

1
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Fundamental Solution The fundamental solution to the Laplace operator
−∆ is given by

U∗(x, y) =

{
− 1

2π
log |x− y| for d = 2 ,

1
4π

1
|x−y| for d = 3 .

A characteristic property of this fundamental solution is that

−∆xU
∗(x, y) = δy(x),

where δy denotes the Dirac delta distribution. Furthermore,

−∆xU
∗(x, y) = 0 ∀y 6= x

in the strong sense (note that U∗(x, y) is C∞ unless x = y).

� Boundary Integral Equations

Indirect Approach We make the following ansatz for the solution u :
Ω→ R of (1.1):

u(x) =

∫
Γ

U∗(x, y)w(y) dsy︸ ︷︷ ︸
=: (Ṽ w)(x), single layer potential

for x ∈ Ω , (1.2)

for some (yet unknown) density w : Γ → R. Indeed, u fulfills the homoge-
neous Laplace equation (at least for smooth w):

−∆x

∫
Γ

U∗(x, y)w(y) dsy =

∫
Γ

−∆xU
∗(x, y)︸ ︷︷ ︸

=0

w(y) dsy = 0 ∀x ∈ Ω

(we are allowed to switch integration and differentiation because x 6= y).
Now, we take the trace of (1.2) for x ∈ Γ. As we will show later on (non-
trivial!),

u(x) = (V w)(x) :=

∫
Γ

U∗(x, y)w(y) dsy︸ ︷︷ ︸
single layer potential operator

for x ∈ Γ .

Hence, in order to fulfill the Dirichlet boundary conditions in (1.1), the den-
sity w : Γ→ R must satisfy

V w = gD on Γ . (1.3)

This is a boundary integral equation (BIE) of the first kind (see the definition
below). From the solution w of this equation, we can reconstruct the solution
u of (1.1) using formula (1.2).
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Definition 1.1. Let M be a domain or manifold and let s denote the vol-
ume/surface measure. An equation of the form

a(x)u(x) +

∫
M
k(x, y)u(y) dsy = f(x) for x ∈M

is called integral equation of

• first kind, if a = 0,

• second kind, if ∀x ∈M : a(x) > 0 (or ∀x ∈M : a(x) < 0).

The operator K defined by

(Ku)(x) :=

∫
M
k(x, y)u(y) dsy for x ∈M

is called integral operator with (integral) kernel k(x, y).

Direct Approach Green’s second identity states that∫
Ω

−u∆v + v∆u dx =

∫
Γ

−u ∂v
∂n

+ v
∂u

∂n
dsx

for all (sufficiently smooth) u, v : Ω→ R, where n is the outward unit normal
vector on Γ. Setting (formally) v(x) := U∗(x, y) with y ∈ Ω, we obtain that
for all y ∈ Ω:∫

Ω

[
−∆xU

∗(x, y)
]︸ ︷︷ ︸

=δy(x)

u(x) dx+

∫
Ω

U∗(x, y) ∆u(x) dx

= −
∫

Γ

u(x)
∂

∂nx
U∗(x, y) dsx +

∫
Γ

U∗(x, y)
∂u

∂n
(x) dsx

Without worrying about correctness, we interpret the first integral as an
evaluation of the delta distribution δy. If u is a solution of the homogeneous
Laplace equation in Ω, then

u(y) =

∫
Ω

U∗(x, y)
[
−∆u(x)

]︸ ︷︷ ︸
=0

dx−
∫

Γ

[ ∂

∂nx
U∗(x, y)

]
u(x)︸︷︷︸
=γ0u

dsx

+

∫
Γ

U∗(x, y)
∂u

∂n
(x)︸ ︷︷ ︸

=γ1u

dsx ∀y ∈ Ω .
(1.4)
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Equation (1.4) is called Green’s third identity or representation formula. It
represents the value of u in the interior of Ω in terms of the Cauchy data[

γ0u
γ1u

]
=

[
u
∂u
∂n

]
on Γ ,

i. e., the trace of u and its normal derivative.
We now take the trace of (1.4) for y ∈ Γ (again non-trivial, because the

singular case x = y is included). The outcome is:

u(y) =
(
1− σ(y)

)
u(y)− (K γ0u)(y) + (V γ1u)(y) ∀y ∈ Γ,

where σ is a positive function with values in (0, 1), K is an integral operator,
and V is the single layer potential operator from above. In case of a smooth
boundary, σ = 1/2. For smooth functions v,

(K v)(x) =

∫
Γ

[ ∂

∂ny
U∗(x, y)

]
v(y) dsy︸ ︷︷ ︸

double layer potential operator

.1

When inserting the Dirichlet boundary condition γ0u = gD, we obtain a first
kind BIE for the unknown normal derivative t := γ1u:

V t = (σI +K)gD on Γ. (1.5)

The left hand side of (1.5) is of the same form as in (1.3). However, there
is a difference: whereas the unknown w in (1.3) is a possibly unphysical
function/density, the unknown t in (1.5) is the normal derivative. In many
applications, t = ∂u/∂n is already the quantity of interest.

If needed, the entire solution in Ω can be reconstructed using (1.4).

Further Approaches

1. The indirect approach above was based on the single layer potential.
We can also use the double layer potential ansatz

u(x) =

∫
Γ

∂

∂nx
U∗(x, y) v(y) dsy︸ ︷︷ ︸

=:(W̃v)(x), double layer potential

for x ∈ Ω ,

1This integral has to be understood in the sense of the Cauchy principal value!
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for some density v : Γ → R. One can show that −∆W̃v = 0 in Ω.
Taking the trace for x ∈ Γ yields

γ0u = (−1 + σ)v +Kv.

Inserting the Dirichlet condition, we obtain the second kind BIE(
(−1 + σ)I +K

)
v = gD on Γ.

2. Formula (1.5) was derived by taking the trace “γ0(1.4)”. We can also
use “γ1(1.4)”. Without going into details, this yields

γ1u = Dγ0u+ (σI +K ′)γ1u, (1.6)

where D and K ′ are boundary integral operators (called hypersingular
integral operator and adjoint double layer potential operator, respec-
tively). Inserting the Dirichlet condition, we obtain the second kind
BIE (

(−1 + σ)I +K ′
)
t = −D gD .

for the unknown normal derivative t = ∂u/∂n.

3. Similar techniques can be applied for the Neumann boundary value
problem of Laplace’s equation. Two examples:

(a) We can use the trace of the representation formula (1.4) (explained
in the direct approach), insert the given Neumann data ∂u/∂n =
gN , and obtain the second kind BIE

(σI +K)γ0u = V gN on Γ,

for the unknown trace γ0u.

(b) Inserting the Neumann condition into (1.6), we obtain the first
kind BIE

Dγ0u =
(
(1− σ)I −K ′

)
gN on Γ.

An Exterior Problem Often, the PDE is given in an exterior domain.

Let Ωint ⊂ Rd be a bounded domain and let Ωext := Rd \ Ω
int

denote its
complement. The exterior Dirichlet problem for the Laplace equation reads

−∆u = 0 in Ωext,

u = gD on Γ := ∂Ωext,

|u(x)| = O(|x|−1) as |x| → ∞ (radiation condition).
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Under appropriate assumptions, one can show the following Green identity in
Ωext: if u fulfills the homogeneous Laplace equation in Ωext and the radiation
condition, then

u(y) =

∫
Γ

[ ∂

∂nx
U∗(x, y)

]
u(x) dsx −

∫
Γ

U∗(x, y)
∂u

∂n
(x) dsx ∀y ∈ Ωext,

where n is the unit normal vector on Γ pointing into Ωext (i.e., outward to
Ωint). Taking the trace yields

u(y) = (1− σ(y))u(y) + (K γext
0 u)(y)− (V γext

1 u)(y) ∀y ∈ Γ,

where γext
0 u denotes the exterior trace of u at Γ and γext

1 u = ∂u/∂n the
exterior normal derivative. Inserting the Dirichlet condition yields the first
kind BIE

V t = (−σI +K)gD on Γ,

for the (exterior) normal derivative t = ∂u/∂n.

Rigorous Study In this lecture, we clarify in which (Sobolev) spaces we
have to work and how to derive the BIEs. Our starting point will be the weak
formulation of an elliptic PDE, and we will need to use the theory of dis-
tributions. Furthermore, we will study the (unique) solvability of the BIEs.
This requires a closer inspection of the four boundary integral operators V ,
K, K ′, and D that appeared above.

� Discretization

All the previous BIEs are of the form

B v = g on Γ, (1.7)

where B is an operator mapping functions on
Γ to functions on Γ. In order to discretize, one
considers a mesh of the boundary Γ:

Γ =
n⋃
j=1

τj .

Two approaches are common: collocation and
Galerkin BEM.

Ω

j

Γ

τ
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Collocation BEM In the collocation method, one considers approxima-
tions vh of the form

vh(x) =
n∑
j=1

vj χτj ,

where χτj denotes the characteristic function. Of course, we cannot expect
B vh = g to hold on the whole boundary. Instead, we choose a set of test
points {yj}j=1...n ⊂ Γ (e.g., with yj ∈ τj) such that

(B vh)(yi) = g(yi) ∀i = 1 . . . n .

This leads to a linear system of equations for the coefficients [vj]
n
j=1.

Galerkin BEM In the Galerkin BEM, we first rewrite (1.7) as a variational
problem. Let X be a Hilbert space of function where the solution v is sought.
In many cases, B : X → X∗ and g ∈ X∗. Then (1.7) is equivalent to

find v ∈ X : 〈B v, w〉 = 〈g, w〉 ∀w ∈ X.

For a finite-dimensional subspace Xh ⊂ X, we apply the Galerkin principle:

find vh ∈ Xh : 〈B vh, wh〉 = 〈g, wh〉 ∀wh ∈ Xh.

The choice of Xh depends on the BIE under consideration and on the un-
known u (which could, e.g., be a Dirichlet trace γ0u or a Neumann trace
t = ∂u/∂n). If the unknown is a Neumann trace, one can use a piecewise
constant ansatz:

vh =
n∑
j=1

vj χτj .

Again, this leads to a linear system of equations for the coefficients [vj]
n
j=1.

Collocation BEM Galerkin BEM

Easier to implement:
evaluation of single integral
assembling faster

Harder to implement:
evaluation of double integral
assembling costy

In general, non-symmetric system
matrix, even if B is self-adjoint.

IfB is self-adjoint, then the system
matrix is symmetric.

Stability and convergence on poly-
hedral surfaces still an open ques-
tion, in particular for first kind
BIEs.

Stability and convergence can be
analyzed similarly to FEM, e.g.,
using Céa’s lemma and interpola-
tion error estimates.

For reasons above, we will focus on the Galerkin BEM in this lecture. A priori
error estimates for the Dirichlet and Neumann problem are to be derived.
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BEM vs. FEM A direct comparison of FEM and BEM has to be done
with care. Rule of thumb: if FEM works efficiently, then use it. However,
there are situations where the construction of a “volume” mesh is difficult,
e.g., for exterior problems.

� Further Topics (not all covered in this lecture)

More General PDEs The major part of the lecture is devoted to the
Poisson equation,

−∆u = f.

Most of the results can be generalized to the second order PDE

−div(A∇u) +~b · ∇u+ c u = f,

with constant coefficients A ∈ Rd×d (A > 0), ~b ∈ Rd, and c ∈ R, but
this introduces more technicalities. Special case: the Helmholtz equation
∆u + κ2u = 0. The exterior Helmholtz problem (modelling acoustic waves)
is very often solved by BEM in practice. Another prominent application of
BEM are electromagnetic waves (governed by Maxwell’s equations).

Calculation of Matrix Entries The entries of the Galerkin BEM matri-
ces are double integrals with singular kernels. In rare cases, explicit formulae
can be found. In general, one has to approximate either one or both integrals
by quadrature.

Fast BEM Of course, we want to assemble and solve the BEM systems
efficiently. But as will turn out, the BEM system matrices are dense, which
causes trouble in particular for three-dimensional problems. However, the
matrices can be approximated by data-sparse matrices, or at least the matrix-
vector product can be realized in quasi-optimal complexity. Such techniques
are summarized under the keyword fast BEM.

Conditioning of System Matrices An efficient realization of the matrix-
vector product makes the system amenable to iterative solvers. Therefore,
one has to study the condition number.

BEM-FEM Coupling In a direct comparision of BEM and FEM, there
are pros and cons for either of the two methods. In some situations, one
wants to exploit the advantages of both “worlds” (mariage à la mode): use
FEM in one part of the domain and BEM in the other part. On the interface,
one needs to couple correctly.



Chapter 2

Variational Framework

Before we come to boundary integral equations, we need to fix the starting
point. This is the weak formulation of an elliptic 2nd order PDE in a bounded
domain as well as in its exterior. Therefore, we need Sobolev spaces (on
domains and boundaries) and trace operators. We briefly discuss solvability
of certain boundary value problems.

2.1 Sobolev Spaces

2.1.1 Lipschitz Domains

Throughout the whole lecture (and in contrast to many textbooks), by a
domain Ω, we understand an open and connected subset of Rd, where d = 2
or 3. Note that our definition does not include boundedness. The boundary
is denoted by

Γ := ∂Ω = Ω ∩ (Rd \ Ω).

We discuss smoothness assumptions on the domain Ω.

Definition 2.1 (Lipschitz hypograph). Let Ω be of the form

Ω = {x ∈ Rd : xd < ζ(x1, . . . , xd−1)}

with a Lipschitz continuous function ζ : Rd−1 → R, i.e.,

∃M = const : |ζ(x′)− ζ(y)| ≤M |x′ − y′| ∀x′, y′ ∈ Rd−1.

Then Ω is called Lipschitz hypograph.

Apparently, the boundary of a Lipschitz hypograph is parametrized by

Γ = {(x′, ζ(x′)) : x′ ∈ Rd−1}.

9
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Definition 2.2 (Lipschitz domain). A domain Ω is called a Lipschitz domain
if its boundary Γ is compact and if there exist finite families {Wj}nj=1 and
{Ωj}nj=1 such that

(i) {Wi}nj=1 is a finite open cover of Γ, i. e.,
Wj ⊂ Rd are open sets and Γ ⊂

⋃n
j=1 Wj,

(ii) each Ωj can be transformed to a Lipschitz
hypograph (with function ζj) by rotation
plus translation,

(iii) Wj ∩ Ω = Wj ∩ Ωj for each j = 1, . . . , n.

Wj

Ω

Ω

x
x

j

2

1

We shall give a second definition of Lipschitz domains (cf. [Sauter/Schwab,
Def. 2.2.7], [Grisvard, Def. 1.2.1.2]), which is slightly weaker than Defini-
tion 2.2 and thus called weakly Lipschitz domain.

Let Br := {ξ ∈ Rd : |ξ| < r} be the open ball of radius r around the
origin and define

B+
r := {ξ ∈ Br : ξd > 0}
B0
r := {ξ ∈ Br : ξd = 0}

B−r := {ξ ∈ Br : ξd < 0}

where ξd is the d-th coordinate.

(    , ...       )ξ1 ξd−1

B

B

r

r

+

−

ξd

Br
0

Definition 2.3 (weakly Lipschitz). We call a domain Ω weakly Lipschitz if
its boundary Γ is compact and if there exists a finite open cover {Uj}nj=1 of

Γ and bijective functions χj : B2 → Uj such that

(i) χj and χ−1
j are Lipschitz continuous,

(ii) χj(B
+
2 ) = Uj ∩ Ω,

(iii) χj(B
0
2) = Uj ∩ Γ,

(iv) χj(B
−
2 ) = Uj ∩ (Rd \ Ω).

In this definition, B2 may be replaced a suitable bounded open set B ⊂ Rd

that can divided similarly into subsets B+, B0, B− with ξd > 0, ξd = 0,
ξd < 0, respectively.

Note that Rd is (weakly) Lipschitz (Γ = ∅), and that a domain Ω is
(weakly) Lipschitz if and only if Rd \ Ω is (weakly) Lipschitz.

Many polygons and polyhedra are Lipschitz domains. Some counterex-
amples are shown in Figure 2.1: in (a) the graph fails to be Lipschitz, in (b)
the boundary fails to be on one side, and in (c) the boundary fails to be a
graph at all. However, domain (c) is weakly Lipschitz.
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(a) (b) (c)

Figure 2.1: (a)–(c) are not Lipschitz domains, (c) is weakly Lipschitz.

Lemma 2.4. A Lipschitz domain is weakly Lipschitz.

Exercise 1. Prove Lemma 2.4 by providing Uj, χj in terms of Wj, Ωj, ζj.
You don’t have to carry out geometric issues in detail.

Lemma 2.5 (Rademacher). A weakly Lipschitz domain Ω has a surface
measure s on Γ and an outward unit normal vector n that exists s-almost
everywhere on Γ, with n ∈ L∞(Γ).

The proof uses the fact that a Lipschitz continuous function is Fréchet
differentiable almost everywhere and its gradient is in L∞.

Exercise 2. Show that for a Lipschitz hypograph Ω ⊂ R2, R3, the surface
measures are ds =

√
1 + |ζ ′(x1)|2 dx1 and ds =

√
1 + |∇ζ(x1, x2)|2 d(x1, x2),

respectively. In both cases, calculate the unit normal vector n.

We will mostly use the (weaker) Definition 2.3 of Lipschitz domains.
Sometimes, we will require higher smoothness of the boundary:

Definition 2.6. We call a domain Ω to be of

• class Ck (for k ≥ 1) if Ω is weakly Lipschitz and if the functions χj
from Def. 2.3 satisfy χj ∈ Ck and χ−1

j ∈ Ck,

• class Ck,1 (for k ≥ 0) if Ω is weakly Lipschitz and χj, χ
−1
j are in Ck,1,

i.e., k-times differentiable and the k-th derivatives Lipschitz continuous,

2.1.2 Distributions

Recall that
C∞0 (Ω) := {u ∈ C∞(Ω) : supp(u) ⊂⊂ Ω}

denotes the C∞ functions with compact support in Ω, where supp(u) :=
{x ∈ Ω : u(x) 6= 0} for u ∈ C(Ω).
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Let L1
loc(Ω) denote the set of measurable functions u : Ω → R that are

integrable over every compact subset of Ω. One can show that if for two
functions u1, u2 ∈ L1

loc(Ω),∫
Ω

u1 φ dx =

∫
Ω

u2 φ dx ∀φ ∈ C∞0 (Ω), (2.1)

then u1 = u2 almost everywhere on Ω.

Schwartz Distributions

Definition 2.7. D(Ω) := C∞0 (Ω). We say that a sequence φn in D(Ω)
converges sequentially to φ ∈ D(Ω); we write

φn →D(Ω) φ,

if for all compact subsets K ⊂ Ω and for all multi-indices α,

∂αφn → ∂αφ uniformly in K.

Definition 2.8. The set of Schwartz distributions is given by

D∗(Ω) := {ψ : D(Ω)→ R : linear and continuous},
where ψ is said to be continuous if

φn →D(Ω) φ =⇒ ψ(φn)→ ψ(φ).

For the evaluation of a distribution at a function, we write

〈ψ, φ〉Ω := ψ(φ) for φ ∈ D(Ω), ψ ∈ D∗(Ω).

If the domain Ω is clear from context, we omit the subscript Ω.

Example 2.9. For y ∈ Ω, the Dirac delta distribution δy is given by

〈δy, φ〉 := φ(y) for φ ∈ D(Ω).

Definition 2.10. Any f ∈ L1
loc(Ω) induces a distribution f̄ ∈ D∗(Ω):

〈f̄ , φ〉 :=

∫
Ω

f φ dx for φ ∈ D(Ω).

If a distribution is induced by a function f as above, we call it regular.
The Dirac delta distribution is not regular. One can show that the linear
map f 7→ f̄ is one-to-one. Hence, we may identify locally integrable functions
with their corresponding distributions.

Definition 2.11. The distributional derivative ∂αψ ∈ D∗(Ω) of a distribu-
tion ψ ∈ D∗(Ω) is defined by

〈∂αψ, φ〉 = (−1)|α|〈ψ, ∂αφ〉 for ψ ∈ D(Ω).

(The distributional derivative of a distribution is again a distribution.)
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More Distributions

Definition 2.12. E(Ω) := C∞(Ω). We define sequential convergence (in
symbols: φn →E(Ω) φ) and continuity analogously to Def. 2.7 and set

E∗(Ω) := {ψ : E(Ω)→ R : linear and continuous}.

Apparently,
D(Ω) ⊂ E(Ω), E∗(Ω) ⊂ D∗(Ω).

Definition 2.13 (tempered distributions). We define the Schwartz space of
rapidly decreasing functions

S(Rd) :=
{
ϕ ∈ C∞(Ω) : sup

x∈Rd
|xα (∂βϕ)(x)| <∞ ∀ multi-indices α, β

}
,

where xα := xα1
1 xα2

2 · · ·x
αd
d for α = (α1, . . . , αd). We equip S(Rd) with the

following sequential convergence,

φn →S(Rd) φ ⇐⇒ ∀α, β : xα(∂βφn)→ xα(∂βφ) uniformly in Rd.

With this convergence, we can define continuity and define the space of tem-
perate distributions

S∗(Rd) := {ψ : S(Rd)→ R : linear and continuous}.

Apparently,

D(Rd) ⊂ S(Rd) ⊂ E(Rd), E∗(Rd) ⊂ S∗(Rd) ⊂ D∗(Rd).

Fourier Transform

For u ∈ L1(Rd) we define its Fourier transform1 Fu by

(Fu)(ξ) := û(ξ) :=

∫
Rd
e−i2πξ·xu(x) dx for ξ ∈ Rd.

The adjoint F∗ operator is defined by replacing −i above by i. One can show
that if u ∈ C(Rd) and u, û ∈ L1(Rd), then F∗Fu = u = FF∗u. Elementary
calculations show that for φ ∈ S(Rd),

(F∂αφ)(ξ) = (i2πξ)α φ̂(ξ), (F∗(−i2πx)αφ(x))(ξ) = ∂αφ̂(ξ).

Consequently, F : S(Rd) → S(Rd) is a (sequentially) continuous operator
and F∗ : S(Rd)→ S(Rd) is its (sequentially) continuous inverse.

1For a precise definition, one must actually use spaces Lp(Rd), S(Rd), etc. with values
in C rather than R.
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Plancherel’s Theorem* The formulae 〈Fu, v〉 = 〈u,Fu〉 and 〈F∗u, v〉 = 〈u,F∗u〉
are valid for u, v ∈ S(Rd), and they are used to define (consistent) extensions

F : S∗(Rd)→ S∗(Rd), F∗ : S∗(Rd)→ S∗(Rd).

Plancherel’s Theorem states that

F : L2(Rd)→ L2(Rd), F∗ : L2(Rd)→ L2(Rd),

and that these maps are inverse to each other. Furthermore,

(Fu,Fv)L2(Rd) = (u, v)L2(Rd) = (F∗u,F∗v)L2(Rd) for u, v ∈ L2(Rd),

and consequently, ‖Fu‖L2(Rd) = ‖u‖L2(Rd) = ‖F∗u‖L2(Rd).

2.1.3 Sobolev Spaces on a Domain

First Definition

Recall that L2(Ω) = {v : Ω→ R measurable :‖v‖L2(Ω) <∞}, where

‖v‖L2(Ω) :=
(∫

Ω

|v|2 dx
)1/2

.

Since L2(Ω) ⊂ L1
loc, such functions are (regular) distributions.

Definition 2.14. (i) For any k ∈ N0 we define2

Hk(Ω) := {v ∈ L2(Ω) : ∂αv ∈ L2(Ω) ∀ multi-indices α, |α| ≤ k},

equipped with the inner product

(v, w)Hk(Ω) :=
∑
|α|≤k

∫
Ω

∂αv ∂αw dx

and the induced norm ‖v‖Hk(Ω) := (
∑
|α|≤k

∫
Ω
|∂αv| dx)1/2.

(ii) For s ∈ R+ of the form s = k + σ with k ∈ N0, σ ∈ (0, 1), we define

Hs(Ω) := {v ∈ Hk(Ω) : |v|Hs(Ω) <∞},

where

|v|Hs(Ω) :=
( ∑
|α|=k

∫
Ω

∫
Ω

|∂αu(x)− ∂αu(y)|2

|x− y|d+2σ
dx dy

)1/2

,

equipped with the norm ‖v‖Hs(Ω) := (|v‖2
Hk(Ω)

+ |v|2Hs(Ω))
1/2 (which has

an associated inner product).

2The spaces as defined in (i), (ii) are usually denoted by W k,2(Ω), W s,2(Ω). Denoting
them by Hs(Ω) is justified by Def. 2.17 and Thm. 2.18 below.
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Lemma 2.15. For s ∈ R+
0 , the space Hs(Ω) is a Hilbert space. C∞(Ω) is

dense in Hs(Ω) with respect to the ‖ · ‖Hs(Ω)-norm.

Definition 2.16. For s ∈ R+, we set

Hs
0(Ω) := C∞0 (Ω)

‖·‖Hs(Ω)
(closure of C∞0 (Ω) w.r.t. ‖ · ‖Hs(Ω)).

Equipped with ‖ · ‖Hs(Ω), this is a Hilbert space. H0
0 (Ω) = H0(Ω) = L2(Ω).

Note that the above definitions include the case Ω = Rd (they actually
require only that Ω is a non-empty open set).

Second Definition

For s ∈ R, we define the Bessel potential J s : S(Rd)→ S(Rd),

J su(x) :=

∫
Rd

(1 + |ξ|2)s/2 û(ξ) ei2π ξ·x dξ for x ∈ Rd,

where û := Fu ∈ S(Rd) denotes the Fourier transform of u ∈ S(Rd). Hence,

(FJ su)(ξ) = (1 + |ξ|2)s/2 û(ξ),

and so J s can be thought of a kind of differential operator of order s. We
extend the Bessel potential to J s : S∗(Rd)→ S∗(Rd) by

〈J sψ, φ〉 := 〈ψ, J sφ〉 for ψ ∈ S∗(Rd), φ ∈ S(Rd).

Exercise 3. Show that 〈J sψ, φ〉 = 〈ψ, J sφ〉 holds for φ, ψ ∈ S(Rd) such
the extension is indeed justified.

Definition 2.17 (alternative (usual) definition of Hs). For s ∈ R, we define

Hs(Rd) := {u ∈ S∗(Rd) : J su ∈ L2(Rd)},

with inner product (J su, J sv)L2(Rd). For an open set Ω ⊂ Rd, we define

Hs(Ω) := {u ∈ D∗(Ω) : u = v|Ω for some v ∈ Hs(Rd)},

equipped with norm ‖u‖Hs(Ω) := inf
v∈Hs(Rd),u=v|Ω

‖v‖Hs(Rd). Both spaces make

into Hilbert spaces.

Theorem 2.18. If Ω is (weakly) Lipschitz, then Def. 2.14 and Def. 2.17 of
Hs(Ω) are equivalent for s ∈ R+

0 , i.e., the two definitions lead to identical
sets of functions and the norms are equivalent.
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Dual Spaces

For s ∈ R+
0 , let

Hs(Ω)∗, Hs
0(Ω)∗

denote the respective duals with the usual dual norm. In the literature,
H0(Ω)∗ is sometimes—but not always—denoted by H−s(Ω).

Recall that we identify functions in L1
loc(Ω) with their associated distri-

butions. In that sense,

D(Ω) ⊂ Hs
0(Ω) ⊂ Hs(Ω) ⊂ L2(Ω) ⊂ Hs(Ω)∗ ⊂ Hs

0(Ω)∗ ⊂ D∗(Ω).

2.1.4 Sobolev Spaces on the Boundary

Let Ω be a weakly Lipschitz domain. Because of Lemma 2.5, we have a
surface measure s and can therefore define

L2(Γ) :=
{
v : Γ→ R : s-measurable and

∫
Γ

|v|2 ds <∞
}
.

The definition of Sobolev spaces on Γ is more technical than on Ω.
Recall the finite open cover {Uj}nj=1 and the associated bi-Lipschitz func-

tions χj : B2 → U j. We now define the restrictions

χ?j : B0
2 → Uj ∩ Γ : (ξ1, . . . , ξd−1) 7→ χj(ξ1, . . . , ξd−1, 0)

(here we treat B0
2 as a subset of Rd−1). Let {βj}nj=1 be a partition of unity

subordinate to {Uj ∩ Γ}nj=1:

βj : Γ→ [0, 1],
n∑
j=1

βj = 1 on Γ, supp(βj) ⊂ Uj ∩ Γ.

One can show that such a partition always exists, even with βj ∈ C∞, see
[McLean, Cor. 3.22]). Therefore, we can achieve that βj ◦ ξ?j is Lipschitz

continuous on B
0

2 and has support compact in B0
2 . Functions u : Γ→ R can

be localized using this partition of unity:

supp(βju) ⊂ Uj ∩ Γ.

We now define the pullback of such a localized function:

(βju) ◦ χ?j : B0
2 → R.

We use this pullback to define smoothness of the original function u : Γ→ R.
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Definition 2.19. For a Ck−1,1 domain Ω (i.e. weakly Lipschitz if k = 1) and
for s ∈ [0, k], we define

Hs(Γ) := {u ∈ L2(Γ) : (βju) ◦ χ?j ∈ Hs(B0
2) ∀j}.

One can show that the above definition is invariant of the actual choice of
the “coordinate system” Uj, χj, βj. This invariance property is lost if s > k.

A natural norm would be
(∑n

j=1 ‖(βju) ◦ χ?j‖2
Hs(B0

2)

)1/2
, but this norm

depends on the choice of the coordinate system. The definition below intro-
duces an invariant norm.

Definition 2.20. For a Ck−1,1 domain Ω with boundary Γ and for s ∈ [0, k],
the Sobolev-Slobodeckij norm ‖v‖Hs(Γ) is given as follows.

(i) For k ∈ N0,

‖v‖2
Hk(Γ) =

∑
|α|≤k

‖vα‖2
L2(Γ),

where vα : Γ→ R are defined using differentiation in B2
0 :

vα(x) =
n∑
j=1

∂αξ ((βjv) ◦ χ?j)(ξ), for ξ = (χ?j)
−1(x).

If x 6∈ Uj ∩Γ for some j, then the corresponding term in the sum above
is skipped.

(ii) For s = k + σ, with k ∈ N0 and σ ∈ (0, 1),

‖v‖2
Hs(Γ) =

∑
|α|≤k

(
‖vα‖2

L2(Γ) +

∫
Γ

∫
Γ

|vα(x)− vα(y)|2

|x− y|d−1+2σ
dsx dsy,

The spaces Hs(Γ) with the above norm are Hilbert spaces.
Important special case s = 1/2:

‖v‖2
H1/2(Γ) = ‖v‖2

L2(Γ) + |v|2H1/2(Γ), |v|2H1/2(Γ) =

∫
Γ

∫
Γ

|v(x)− v(y)|2

|x− y|d
dsx dsy ,

and H1/2(Γ) = {v ∈ L2(Γ) : ‖v‖H1/2(Γ) <∞} (intrinsic norm).

Definition 2.21. For Ω, Γ, and s as in Definition 2.19,

H−s(Γ) := Hs(Γ)∗

equipped with the usual dual norm.
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2.1.5 Sobolev Spaces on a Manifold

Definition 2.22. Let Γ1 ⊂ Γ be an open submanifold of the boundary Γ of
a weakly Lipschitz (or Ck−1,1 domain), and let s ∈ [0, 1] (or [0, k], resp.).

(i) Hs(Γ1) := {v|Γ1 : v ∈ Hs(Γ)}, equipped with the norm ‖v‖Hs(Γ1) de-
fined analogously to Def. 2.20, replacing Γ by Γ1.

(ii) Hs
0(Γ1) := D(Γ1)

‖·‖Hs(Γ1)
,

where D(Γ1) := {v|Γ : v ∈ D(Rd), supp(v|Γ) ⊂ Γ1}.

For s = bsc+ σ and σ 6= 1/2, the extension by zero of a function v ∈ Hs
0(Γ1)

from Γ1 to Γ belongs to Hs(Γ), but in general not for σ = 1/2!

(iii) H̃s(Γ1) := D(Γ1)
‖·‖Hs(Γ)

= {v|Γ1 : v ∈ Hs(Γ), supp(v) ⊂ Γ1}.

The extension by zero of a function from H̃s(Γ1) to Γ always lies in Hs(Γ).
Equipped with the norms

‖u‖Hs(Γ1) := inf
v∈Hs(Γ)
v|Γ1

=u

‖v‖Hs(Γ), ‖u‖H̃s(Γ1) := ‖ũ‖Hs(Γ) , (2.2)

where ũ denotes the extension by zero, Hs(Γ), H̃s(Γ) are Hilbert spaces.

For σ < 1/2, H̃s(Γ1) = Hs
0(Γ1) = Hs(Γ1). For σ > 1/2, H̃s(Γ1) = Hs

0(Γ1).

Remark 2.23. If Γ1 is “Lipschitz relatively to Γ”, then intrinsic norms for
Hs(Γ1), H̃1/2(Γ1) (equivalent to the norms in (2.2)) are given by(∫

Γ1

∫
Γ1

|u(x)− u(y)|2

|x− y|d−1+2s
dsx dsy

)1/2

,(∫
Γ1

∫
Γ1

|u(x)− u(y)|2

|x− y|d
dsx dsy +

∫
Γ1

|u(x)|2

dist(x, ∂Γ1)
dsx

)1/2

,

respectively, for s < 1 (and analogously defined for s > 1).

Definition 2.24. Let Γ1 ⊂ Γ be as in Definition 2.22 and set

H−s(Γ1) := H̃s(Γ1)∗, H̃−s(Γ1) := Hs(Γ1)∗

(this definitinion is conistent with Def. 2.21, because H̃s(Γ) = Hs(Γ) for the
closed boundary Γ).
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2.1.6 The Trace Operator

Theorem 2.25 (trace theorem). We define the trace operator

γ0 : C∞(Ω)→ C∞(Γ) : u 7→ u|Γ .

If 1/2 < s < k and if Ω is a Ck−1,1-domain, then γ0 has a unique extension
to a bounded linear operator

γ0 : Hs(Ω)→ Hs−1/2(Γ).

In particular, there exists a constant Ctr (depending on Ω and s) such that

‖γ0u‖Hs−1/2(Γ) ≤ Ctr ‖u‖Hs(Ω) ∀u ∈ Hs(Ω).

If Ω is weakly Lipschitz, then γ0 is bounded for 1/2 < s < 3/2.

Theorem 2.26 (inverse trace theorem). Let Ω and s be as in Thm. 2.25.
Then the trace operator γ0 has a bounded right inverse

E : Hs−1/2(Γ)→ Hs(Ω) with γ0Ew = w ∀w ∈ Hs−1/2(Γ).

In particular, there exists a constant CIT (depending on Ω and s) such that

‖Ew‖Hs(Ω) ≤ CIT ‖w‖Hs−1/2(Γ) ∀w ∈ Hs−1/2(Γ).

Remark 2.27. 1. Theorem 2.25 and Theorem 2.26 imply that the trace
operator γ0 maps from H1(Ω) to H1/2(Γ) and is surjective.

2. The statements of Theorem 2.25 and Theorem 2.26 hold as well if Γ is
replaced by Γ1 ⊂ Γ.

3. The trace operator is not continuous from H1/2(Ω) to L2(Γ)!

4. For 1/2 < s ≤ k, Hs
0(Ω) = {v ∈ Hs(Ω) : γ0(∂αv) = 0 ∀|α| < s − 1/2}

(non-trivial, see e.g. [McLean, Thm. 3.40]).

Occasionally, we write u|Γ and u|Γ1 instead of γ0u and (γ0u)|Γ1 .

Exercise 4. (a) Show that ‖u‖?,H1/2(Γ) := inf
v∈H1(Ω)
v|Γ=u

‖v‖H1(Ω) is an equivalent

norm to ‖u‖H1/2(Γ) (provide the constants of equivalence).

(b) Prove that the infimum in (a) is attained at a unique function. Hint:
show that the quadratic functional v 7→ (v, v)H1(Ω) is convex and
bounded from below.
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2.1.7 Compact Embedding

Theorem 2.28 (Rellich). Let Ω be weakly Lipschitz. For 0 ≤ s ≤ t, the
inclusions

H t(Ω) ⊂ Hs(Ω), H t(Γ) ⊂ Hs(Γ)

are compact (where in the second case, Ω must be a Ck−1,1-domain and t ≤ k).

2.1.8 Poincaré and Friedrichs Inequalities

Theorem 2.29 (Poincaré’s inequality). Let Ω be a bounded weakly Lipschitz
domain. Then there exists a constant CP (depending on Ω) such that

‖u‖L2(Ω) ≤ CP |u|H1(Ω) ∀u ∈ H1(Ω),

∫
Ω

u dx = 0.

Proof: (a) Indirect proof based on the compact embedding H1(Ω) ⊂ L2(Ω). (b) For

special domains, direct proofs are available. E.g., if Ω is convex, then CP = diam(Ω)/π.

Remark 2.30 (other Poincaré inequalities). 1. If Γ1 ⊂ Γ is a submani-
fold of positive surface measure, then the inequality from Theorem 2.29
holds for all u ∈ H1(Ω) with

∫
Γ1
u ds = 0 (with a different constant).

2. For the boundary Γ of a weakly Lipschitz domain, there exists a con-
stant C ′P (depending on Γ) such that

‖u‖L2(Γ) ≤ C ′P |u|H1/2(Γ) ∀u ∈ H1/2(Γ),

∫
Γ

u ds = 0.

Theorem 2.31 (Poincaré-Friedrichs inequality). Let Ω be bounded and let
Γ1 ⊂ Γ be a submanifold of positive surface measure. Then there exists a
constant CF (depending on Ω and Γ1) such that

‖u‖L2(Ω) ≤ CF |u|H1(Ω) ∀u ∈ H1(Ω), u|Γ1 = 0.

Remark 2.32. The classical Friedrichs inequality is formulated for Γ1 = Γ.
In that case, CF can be expressed explicitly in terms of diam(Ω). Often, the
terms Friedrichs and Poincaré inequality are interchanged in the literature.

Exercise 5. Show (a) that the seminorm |u|?,H1/2(Γ) := inf
v∈H1(Ω)
v|Γ=u

|v|H1(Ω) is

equivalent to the seminorm |u|H1/2(Γ), and (b) that the infimum is attained at
a unique function (called the harmonic extension of u). Hint: use the trace
theorems, Poincaré’s inequality, and Remark 2.30.
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2.2 Interior Boundary Value Problems

Throughout this section, Ω ⊂ Rd shall denote a bounded domain that is
weakly Lipschitz.

2.2.1 The Distributional PDE

For simplicity, we consider a linear second-order partial differential operator

Lu = −div(A∇u) +����b · ∇u+ c u, (2.3)

with constant coefficients A ∈ Rd×d
sym, b = 0, and c ∈ R, such that ξ>Aξ > 0,

where div denotes the (distributional) divergence operator,

divF :=
d∑
j=1

∂jFj :=
d∑
j=1

∂Fj
∂xj

.

Remark* 2.33. The results of this section can be generalized to more gen-
eral coefficients A ∈ L∞(Ω)d×dsym, b ∈ L∞(Ω)d, and c ∈ L∞(Ω) such that A is
strongly elliptic:

∃α0 > 0 : ξ>A(x)ξ ≥ α0 |ξ|2 ∀ξ ∈ Rd ∀x ∈ Ω a.e.

In the weak formulation, we are interested in solutions u ∈ H1(Ω) of the
distributional PDE

Lu = f in D∗(Ω), (2.4)

where f ∈ H1(Ω)∗ ⊂ D∗(Ω). Typically, even f ∈ L2(Ω). Equation (2.4) is
naturally associated to the bilinear form

a(u, v) :=

∫
Ω

A∇u · ∇v + c u v dx, (2.5)

because

〈Lu, φ〉 = a(u, φ) ∀φ ∈ D(Ω). (2.6)

(Actually, for more general coefficients, (2.6) is used to define Lu ∈ D∗(Ω).)
The bilinear form is H1-bounded :

∃a = const : |a(u, v)| ≤ a ‖u‖H1(Ω) ‖v‖H1(Ω) ∀u, v ∈ H1(Ω).

By (2.6) and since D(Ω) is dense in H1
0 (Ω), (2.4) is equivalent to

a(u, v) = 〈f, v〉 ∀v ∈ H1
0 (Ω). (2.7)

Apparently, the test functions in (2.7) do not see what’s going on the bound-
ary Γ.
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2.2.2 The Conormal Derivative

For u ∈ H2(Ω), we see that A∇u ∈ H1(Ω)d (because A = const) and
Lu ∈ L2(Ω). We define the conormal derivative

γ1u := γ0(A∇u) · n ∈ L2(Γ), (2.8)

where n ∈ L∞(Γ) is the outward unit normal vector.

Lemma 2.34 (Green’s first identity).

a(u, v) = (Lu, v)L2(Ω) + (γ1u, γ0u)L2(Γ) ∀u ∈ H2(Ω), v ∈ H1(Ω).

Proof. On bounded, weakly Lipschitz domains, Gauss’ theorem holds:∫
Γ

F · n ds =

∫
Ω

divF dx ∀F ∈ C1(Ω)d.

By the trace and density results, this formula also holds for all F ∈ H1(Ω)d.
We choose F := v A∇u. By Gauss’ theorem and the product rule,∫

Γ

v A∇u · n ds =

∫
Ω

d∑
j=1

∂j(v A∇u) dx

=

∫
Ω

d∑
j=1

[
∂jv(A∇u) + v ∂j(A∇u)

]
dx

=

∫
Ω

∇v · (A∇u) dx+

∫
Ω

v div(A∇u) dx.

The results follows now from the definitions of a(·, ·), L, γ0, and γ1.

Remark* 2.35. With the same techniques, one shows that

a(u, v) = (u, L v)L2(Ω) + (γ0u, γ1v)L2(Γ) ∀u ∈ H1(Ω), v ∈ H2(Ω).

If b 6= 0, the above formula has to be modified, replacing Lv by L∗v :=
−div(A∇u)− div(b v) + c v and γ1v by γ̃1v := γ0(A∇v) · n+ (b · n)γ0v.

Unfortunately, the condition u ∈ H2(Ω) does not hold in general for
solutions of (2.4). The next two theorems help to define a weak conormal
deriative.

Theorem 2.36. For u ∈ H1(Ω) with div(A∇u) ∈ L2(Ω), there exists a
unique linear functional g ∈ H−1/2(Γ) such that

a(u, v) = (Lu, v)L2(Ω) + 〈g, γ0v〉 ∀v ∈ H1(Ω).

For u ∈ H2(Ω), g = γ1u. Furthermore, there exists a constant C such that

‖g‖H−1/2(Γ) ≤ C
(
‖u‖H1(Ω) + ‖div(A∇u)‖L2(Ω)

)
.
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Proof. (1) We define g ∈ H−1/2(Γ) = H1/2(Γ)∗ by

〈g, φ〉 := a(u, Eφ)− (Lu, Eφ)L2(Ω) for φ ∈ H1/2(Γ),

where E is the right inverse of γ0 (see Theorem 2.26).
(2) We show the identity in the lemma. Given v ∈ H1(Ω) arbitrary but fixed,
consider the function

v0 := v − Eγ0v.

Since γ0Eγ0v = γ0v, we have γ0v0 = 0 and so v0 ∈ H1
0 (Ω). From the density of

D(Ω) in H1
0 (Ω) and the definition of the distributional divergence, it follows

that
a(u, v0) = (Lu, v0)L2(Ω) .

By that identity, the definition of g, and because v = v0 + Eγ0v,

a(u, v) = a(u, v0) + a(u, Eγ0v)

= (Lu, v0)L2(Ω) + (Lu, Eγ0v)L2(Ω)︸ ︷︷ ︸
=(Lu, v)L2(Ω)

+〈g, γ0v〉.

(3) We show boundedness of g: for (arbitrary) φ ∈ H1/2(Γ),

|〈g, φ〉| ≤ |a(u, Eφ) + (Lu, Eφ)L2(Ω)|

=
∣∣∣ ∫

Ω

A∇u · ∇(Eφ) + div(A∇u) Eφ dx
∣∣∣

≤ a ‖u‖H1(Ω) ‖Eφ‖H1(Ω) + ‖div(A∇u)‖L2(Ω) ‖Eφ‖L2(Ω)

≤ max(a, 1)
(
‖u‖H1(Ω) + ‖div(A∇u)‖L2(Ω)

)
‖Eφ‖H1(Ω) .

Due to the inverse trace theorem, ‖Eφ‖H1(Ω) ≤ CIT‖φ‖H1/2(Γ). By the defini-
tion of the dual norm,

sup
φ∈H1/2(Γ)\{0}

|〈g, φ〉|
‖φ‖H1/2(Γ)︸ ︷︷ ︸

=:‖g‖
H−1/2(Γ)

≤ max(a, 1)CIT

(
‖u‖H1(Ω) + ‖div(A∇u)‖L2(Ω)

)
.

(4) We show that g is unique. Suppose that both g1 and g2 satisfy the
conclusions of the lemma. Then the difference g2 − g1 ∈ H−1/2(Γ) satisfies

〈g2 − g1, γ0v〉 = 0 ∀v ∈ H1(Ω).

Since the trace operator γ0 is surjective onto H1/2(Γ), this implies that

〈g2 − g1, φ〉 = 0 ∀φ ∈ H1/2(Γ),

and so g2 = g1 in the sense of H−1/2(Γ). This also shows that the construction
of g is actually independent of the particular choice of E .
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Definition 2.37 (weak conormal derivative). We define

H1
L(Ω) := {v ∈ H1(Ω) : div(A∇u) ∈ L2(Ω)},

and the weak conormal derivative γ1u := g for u ∈ H1
L(Ω) and g from Theo-

rem 2.36, we obtain the bounded linear operator

γ1 : H1
L(Ω)→ H−1/2(Γ).

This definition is consistent with (2.8).

We obtain Green’s first and second identity “for free”: for u, v ∈ H1(Ω):

a(u, v) = (Lu, v)L2(Ω) + 〈γ1u, γ0u〉 if Lu ∈ L2(Ω),

(Lu, v)L2(Ω) − (u, L v)L2(Ω) = 〈γ1v, γ0u〉 − 〈γ1u, γ0u〉 if Lu, L v ∈ L2(Ω).

(If L includes b · ∇, then the second formula has to adapted.)
In rare cases, we need a further generalization of the conormal derivative:

Theorem 2.38. For u ∈ H1(Ω) and f ∈ H1(Ω)∗ with

Lu = f in D∗(Ω),

there exists a linear functional g ∈ H−1/2(Γ) such that

a(u, v) = 〈f, v〉+ 〈g, γ0v〉 ∀v ∈ H1(Ω).

Furthermore, g is uniquely determined by u and f and

‖g‖H−1/2(Γ) ≤ C
(
‖u‖H1(Ω) + ‖f‖H1(Ω)∗

)
.

Exercise 6. Prove Theorem 2.38 (analogously to the proof of Thm. 2.36).

Definition 2.39. For u ∈ H1(Ω) and f ∈ H1(Ω)∗ with Lu = f in D∗(Ω),
the weak conormal derivative γ1(u, f) ∈ H−1/2(Γ) is given by g as from
Theorem 2.38.

Warning: for a general function u ∈ H1(Ω), the conormal derivative cannot
be defined anymore. The minimal additional assumption for u ∈ H1(Ω)
seems to be Lu ∈ H1(Ω)∗.

Restriction to Γ1 ⊂ Γ. Any functional g ∈ H−1/2(Γ) can be restricted to a

functional g|Γ1 ∈ H−1/2(Γ1) = H̃1/2(Γ1)∗, given by

〈g|Γ1 , φ〉 := 〈g, φ̃〉 for φ ∈ H̃1/2(Γ1),

where φ̃ ∈ H1/2(Γ) denotes the extension of φ by zero from Γ1 to Γ (see
Def. 2.22). Hence (γ1u)|Γ1 ∈ H−1/2(Γ1) is well-defined too.
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2.2.3 Boundary Value Problems

Suppose that the boundary Γ of Ω splits into two
disjoint parts,

Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅,

such that ΓN is “Lipschitz relatively to Γ” (the
special cases ΓD = ∅ and ΓN = ∅ are allowed).
Using the notations of Sect. 2.2.1 and Sect. 2.2.2,
we can define boundary value problems (BVPs).

Ω

Γ
D Γ

N

Mixed boundary value problem Find u ∈ H1(Ω) such that

Lu = f in D∗(Ω),

γ0u = gD in H1/2(ΓD), (2.9)

γ1u = gN in H−1/2(ΓN),

for given data f ∈ H1(Ω)∗, gD ∈ H1/2(ΓD), and gN ∈ H−1/2(ΓN). If ΓD = Γ,
(2.9) is called first or Dirichlet BVP, if ΓN = Γ, second or Neumann BVP.

Third/Robin boundary value problem Find u ∈ H1(Ω) such that

Lu = f in D∗(Ω),

γ1u+ β γ0u = g in H−1/2(Γ),
(2.10)

for given data f ∈ H1(Ω)∗, g ∈ H−1/2(Γ), and β ∈ L∞(Γ).
Note that H1/2(Γ) ⊂ L2(Γ) ⊂ H−1/2(Γ). For β = 0, (2.10) reduces to the

Neumann BVP.

Exercise 7. (a) Show that (2.9) is equivalent to

find u ∈ H1(Ω), u|ΓD = gD : a(u, v) = 〈f̃ , v〉 ∀v ∈ H1
D(Ω),

where H1
D(Ω) := {v ∈ H1(Ω) : v|ΓD = 0}. How is f̃ defined?

(b) Derive the variational formulation which is equivalent to (2.10).

Solvability using the Lax-Milgram theorem (discussed in the Lec-
tures Numerical Methods for Partial Differential Equations and Numerical
Methods for Elliptic PDEs.) If the bilinear form a(·, ·) satisfies

∃a > 0 : a(v, v) ≥ a ‖v‖2
H1(Ω) ∀v ∈ H1

D(Ω), (2.11)

then problem (2.9) has a unique solution.

A few special cases:
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1. c > 0: condition (2.11) is fulfilled.

2. c = 0, |ΓD| > 0: (2.11) fulfilled (Friedrichs’ inequality).

3. c = 0, ΓD = ∅ (pure Neumann problem): (2.11) fulfilled for v ∈ H1(Ω),∫
Ω
v dx = 0 (Poincaré’s inequality). Problem (2.9) is then solvable if

and only if
〈f, 1〉+ 〈gN , 1〉 = 0.

In that case, the solution is unique up to an additive constant.

4. If β is uniformly positive, i.e., β(x) ≥ β0 = const > 0 for all x ∈ Γ a.e.,
then the Robin problem (2.10) is uniquely solvable.

2.2.4 Fredholm Theory*

This subsection is only a minimal collection. For more details see the lecture
Integral Equations or e.g., [McLean, Ch. 2]. Let X, Y be Banach spaces.

Definition 2.40. A bounded linear operator B : X → Y is Fredholm if
1. range(B) is closed in Y ,
2. ker(B) and the factor space Y/range(B) are finite-dimensional.
The index of B is then defined by

index(B) := dim(ker(B))− dim(Y/range(B)).

Theorem 2.41 (Fredholm’s alternative). Suppose that B : X → Y is Fred-
holm with index(B) = 0. Then there are two, mutually exclusive possibilities:

(i) The homogeneous equation B u = 0 has only the trivial solution u = 0.
In this case,

(a) for each f ∈ Y , the inhomogeneous equation B u = f has a unique
solution u ∈ X,

(b) for each g ∈ X∗, the adjoint3 equation B∗v = g has a unique
solution v ∈ Y ∗.

(ii) The homogeneous equation B u = 0 has exactly p linearly indepent
solutions u1, . . . , up for some finite p ≥ 1. In this case,

(a) the homogeneous adjoint equation B∗v = 0 has exactly p linearly
independent solutions v1, . . . , vp,

3The adjoint operator B∗ : Y ∗ → X∗ is defined by 〈B∗f, v〉 = 〈f, B v〉 for v ∈ X,
f ∈ Y ∗ (in the complex case, one has to add conjugation).
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(b) the inhomogeneous equation B u = f is solvable if and only if the
right-hand side f satisfies 〈f, vj〉 = 0 for j = 1, . . . , p,

(c) the inhomogeneous adjoint equation B∗v = g is solvable if and
only if the right-hand side g satisfies 〈g, uj〉 = 0 for j = 1, . . . , p.

Let V ⊂ H be two Hilbert spaces such that V is dense in H and

‖u‖H ≤ C ‖u‖V ∀u ∈ V.

The prominent example is H = L2(Ω) and V a closed subspace of H1(Ω).
We identify H with its dual H∗. Then we may write

V ⊂ H ⊂ V ∗,

and we say that H acts as a pivot space for V . Note that the duality product
〈·, ·〉 : V ∗ × V → R is a consistent extension of the inner product (·, ·)H :

〈u, v〉 = (u, v)H ∀u ∈ V ⊂ V ∗, v ∈ V.

Definition 2.42. 1. We say that a bilinear form b(·, ·) : V × V → R
fulfills a G̊arding inequality (on V with respect to H), if there exist
constants c > 0 and C <∞ such that

b(v, v) ≥ c ‖v‖2
V − C ‖v‖2

H ∀v ∈ V.

2. A bounded linear operator B : V → V ∗ is called coercive4 (on V with
respect to the pivot space H) if its associated bilinear form 〈B·, ·〉 fulfills
a G̊arding inequality.

Theorem 2.43 (G̊arding implies Fredholm). If H acts as a pivot space for
V , if the bounded linear operator B : V → V ∗ is coercive on V , and if the
inclusion map V → H is compact, then B is Fredholm with index zero.

Example 2.44. Problem (7) is equivalent to

find u0 ∈ H1
D(Ω) : a(u0, v) = 〈f̃ , v〉 − a(EgD, v)︸ ︷︷ ︸

=:〈f̄ , v〉

∀v ∈ H1
D(Ω),

where EgD is a suitable extension of gD from ΓD to Ω; see also Exercise 7. It
is further equivalent to the operator equation B u0 = f̄ , where B : H1

D(Ω)→
H1
D(Ω)∗ is defined by 〈B v, w〉 = a(v, w). Since a(v, v) + (1 + |c|) ‖v‖2

L2(Ω) ≥
min(λmin(A), 1) ‖v‖2

H1(Ω) for all v ∈ H1(Ω), it follows that B is coercive.

With the fact that H1
D(Ω) is compactly included in L2(Ω), it follows that B

is Fredholm with index zero, and so Fredholm’s alternative holds.

4Note that a bilinear form b(·, ·) is called coercive (or elliptic, or positive and bounded
from below), if b(v, v) ≥ b ‖v‖2V . In that case, the associated operator B is often called
elliptic.
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The next theorem and corollary show that for the whole range of c ∈ R,
Case (ii) in Fredholm’s alternative only occurs a countable number of times.

Theorem 2.45 (spectral theorem). Let H act as a pivot space for V , as-
sume that H is infinite-dimensional, and that the inclusion map V → H
is compact. If the bounded linear operator S : V → V ∗ is self-adjoint and
coercive, then there exist sequences (vj)j∈N ∈ V and (λj)j∈N ∈ R such that

(i) S vj = λjvj,

(ii) the eigenvectors (vj)j∈N form a complete orthonormal system in H,

(iii) the eigenvalues satisfy λ1 ≤ λ2 ≤ λ3 ≤ · · · and λj →∞ as j →∞,

(iv) S u =
∑∞

j=1 λj(u, vj)vj for each u ∈ V .

Corollary 2.46. Let the assumptions of Theorem 2.45 hold and let λ ∈ R.
If λ 6∈ {λ1, λ2, λ3, . . .}, then the operator S − λI : V → V ∗ has a bounded
inverse. In particular, the equation

S u− λu = f

is uniquely solvable for all f ∈ V ∗.
With this result, we can discuss cases of (2.9) where c < 0.

Exercise 8. Show that there exist eigenvalues λ1 ≤ λ2 ≤ · and corresponding
(non-trivial) eigenfunctions (vj)j∈N ∈ H1(Ω) such that

−div(A∇vj) = λj vj in D∗(Ω),

γ0vj = 0 in H1/2(ΓD),

γ1vj = 0 in H−1/2(ΓN).

Hint: use Example 2.44 and Corollary 2.46.

In the situation of Exercise 8, one can even shown that λ1 ≥ 0. If ΓD = Γ,
we call λj a Dirichlet eigenvalue, if ΓN = Γ a Neumann eigenvalue.

We conclude: provided that −c 6∈ {λ1, λ2, . . .}, problem (2.9), i.e.

−div(A∇u) + c u = f in D∗(Ω),

γ0u = gD in H1/2(ΓD),

γ1u = gN in H−1/2(ΓN),

is uniquely solvable. Otherwise, a solution exists if and only if the data
satisfy

〈f, vj〉+ 〈gN , γ0vj〉ΓN = 〈γ1vj, gD〉ΓD for all j with λj = −c.
In particular, the Dirichlet/Neumann problem for the Helmholtz equation
−∆u− κ2u = f is uniquely solvable if κ2 is not an eigenvalue. Otherwise it
is only solvable under the above compatibility condition.



Chapter 3

Boundary Integral Equations

In this chapter, we develop boundary integral equations that reformulate the
interior boundary value problems from Section 2.2.

To this end, we derive a representation formula for H1 functions that sat-
isfy a distributional PDE, where we make use of the fundamental solution.
Since the fundamental solution acts on the whole of Rd, we use a trick: we
let the function of interest satisfy the distributional PDE inside and outside
of the (bounded) domain Ω and allow it to be discontinuous across the in-
terface Γ (while still being a distribution). For this setting, we derive the
co-called transmission property. Furthermore, we obtain the representation
formula, which is composed of volume and and surface potentials involving
the fundamental solution.

Taking traces of the representation formula leads to the boundary integral
equations, which relate the Cauchy data, i.e., the trace and the conormal
derivative. We show that the involved operators are indeed integral operators
and study some of their properties. In that part, we restrict ourselves mostly
to the Laplace equation.

3.1 The Transmission Property

Let Ω ⊂ Rd be a bounded (weakly) Lipschitz domain and define

Ωint := Ω, Ωext := Rd \ Ω.

In order to emphasize expressions related to Ωint, we write γint
0 , γint

1 for the
two trace operators from Theorem 2.25 and Sect. 2.2.2. Applying the trace
theorem to Ωext, we obtain the (bounded) trace operator

γext
0 : H1(Ωext)→ H1/2(Γ).

29
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ext

n Ω

Ω
int

Figure 3.1: Interior/exterior domains Ωint, Ωext; unit normal vector n.

The results of Sect. 2.2.2 (see Def. 2.37) hold for Ωext as well, leading to the
(weak) exterior conormal derivative

γext
1 : H1

L(Ωext)→ H−1/2(Γ).

However, we use a switch in the sign, such that∫
Ωext

A∇u · ∇v dx = −
∫

Ωext

div(A∇u) v dx− 〈γext
1 u, γext

0 v〉 ∀v ∈ H1(Ωext),

(3.1)

for u ∈ H1
L(Ωext). If u ∈ H2(Ωext), then γext

1 u = γint
0 (A∇u) · n, where n is

the unit normal vector outward to Ωint, i.e., inward to Ωext.

Remark* 3.1. In the analogous way to Thm. 2.38, Def. 2.39, one obtains the
generalized conormal derivative γext

1 (u, f ext) ∈ H−1/2(Γ) for u ∈ H1(Ωext),
f ext ∈ H1(Ωext)∗ with Lu = f ext in D∗(Ωext).

To summarize, for a function

u ∈ H1(Ωint ∪Ωext) := {u ∈ L2(Rd) : u|Ωint ∈ H1(Ωint), u|Ωext ∈ H1(Ωext)},
that fulfills

Lu = f int in D∗(Ωint),

L u = f ext in D∗(Ωext),
(3.2)

for given functions f int ∈ L2(Ωint), f ext ∈ L2(Ωext), we have∫
Ωint

A∇u · ∇v + c u v dx︸ ︷︷ ︸
=: aint(u, v)

=

∫
Ωint

f int v dx+ 〈γint
1 u, γint

0 v〉 ∀v ∈ H1(Ωint),

∫
Ωext

A∇u · ∇v + c u v dx︸ ︷︷ ︸
=: aext(u, v)

=

∫
Ωext

f ext v dx− 〈γext
1 u, γext

0 v〉 ∀v ∈ H1(Ωext).

(3.3)
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Definition 3.2. For u ∈ H1(Ωint ∪Ωext) fulfilling (3.2), we define the (com-
posed) distribution

f ∈ H1(Rd)∗ : 〈f, v〉 :=

∫
Ωint

f int v dx+

∫
Ωext

f ext v dx for v ∈ H1(Rd),

and the jumps

[[γ0u]] := γext
0 u− γint

0 u ∈ H1/2(Γ), (3.4)

[[γ1u]] := γext
1 u− γint

1 u ∈ H−1/2(Γ). (3.5)

If A = I and u piecewise smooth, then [[γ1u]] = ∂
∂n
u|Ωext − ∂

∂n
u|Ωint . Note that

for u ∈ H1(Rd) : γint
0 u = γext

0 u, [[γ0u]] = 0,

for φ ∈ D(Rd) : γint
1 φ = γext

1 φ, [[γ1φ]] = 0.

In such a situation, we simply write γ0u, γ1φ for the respective traces.

Exercise 9. For u ∈ H1(Ωint ∪ Ωext), show that u ∈ H1(Rd) if and only if
[[γ0u]] = 0.

Remark* 3.3. The identities (3.3) and Definition 3.2 of f ∈ H1(Rd)∗ can
be generalized straightforwardly to f int ∈ H1(Ωint)∗ and f ext ∈ H1(Ωext)∗,
but one must replace the volume integrals by 〈f int, v〉Ωint and 〈f ext, v〉Ωext ,
and use the generalized conormal derivatives γint

1 (u, f int) and γext
1 (u, f ext).

From (3.3) and Definition 3.2, we conclude that

aint(u, v) + aext(u, v) = 〈f, v〉 − 〈[[γ1u]], γ0v〉 ∀v ∈ H1(Rd). (3.6)

Apparently, u ∈ H1(Ωint ∪ Ωext) ⊂ S∗(Rd) ⊂ D∗(Rd), so u is a distribution.
Therefore, the distributional derivative Lu is in S∗(Rd) ⊂ D∗(Rd) as well,
and fulfills1

〈Lu, ϕ〉 = 〈u, Lφ〉 ∀ϕ ∈ D(Rd) or S(Rd).

Definition 3.4. We define the adjoint trace operators

γ∗0 : H−1/2(Γ)→ E∗(Rd) : 〈γ∗0w, ϕ〉 := 〈w, γ0ϕ〉 for ϕ ∈ E(Rd), w∈H−
1
2 (Γ),

γ∗1 : H1/2(Γ)→ E∗(Rd) : 〈γ∗1v, ϕ〉 := 〈γ1ϕ, v〉 for ϕ ∈ E(Rd), v ∈ H1/2(Γ).

1In general, L on the right-hand side has to be replaced by its adjoint L∗.
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Theorem 3.5. Suppose that u ∈ H1(Ωint ∪ Ωext) fulfills (3.2). Then

Lu = f + γ∗1 [[γ0u]]− γ∗0 [[γ1u]] in D∗(Rd).

Proof. Let ϕ ∈ D(Rd) be arbitrary but fixed. Then the properties of the
distributional derivative imply

〈Lu, ϕ〉 = 〈u, Lϕ〉 =

∫
Ωint

u (Lϕ) dx+

∫
Ωext

u (Lϕ) dx =: (∗). (3.7)

By Green’s first identity (Lemma 2.34 applied in Ωint and Ωext separately
with u 7→ ϕ ∈ D ⊂ H2 and v 7→ u ∈ H1), we obtain

(∗) = aint(u, ϕ)− 〈γ1ϕ, γ
int
0 u〉 + aext(u, ϕ) + 〈γ1ϕ, γ

ext
0 u〉.

We substitute (3.6) into that identity and use Definition 3.2 of the jump:

(∗) = 〈f, ϕ〉 − 〈[[γ1u]], γ0ϕ〉−〈γ1ϕ, γ
int
0 u〉+ 〈γ1ϕ, γ

ext
0 u〉︸ ︷︷ ︸

= 〈γ1ϕ, [[γ0u]]〉

. (3.8)

Combining (3.7), (3.8) as well as Definition 3.4 of the adjoint trace operators,
we obtain

〈Lu, ϕ〉 = 〈f, v〉 − 〈γ∗0 [[γ1u]], ϕ〉+ 〈γ∗1 [[γ0u]], ϕ〉,

which concludes the proof.

Remark 3.6. Theorem 3.5 shows that Lu = f in D∗(Rd) if and only if

[[γ0u]] = 0 and [[γ1u]] = 0.

Outlook: Our next goal is to apply a fundamental solution G to the identity
Lu = f + γ∗1 [[γ0u]]− γ∗0 [[γ1u]] of Theorem 3.5, such that we get

u = Gf + Gγ∗1 [[γ0u]]− Gγ∗0 [[γ1u]],

i.e., we can represent u in terms of f and the Cauchy data. If we set u|Ωext = 0
and f ext = 0, we obtain

u = Gf int − Gγ∗1γint
0 u+ Gγ∗0γint

1 u.

This is known as Green’s third identity (cf. (1.4) in the introduction) and will
yield the desired boundary integral equations when applying trace operators
to it.
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3.2 Fundamental Solutions

Definition 3.7. A linear operator G : E∗(Rd)→ D∗(Rd) is called fundamen-
tal solution of the differential operator L iff

LGu = u = GLu ∀u ∈ E∗(Rd).

If G is an integral operator with kernel G(x, y) = G(x− y), i.e.,

(Gw)(x) =

∫
Rd
G(x− y)w(y) dy (for w sufficiently smooth), (3.9)

then G is called fundamental solution as well. In such a situation, G above
is often called volume potential or Newton potential.

In the following, we provide fundamental solutions for a few specific dif-
ferential operators.

• Laplace operator: Lu = −∆u:

G(z) =

{
− 1

2π
log |z| for d = 2,

1
4π

1
|z| for d = 3.

• Lu = −div(A∇u):

G(z) =
1

4π det(A)

1√
z>Az

for d = 3.

• Helmholtz operator: Lu = −∆u− κ2u:

G(z) =
1

4π

e−iκ |z|

|z|
for d = 3, κ > 0.

For d = 2, in general, one has to use Hankel or Bessel functions. For
derivations, we point to the lecture Partial Differential Equations as well
as [Evans, Steinbach, McLean].

In all above cases, G can be shown to be a distribution fulfilling

Gw = G ∗ w for w ∈ S∗(Rd), (3.10)

where ∗ is the distributional convolution operator (without going into the
details of its definition). Moreover,

G : S(Rd)→ S(Rd), G : S∗(Rd)→ S∗(Rd), (3.11)

LG = id = GL in S∗(Rd), (3.12)

and
〈G ψ, ϕ〉 = 〈ψ, Gϕ〉 ∀ψ ∈ S∗(Rd), ϕ ∈ S(Rd).
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Remark* 3.8. Fundamental solutions can e.g. be derived using the Fourier
transform. If Gw = G ∗ w with G ∈ S∗(Rd), then

LG = GL = id ⇐⇒ LG = GL = δ ⇐⇒ L̂ Ĝ = 1,

where L̂(ξ) := ξ>Aξ + c is the symbol of the differential operator L and

Ĝ := FG the Fourier transform of G. Thus, G should be the inverse Fourier
transform of 1/L̂. However, there are some technicalities, see [McLean].

In this lecture, we do not check/prove (3.11)–(3.12). However, we show
that the convolution integral in (3.9) is well-defined for w ∈ S(Rd).

Definition 3.9. For a compact d-dimensional domain/manifoldM, an inte-
gral kernel k :M×M→ R is called weakly singular if k(x, y) is continuous
at all x 6= y ∈M and if there exist constants C > 0 and α > 0 such that

|k(x, y)| ≤ C |x− y|α−d ∀x 6= y ∈M.

Lemma 3.10. For the fundamental solutions on page 33, the integral

(Gϕ)(x) =

∫
Rd
G(x− y)ϕ(y) dy for ϕ ∈ S(Rd), x ∈ Rd,

exists as an improper integral.

Proof. We fix x ∈ Rd and consider the ball BR(x) with radius R ∈ (0, ∞).

1. On BR(x), the integral kernel k(x, y) := G(x− y) is weakly singular.

2. Hence,∣∣∣ ∫
BR(x)

G(x− y)ϕ(y) dy
∣∣∣ ≤ ‖ϕ‖L∞(BR(x))

∫
BR(x)

|G(x− y)| dy.

Using the estimate from Def. 3.9 and transforming to polar/spherical coor-
dinates (around the center x), one sees that the bound is finite. This shows
that the (improper) integral is absolutely convergent.

3. On the remainder Rd \BR(x), G is smooth and∫
Rd\BR(x)

G(x− y)ϕ(y) dy =

∫
Rd\BR(0)

z−β G(z) zβ ϕ(x− z) dz.

Since ϕ is rapidly decreasing, zβϕ(x − z) has bounded L∞-norm. Choosing
β suitably, the integral over z−βG(z) can be bounded.

Exercise 10. Work out the details of the proof of Lemma 3.10.

The technique shown in the proof of Lemma 3.10 can be used for any
integral with weakly singular kernel.
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3.3 Representation Formula and Potentials

As in Section 3.1, let u ∈ H1(Ωint ∪ Ωext) fulfill (3.2), i.e.

Lu = f int in D∗(Ωint), L u = f ext in D∗(Ωext),

with f int/ext ∈ L2(Ωint/ext) (or H1(Ωint/ext)∗).

3.3.1 Representation Formula (Green’s 3rd Identity)

Theorem 3.11 (representation formula). Let u ∈ H1(Ωint∪Ωext) fulfill (3.2).
If u has compact support in Rd, then

u = Gf + Gγ∗1 [[γ0u]]− Gγ∗0 [[γ1u]] . in S∗(Rd).

Proof. If u has compact support, it follows immediately that

u ∈ S∗(Rd), L u ∈ S∗(Rd).

Furthermore, γ∗1 [[γ0u]] ∈ E∗(Rd) ⊂ S∗(Rd) and γ∗0 [[γ1u]] ∈ E∗(Rd) ⊂ S∗(Rd).
Repeating the arguments from the proof of Theorem 3.5 yields

Lu = f + γ∗1 [[γ0u]]− γ∗0 [[γ1u]] in S∗(Rd).

The desired formula now follows simply by applying G.

Definition 3.12 (surface potentials).

single layer potential Ṽ := Gγ∗0 : H−1/2(Γ)→ S∗(Rd)

double layer potential W̃ := Gγ∗1 : H1/2(Γ)→ S∗(Rd)

Corollary 3.13. If u ∈ H1(Ωint) fulfills Lu = f int in D∗(Ωint), then

u = Gf int − W̃γint
0 u+ Ṽ γint

1 u in Ωint, (3.13)

where Gf int denotes the application of G to the extension of f int by zero.

The (interior) representation formula (3.13) relates the solution u to the
right-hand side f int and the Cauchy data (γint

0 u, γint
1 u). We now would like

to decode (3.13) for smooth arguments.

Volume potential From the proof of Lemma 3.10, one can conclude that

(Gf int)(x) =

∫
Ωint

G(x− y) f int(y) dy for f int ∈ L∞(Ωint), x ∈ Ω
int
.



CHAPTER 3. BOUNDARY INTEGRAL EQUATIONS 36

Single layer potential For ϕ ∈ S(Rd) and w ∈ L∞(Γ),

〈Gγ∗0w︸ ︷︷ ︸
=Ṽ w

, ϕ〉S∗×S = 〈γ∗0w, Gϕ〉S∗×S = 〈w, γ0Gϕ〉Γ

=

∫
Γ

w(x)

∫
Rd
G(x− y)ϕ(y) dy dsx

=

∫
Rd

∫
Γ

G(x− y)︸ ︷︷ ︸
G(y−x)

w(x) dsx ϕ(y) dy.

(3.14)

Warning: exchanging the two integrals is only valid if both inner integrals
exist and the integral of G(x− y)w(x)ϕ(y) over Rd × Γ exists (Fubini). As
we shall see in the (proof of) next lemma, this is indeed the case.

Lemma 3.14. For the fundamental solutions on page 33,

(Ṽ w)(x) =

∫
Γ

G(x− y)w(x) dsy for w ∈ L∞(Γ), (3.15)

where right-hand side exists as an improper integral for all x ∈ Rd. Moreover,
Ṽ w ∈ C(Rd) (for w ∈ L∞(Γ)).

Proof. Step 1. We show that the integral exists. Fix w ∈ L∞(Γ) and x ∈ Γ
(for x 6∈ Γ, the integral contains no singularity and thus exists).

Recall that Ωint was assumed to be
weakly Lipschitz with boundary Γ.
Let Ux be a neighborhood of x such
that there exists a bi-Lipschitz map

χ : B0 → Ux such that χ(B
2

0) = Γ∩Ux
and χ(0) = x.

Γ x

χ

B
2

0

B
2

U
x

Due to the parametrization of curve/surface integrals,∫
Γ∩Ux

G(x− y)w(y) dsy =

∫
B2

0

G(χ(0)− χ(ξ)) ŵ(ξ) J(ξ) dξ,

where ŵ(ξ) = w(χ(ξ)) and J is the suitable Gram determinant depending
on the gradient of χ|B2

0
. Due to the assumptions on w and χ,

ŵ ∈ L∞(B2
0), J ∈ L∞(B2

0).

This shows that∣∣∣ ∫
Γ∩Ux

G(x− y)w(y) dsy

∣∣∣ ≤ ‖J ŵ‖L∞(B2
0)︸ ︷︷ ︸

<∞

∫
B2

0

|G(χ(0)− χ(ξ))| dξ︸ ︷︷ ︸
=: (∗)

.
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The fundamental solutions under consideration fulfill

|G(x− y)| ≤ C |x− y|α−d+1 for x, y ∈ Ux ,

with C > 0, α > 0. Since χ and χ−1 are Lipschitz,

C−1 |0− ξ| ≤ |χ(0)− χ(ξ)| ≤ C |0− ξ| ∀ξ ∈ B0
2 ,

where C is a generic constant. Using both properties, we get

(∗) ≤ C

∫
B2

0

|χ(0)− χ(ξ)|α−d+1 dξ ≤ C

∫
B2

0

|ξ|α−d+1 dξ

With similar arguments than in the proof of Lemma 3.10 / Exercise 10, one
sees that the (d− 1)-dimensional integral on the right-hand side exists.

Step 2. Continuity of the integral on Rd \ Γ is seen rather easily. For x ∈ Γ
and x̃ ∈ Rd, assume that Ux from Step 1 is chosen with diam(Ux) = ε and

x̃ ∈ Ux. Splitting the joint integral in
∣∣(Ṽ w)(x) − (Ṽ w)(x̃)

∣∣ into a part (I)
over Γ \Ux and a part (II) over Γ∩Ux, using the triangle inequality and the

same arguments as in Step 1 yields that part (I)
ε→0→ 0 and part (II) ≤ C εα.

Step 3. Splitting the total integral over Rd × Γ into one over BR × Γ and a
remainder (where BR ⊃⊃ Ωint, using that G(x − y) is weakly singular with
respect to BR × Γ, and employing analogous techniqes as in Step 1, one can
conclude that the product integral exists =⇒ Fubini is applicable.

Step 4. (3.15) now follows from (3.14).

Exercise 11. Complete Step 2 of the proof above.

Double layer potential Here, matters are more complicated and will be-
come clear later on. At least, we see rather easily that for v ∈ L∞(Γ),

(W̃v)(x) =

∫
Γ

[
A∇yG(x− y) · n(y)

]
v(y) dsy ∀x ∈ Rd \ Γ. (3.16)

Summary For u ∈ H1(Ωint) ∩ L∞(Ωint), f int ∈ L∞(Ωint) and A = I, the
representation formula (3.13) decodes to

u(x) =

∫
Ωint

G(x− y) f int(y) dy +

∫
Γ

[ ∂

∂ny
G(x− y)

]
u(y) dsy (3.17)

−
∫

Γ

G(x− y)
∂u

∂n
(x) dsy ∀x ∈ Ωint.
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3.3.2 Further Properties of the Volume Potential

By Definition 3.7,
LGf int = f int in D∗(Ωint),

i.e., the volume/Newton potential is a solution of the inhomogeneous PDE.

Lemma 3.15. Let µ1, µ2 ∈ C∞0 (Rd) be cutoff functions that equal 1 in a
neighborhood of Ωint. Then, for any s ∈ R, the operator

µ1Gµ2 : Hs−1(Rd)→ Hs+1(Rd)

is linear and continuous. In particular, µ1Gµ2 : H1(Rd)∗ → H1(Rd).

Proof. Using Fourier transform, see e.g. [Steinbach, McLean].

Corollary 3.16. For f int ∈ H1(Ωint)∗, Gf int ∈ H1(Ωint), and

G : H1(Ωint)∗ → H1(Ωint)

is a linear and continuous operator.

Exercise 12. Prove Corollary 3.16 (by using the result of Lemma 3.15).

3.3.3 Properties of the Surface Potentials

From Def. 3.12 and Def. 3.4, for ϕ ∈ E(Rd),

〈L Ṽ w, ϕ〉Rd = 〈 LG︸︷︷︸
=id

γ∗0w, ϕ〉Rd = 〈w, γ0ϕ〉Γ .

If we choose ϕ ∈ D(Ωint), the term on the right-hand side vanishes. The
analogous property holds for the double layer potential. We summarize:

Lemma 3.17. For any w ∈ H−1/2(Γ) and v ∈ H1/2(Γ),

L Ṽ w = 0, L W̃v = 0 in D∗(Ωint) and D∗(Ωext). (3.18)

By their original definition, the surface potentials map into distributional
spaces. Lemma 3.18 below discusses mapping properties in Sobolev spaces.

Exercise 13. Prove that γ∗0 : H−1/2(Γ)→ H1(Rd)∗ is linear and continuous.
Hint: It suffices (why?) to show that there exists a constant C:

|〈γ∗0w, ϕ〉| ≤ C ‖w‖H−1/2(Γ) ‖ϕ‖H1(Rd) ∀w ∈ H−1/2(Γ), ϕ ∈ S(Rd).
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Lemma 3.18 (mapping properties). Let µ1 ∈ C∞0 (Rd) be a cutoff function
that equals 1 in a neighborhood of Ωint. Then

(i) µ1Ṽ : H−1/2(Γ)→ H1(Rd),

(ii) µ1W̃ : H1/2(Γ)→ H1(Ωint ∪ Ωext)

are linear and bounded operators.

Proof. (i) Let µ2 ∈ C∞0 (Rd) be a second cutoff function with µ2|Γ = 1. From
the definition of γ∗0 , we see that for any ψ ∈ H−1/2(Γ), ϕ ∈ E(Rd),

〈γ∗0ψ, ϕ〉 := 〈ψ, γ0ϕ〉 = 〈ψ, γ0µ2ϕ〉 = 〈γ∗0ψ, µ2ϕ〉 = 〈µ2γ
∗
0ψ, ϕ〉,

and so γ∗0ψ = µ2γ
∗
0ψ. For w ∈ H−1/2(Γ),

‖µ1 Gµ2γ
∗
0w︸ ︷︷ ︸

=Gγ∗0w=Ṽ w

‖H1(Rd)

Lem, 3.15

≤ C ‖γ∗0w‖H1(Rd)∗
Ex. 13

≤ C ‖w‖H−1/2(Γ) .

(ii) Fix v ∈ H1/2(Γ). Let λ be large enough (λ + c > 0), such that the
Dirichlet BVP

Lu+ λu = 0 in D∗(Ωint),

γint
0 u = v in H1/2(Γ)

has a unique solution u ∈ H1(Ωint). As Exercise 14 below shows, there exists
a (generic) constant C such that

‖u‖H1(Ωint) ≤ C ‖v‖H1/2(Γ) , ‖γint
1 u‖H−1/2(Γ) ≤ C ‖v‖H1/2(Γ). (3.19)

We define u|Ωext := 0 such that u ∈ L2(Rd). Then

Lu = −λu in D∗(Ωint) and D∗(Ωext),

and so Theorem 3.11 implies

u = −λGu+ W̃ [[γ0u]]︸ ︷︷ ︸
=−v

−Ṽ [[γ1u]]︸ ︷︷ ︸
=−γint

1 u

in D∗(Rd).

Summarizing,

W̃v = −u− λGu+ Ṽ γint
1 u in D∗(Rd). (3.20)

To bound µ1W̃v, we just need to bound the H1-norms of the (cut) individ-
ual three terms. This is done using (3.19), Lemma 3.15, and part (i); see
Exercise 15 below.
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Exercise 14. Prove (3.19). Hint: use the estimate ‖u‖V ≤ C ‖f‖V ∗ from
the Lax-Milgram theorem, where f ∈ V ∗, a(u, v) = 〈f, v〉 ∀v ∈ V with
a(·, ·) coercive and bounded on the Hilbert space V .

Exercise 15. Complete the last step of the proof above, i.e., the step af-
ter (3.20). Hint: Estimate ‖µ1Gu‖H2(Rd) using Lemma 3.15 with s = 1 to get
an intermediate bound in terms of ‖u‖L2(Ωint).

Remark* 3.19. For v, w ∈ L∞(Γ),

Ṽ w, W̃ v ∈ C∞(Rd \ Γ).

This is seen from (3.15), (3.16) and the fact that G(x − y) is C∞ for all
x 6= y ∈ Rd. The above property even holds for v, w ∈ L1(Γ).

Since the surface potentials map to H1 and fulfill the PDE, we can apply
trace operators to them.

Lemma 3.20 (traces of the surface potentials). The operators

γint
0 Ṽ : H−1/2(Γ)→ H1/2(Γ), γint

1 Ṽ : H−1/2(Γ)→ H−1/2(Γ),

γint
0 W̃ : H1/2(Γ)→ H1/2(Γ), γint

1 W̃ : H1/2(Γ)→ H−1/2(Γ)

and the corresponding ones with the exterior traces are linear and continuous.

Proof. The properties for γint
0 Ṽ , γint

0 W̃ follow immediately from Lemma 3.18
and the trace theorem (Thm. 2.25).

Due to (3.18) and Thm. 2.36, the interior conormal derivatives of Ṽ w, W̃v
are well-defined in H−1/2(Γ) and depend linearly and continuously on these
functions. The total continuity follows now again from Lemma 3.18.

Exercise 16. Prove the corresponding statements for the exterior operators.
Warning: The definition of γext

1 cannot be used directly, because Ṽ w, W̃v 6∈
H1(Ωext). Hint: work on the bounded domain Ωext ∩ BR with R sufficiently
large such that Γ ⊂ ∂(Ωext ∩BR).

The next lemma shows if and how jumps of the above traces occur across
the interface Γ.

Lemma 3.21 (jump relations).

(i) [[γ0Ṽ w]] = 0 (ii) [[γ1Ṽ w]] = −w ∀w ∈ H−1/2(Γ),

(iii) [[γ0W̃v]] = v (iv) [[γ1W̃v]] = 0 ∀v ∈ H1/2(Γ).
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Proof. (i) follows immediately from Lemma 3.18.

(ii) For fixed w ∈ H−1/2(Γ), set u := Ṽ w = Gγ∗0w. On the one hand,
Theorem 3.5 (together with (3.18)) implies that

Lu = 0 + γ∗1 [[γ0u]]︸ ︷︷ ︸
=0

−γ∗0 [[γ1u]] in D∗(Rd),

and so (using Def. 3.4),

〈Lu, ϕ〉 = −〈[[γ1u]], γ0ϕ〉 ∀ϕ ∈ D(Rd).

On the other hand,

〈Lu, ϕ〉 = 〈 LG︸︷︷︸
=id

γ∗0w, ϕ〉 = 〈w, γ0ϕ〉 ∀ϕ ∈ D(Rd).

Combining the two last identities yields

−〈[[γ1u]], γ0ϕ〉 = 〈w, γ0ϕ〉 ∀ϕ ∈ D(Rd).

Since γ0(D(Rd)) is dense inH1/2(Γ), it follows that−[[γ1Ṽ w]] = w inH−1/2(Γ).

(iii) Let u be as in the proof of Lemma 3.18. Applying the trace operators
to (3.20) yields

[[γ0W̃v]] = − [[γ0u]]︸ ︷︷ ︸
=−v

−λ [[γ0Gu]]︸ ︷︷ ︸
=0

+ [[γ0Ṽ γ
int
1 u]]︸ ︷︷ ︸

=0

= v,

where we have used µ1Gu ∈ H2(Rd) and jump relation (i).

(iv) Applying the conormal derivatives to (3.20) yields

[[γ1W̃v]] = − [[γ1u]]︸ ︷︷ ︸
=−γint

1 u

−λ [[γ1Gu]]︸ ︷︷ ︸
=0

+ [[γ1Ṽ γ
int
1 u]]︸ ︷︷ ︸

=−γint
1 u

= 0,

where we have used µ1Gu ∈ H2(Rd) and jump relation (ii).

3.4 Boundary Integral Operators

Taking traces (γint
0 , γint

1 ) of the representation formula (3.13), we obtain two
equations from the PDE Lu = f int in D∗(Ωint):

γint
0 u = γint

0 G︸ ︷︷ ︸
=: N0

f int − γint
0 W̃︸ ︷︷ ︸

=: −(1− σ)I +K

γint
0 u+ γint

0 Ṽ︸ ︷︷ ︸
:= V

γint
1 u in H1/2(Γ),

γint
1 u = γint

1 G︸ ︷︷ ︸
=: N1

f int − γint
1 W̃︸ ︷︷ ︸

:= −D

γint
0 u+ γint

1 Ṽ︸ ︷︷ ︸
:= σI +K ′

γint
1 u in H−1/2(Γ).
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The function σ will be discussed in more detail in Section 3.4.3 below. For
Lipschitz domains, σ = 1/2 almost everywhere on Γ; in particular, σ = 1/2
in the sense of H±1/2(Γ). It will turn out that V , K, K ′, and D have integral
representations, and are thus called boundary integral operators.

Definition 3.22 (boundary integral operators).

name relation mapping property

Newton potential N0 N0 := γint
0 G H1(Ωint)∗ → H1/2(Γ)

Newton potential N1 N1 := γint
1 G H1(Ωint)∗ → H−1/2(Γ)

single layer potential V V := γint
0 Ṽ H−1/2(Γ)→ H1/2(Γ)

double layer potential K −(1− σ)I +K = γint
0 W̃ H1/2(Γ)→ H1/2(Γ)

adjoint double layer σI +K ′ = γint
1 Ṽ H−1/2(Γ)→ H−1/2(Γ)

potential K ′

hypersingular integral D := −γint
1 W̃ H1/2(Γ)→ H−1/2(Γ)

operator D

All these operators are linear and continuous, which follows from Lemma 3.17,
Lemma 3.18, and the mapping properties of the two trace operators γint

0 , γint
1 .

We will study the integral representations and properties of V , K, K ′,
D in detail. Before, however, we have a closer look to the two boundary
integral equations

3.4.1 The Calderón Identities

With the notations above, the two boundary integral equations for the inte-
rior PDE read[

γint
0 u
γint

1 u

]
=

[
(1− σ)I −K V

D σI +K ′

]
︸ ︷︷ ︸

=: C

[
γint

0 u
γint

1 u

]
+

[
N0f

int

N1f
int

]
. (3.21)

The block operator C is named after Calderón.

Lemma 3.23. The (interior) Calderón operator C is a projection: C2 = C.

Proof. Let (ϕ, ψ) ∈ H1/2(Γ) × H−1/2(Γ) be arbitrary but fixed. Then, due

to Lemma 3.17, the function u := Ṽ ψ − W̃φ fulfills

Lu = 0 in D∗(Ωint).
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Taking traces of u and using Def. 3.22, we get

γint
0 u = γint

0 Ṽ︸ ︷︷ ︸
=V

ψ − γint
0 W̃︸ ︷︷ ︸

=−(1−σ)I+K

ϕ

γint
1 u = γint

1 Ṽ︸ ︷︷ ︸
=σI+K′

ψ − γint
1 W̃︸ ︷︷ ︸
=−D

ϕ


⇐⇒

[
γint

0 u
γint

1 u

]
= C

[
ϕ
ψ

]
.

(3.22)

Moreover, since u solves Lu = 0, the representation formula (3.13) delivers[
γint

0 u
γint

1 u

]
= C

[
γint

0 u
γint

1 u

]
. (3.23)

Inserting (3.22) into (3.23) proves the assertion.

Exercise 17. Use the projection property of the Calderón operator C to
show the following algebraic identities (here with σ = 1/2):

V D = (1
2
I +K)(1

2
I −K), V K ′ = KV,

DV = (1
2
I +K ′)(1

2
I −K ′), K ′D = DK.

3.4.2 The Single Layer Potential (V )

Recall the single layer potential operator

V := γ0Ṽ : H−1/2(Γ)→ H1/2(Γ).

Lemma 3.24. For w ∈ L∞(Γ), we have the representation

(V w)(x) =

∫
Γ

G(x− y)w(y) dsy ∀x ∈ Γ

as a weakly singular surface integral.

Proof. The result follows immediately from Lemma 3.14, where we showed
that for w ∈ L∞(Γ),

(Ṽ w)(x) =

∫
Γ

G(x− y)w(y) dsy ∀x ∈ Rd,

and that the resulting function is continuous.
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3.4.3 The Adjoint Double Layer Potential (K ′)

Definition 3.25. For x ∈ Γ, we set

σ(x) := lim
ε→0

|∂Bε(x) ∩ Ωint|
|∂Bε(x)|

= lim
ε→0

1

2(d− 1)π εd−1

∫
y∈Ω:|x−y|=ε

ds.

ε

Ω

Γ

int

This function describes how much of the domain Ωint is inside of Γ. For a
(weakly) Lipschitz domain, σ = 1/2 almost everywhere on Γ (due to the fact
that Γ is “differentiable” almost everywhere).

Theorem 3.26. For w ∈ L∞(Γ), we have the representation

γint
1 Ṽ w = (σI +K ′)w in H−1/2(Γ),

with the adjoint double layer potential operator

(K ′w)(x) = lim
ε→0

∫
Γ\Bε(x)

γint
1,xG(x− y)w(y) dsy .

(The limit above realizes the Cauchy principal value integral.)

Proof. For the sake of a clear presentation, we present the proof only for
the case A = I, c = 0. The general case can be obtained with the same
techniques.

Fix w ∈ L∞(Γ) ⊂ H−1/2(Γ) and set u := Ṽ w. Recall from Lemma 3.17

that L Ṽ w = 0 in D∗(Ωint). Hence, for ϕ ∈ D(Rd), due to Green’s identity
(Thm. 2.36),

〈γint
1 u, γint

0 ϕ〉Γ =

∫
Ωint

∇u · ∇ϕdx

=

∫
Ωint

∇x

(
lim
ε→0

∫
Γ\Bε(x)

G(x− y)w(y) dsy

)
· ∇ϕ(x) dx

=

∫
Γ

w(y) lim
ε→0

(∫
Ωint\Bε(y)

∇xG(x− y) · ∇ϕ(x) dx
)
dsy ,

where we have used that (Ṽ w)(x) contains a (con-
vergent) weakly singular integral, and changed the
integration order (without going into details).
For a moment, let y ∈ Γ be fixed. For sufficiently
small ε, the domain Ωint \ Bε(y) is Lipschitz, and
so Green’s identity yields

ε

Ω
ε
(y)B

y
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∫
Ωint\Bε(y)

∇xG(x− y) · ∇ϕ(x) dx

=

∫
Γ\Bε(y)

[ ∂

∂nx
G(x− y)

]
ϕ(x) dsx +

∫
∂Bε(y)∩Ωint

[ ∂

∂nx
G(x− y)

]
ϕ(x) dsx ,

where n is outward to Ω \Bε(y). Combining the last two identities, we get

〈γint
1 u, γint

0 ϕ〉Γ =

∫
Γ

w(y) lim
ε→0

∫
Γ\Bε(y)

[ ∂

∂nx
G(x− y)

]
ϕ(x) dsx dsy︸ ︷︷ ︸

=: (I)

+

∫
Γ

w(y) lim
ε→0

∫
∂Bε(y)∩Ωint

[ ∂

∂nx
G(x− y)

][
ϕ(x)− ϕ(y)

]
dsx︸ ︷︷ ︸

=: (II)ε

dsy

+

∫
Γ

w(y) lim
ε→0

∫
∂Bε(y)∩Ωint

[ ∂

∂nx
G(x− y)

]
ϕ(y) dsx︸ ︷︷ ︸

=: (III)ε

dsy .

We treat the terms separately.

Term (I): Exchanging limit and integration (no details), we obtain

(I) =

∫
Γ

lim
ε→0

∫
Γ\Bε(x)

[ ∂

∂nx
G(x− y)

]
w(y) dsy︸ ︷︷ ︸

= (K ′w)(x)

ϕ(x) dsx = 〈K ′w, γint
0 ϕ〉Γ .

Term (II)ε:

|(II)ε| ≤ max
x∈∂Bε(y)∩Ωint

|ϕ(x)− ϕ(y)|︸ ︷︷ ︸
ε→0−→ 0

∫
∂Bε(y)∩Ωint

∣∣∣ ∂
∂nx

G(x− y)
∣∣∣ dsx︸ ︷︷ ︸

=: (∗)ε

We show now that (∗)ε is bounded.
We first compute ∇xG(x− y) (for L = −∆):

d = 2 : ∇xG(x− y) = − 1

2π
∇x log |x− y| = − 1

2π

1

|x− y|
x− y
|x− y|

,

d = 3 : ∇xG(x− y) =
1

4π
∇x

1

|x− y|
= − 1

4π

1

|x− y|2
x− y
|x− y|

.
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Since n is outward to Ω \Bε(y), nx = y−x
|x−y| for x ∈ ∂Bε(y) ∩ Ωint, and so

∂

∂nx
G(x, y) =

1

2π(d− 1)

x− y
|x− y|d

· x− y
|x− y|

=
1

2π(d− 1)
|x− y|1−d.

Hence,

(∗)ε =
1

2π(d− 1)

∫
∂Bε(y)∩Ωint

|x− y|︸ ︷︷ ︸
=ε

1−d dsx ≤
1

2π(d− 1)

∫
∂Bε(y)

ε1−d dsx = 1.

Therefore, |(II)ε|
ε→0−→ 0.

Term (III)ε: With the computation above, we get

(III)ε =

∫
∂Bε(y)∩Ωint

[ ∂

∂nx
G(x− y)

]
ϕ(y) dsx

= ϕ(y)

∫
∂Bε(y)∩Ωint

1

2π(d− 1)
|x− y|︸ ︷︷ ︸

=ε

1−d dsx
ε→0−→ ϕ(y)σ(y).

Adding up the results for all the terms and using that u = Ṽ yields

〈γint
1 Ṽ w, γint

0 ϕ〉Γ = 〈K ′w, γint
0 ϕ〉Γ + 0 +

∫
Γ

w(y)σ(y)ϕ(y) dsy .

The assertion now follows from the density of γint
0 (D(Rd)) in H1/2(Γ).

3.4.4 The Double Layer Potential (K)

Theorem 3.27. For v ∈ H1/2(Γ) ∩ L∞(Γ), we have the representation

(γint
0 W̃v)(x) = (−1 + σ(x)) + (Kv)(x) for x ∈ Γ,

with σ as in Definition 3.25 and the double layer potential operator

(Kv)(x) = lim
ε→0

∫
Γ\Bε(x)

[
γint

1,yG(x− y)
]
v(y) dsy .

Proof. Works with similar techniques as the proof of Theorem 3.26

Exercise 18. Show that for v ∈ H1/2(Γ) ∩ L∞(Γ) and w ∈ L∞(Γ),

〈w, Kv〉Γ = 〈K ′w, v〉Γ . (3.24)

Hint: use Theorems 3.26 and 3.27.

From Exercise 18, one can easily conclude by a density argument that
(3.24) holds also for v ∈ H1/2(Γ) and w ∈ H−1/2(Γ), which means that K ′ is
indeed the adjoint operator to K.
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3.4.5 The Hypersingular Integral Operator D

Recall that
D = −γint

1 W̃ : H1/2(Γ)→ H−1/2(Γ).

Mapping H1/2 to H−1/2, this operator has the flavor of a differential operator
(of order 1). It is hard to find an integral representation for it.

First we sketch that a straightforward technique fails. For L = −∆, for a
smooth function v and x̃ ∈ Ωint, one can show (using the computations from
the proof of Theorem 3.26)

(W̃v)(x̃) =
1

2π(d− 1)
lim
ε→0

∫
Γ\Bε(x̃)

(x̃− y) · ny
|x̃− y|d

v(y) dsy .

In order to get (Dv)x, we have to apply −nx · ∇x to the above expression
and send x̃ to x ∈ Γ. Exchanging formally the two limits and computing the
normal derivative yields

lim
ε→0

1

2π(d− 1)

∫
Γ\Bε(x)

[
− nx · ny
|x− y|d

+ d
(x− y) · nx(x− y) · ny

|x− y|d+2

]
v(y) dsy .

However, the above limit (realizing a possible Cauchy principal value) does
not exist in general, because the kernel is so (“hyper”) singular.

Lemma 3.28. If L = −∆, the hypersingular integral operator admits the
following representation for v ∈ H1/2(Γ) ∩ C(Γ):

(Dv)(x) = − ∂

∂nx

∫
Γ

[ ∂

∂ny
G(x− y)

][
v(y)− v(x)

]
dsy ∀x ∈ Γ,

to be understood as a Cauchy principal value integral.

Proof. See, e.g., [Steinbach, Sect. 6.5]

In the next chapter, we shall give an alternative representation of D which
is very practical in implementations of boundary element methods.

3.4.6 Further Mapping Properties∗

The operators V , K, K ′, and D are so-called pseudo-differential operators of
integer order. For Lipschitz domains and for any s ∈ [−1/2, 1/2],

V : H−1/2+s(Γ)→ H1/2+s(Γ) ,

K : H1/2+s(Γ)→ H1/2+s(Γ) , K ′ : H−1/2+s(Γ)→ H−1/2+s(Γ) ,

D : H1/2+s(Γ)→ H−1/2+s(Γ)

are continuous mappings. Hence, K and K ′ are pseudo-differential operators
of order 0, V is of order +1 (a smoothing operator), and D is of order −1 (a
differential type operator). A proof is found in [Costabel].
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3.5 Boundary Integral Equations

3.5.1 The Interior Dirichlet Problem

Theorem 3.29. Let f int ∈ L2(Ωint) (or H1(Ωint)∗) and gD ∈ H1/2(Γ) be
given.

(i) If u ∈ H1(Ωint) is a solution of the interior Dirichlet problem

Lu = f int in D∗(Ωint)

γint
0 u = gD in H1/2(Γ)

}
(3.25)

then the conormal derivative t := γint
1 u ∈ H−1/2(Γ) is a solution of the

boundary integral equation

V t = (σI +K)gD −N0f
int in H1/2(Γ), (3.26)

and u has the integral representation

u = Gf int − W̃gD + Ṽ t in Ωint. (3.27)

(ii) Conversely, if t ∈ H−1/2(Γ) is a solution of the boundary integral equa-
tion (3.26), then formula (3.27) defines a solution u ∈ H1(Ωint) of the
interior Dirichlet problem (3.25).

Proof. (i) The fact that (3.25) implies (3.27) has been shown in Corol-
lary 3.13. The (interior) Calderón identities (3.21) imply

γint
0 u︸︷︷︸

=gD

= ((1− σ)I −K) γint
0 u︸︷︷︸

=gD

+ V γ1u︸︷︷︸
=t

+ N0f
int,

from which we conclude (3.26).

(ii) Suppose that t ∈ H−1/2(Γ) solves (3.26) and that u is given by (3.27).
The results of Section 3.3 guarantee that u ∈ H1(Ωint) and that

LGf int = f int in D∗(Ωint), LW̃gD = LṼ t = 0 in D∗(Ωint).

Hence, the distributional PDE Lu = f in D∗(Ωint) holds. Finally,

γ0u
(3.27)
= γ0G︸︷︷︸

=N0

f int − γ0W̃︸︷︷︸
=(−1+σ)I+K

gD + γ0Ṽ︸︷︷︸
=V

t
(3.26)
= gD .



CHAPTER 3. BOUNDARY INTEGRAL EQUATIONS 49

3.5.2 The Interior Steklov-Poincaré Operator

Assume that the interior Dirichlet problem (3.25) with f = 0 has a unique
solution u(gD) for every gD ∈ H1/2(Γ) (this is e.g. the case for c ≥ 0. We
denote the corresponding conormal derivative by

Sint gD := γint
1 u(gD).

The corresponding operator S is called Steklov-Poincaré operator of the in-
terior Dirichlet problem.

Exercise 19. Show that under the above assumption c ≥ 0, the operator
Sint : H1/2(Γ)→ H−1/2(Γ) is linear and continuous.

As we will show later on, the Steklov-Poincaré operator can be expressed
in terms of the four boundary integral operators.

3.5.3 The Interior Neumann Problem

Theorem 3.30. Let f int ∈ L2(Ωint) (or H1(Ωint)∗) and gN ∈ H−1/2(Γ) be
given.

(i) If u ∈ H1(Ωint) is a solution of the interior Neumann problem

Lu = f int in D∗(Ωint)

γint
1 u = gN in H−1/2(Γ)

}
(3.28)

then the trace v := γ0u is a solution of the boundary integral equation

D v =
[
(1− σ)I −K ′

]
gN −N1f

int in H−1/2(Γ), (3.29)

and u has the integral representation

u = Gf int − W̃v + Ṽ gN in Ωint. (3.30)

(ii) Conversely, if v ∈ H1/2(Γ) is a solution of the boundary integral equa-
tion (3.29), then formula (3.30) defines a solution u ∈ H1(Ωint) of the
interior Neumann problem (3.28).

Exercise 20. Prove Theorem 3.30. Hint: analogous to the proof of Theo-
rem 3.29.
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3.5.4 Mixed Boundary Value Problems*

For simplicity, we treat here only the case f int = 0.
For ∂Ωint = Γ = ΓD ∪ ΓN , let gD ∈ H1/2(ΓD) and gN ∈ H−1/2(ΓN) be

given. Let u ∈ H1(Ωint) be the solution of the mixed BVP

Lu = 0 in D∗(Ωint)
γint

0 u = gD in H1/2(ΓD)
γint

1 u = gN in H−1/2(ΓN)

 (3.31)

1. Recall that functions in H1/2(ΓD) can be extended to functions in H1/2(Γ).
Therefore, there exists

ḡD ∈ H1/2(Γ), ḡD|ΓD = gD

2. Recall that H−1/2(Γ) = H̃1/2(Γ)∗ and that any functional in H−1/2(Γ) can
be restricted to one in H−1/2(ΓN). Therefore, there exists a functional

ḡN ∈ H−1/2(Γ) : 〈ḡN , v〉Γ = 〈gN , v〉 ∀v ∈ H̃1/2(ΓN).

(Note that neither the extension ḡD nor ḡN are unique.)

Theorem 3.31. (i) Let u ∈ H1(Ωint) be a solufion of (3.31) and let ḡD
and ḡN be as above. Then the functions

v0 := γint
0 u− ḡD ∈ H̃1/2(ΓD),

t0 := γint
1 u− ḡN ∈ H̃−1/2(ΓN) = H1/2(ΓN)∗

fulfill[
D K ′

−K V

] [
v0

t0

]
=

[
−D (1− σ)I −K ′

σI +K −V

] [
ḡD
ḡN

]
, (3.32)

as a system of boundary integral equations in H̃1/2(ΓD)∗× H̃−1/2(ΓN)∗,
and u has the integral representation

u = G intf int − W̃ (ḡD + v0) + Ṽ (ḡN + t0) in Ωint. (3.33)

(ii) Conversely, if (v0, t0) ∈ H̃1/2(ΓD) × H̃−1/2(ΓN) solve (3.32), then for-
mula (3.33) defines a solution u ∈ H1(Ωint) of (3.31).
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3.5.5 Second Kind Integral Equations*

The single layer boundary integral equation (3.26),

V t = (σI +K)gD −N0f
int

for the interior Dirichlet problem and the hypersingular boundary integral
equation (3.29),

Dv = [(1− σ)I −K ′]gN = N1f
int

of the interior Neumann problem are both 1st kind integral equations. They
were both derived from using one (specific) line of the interior Calderón
identity (3.21).

Using the respective other line, leads to the 2nd kind boundary integral
equation

[(1− σ)I −K ′]t = DgD +N1f
int in H−1/2(Γ)

for the conormal derivative t = γint
1 u of the interior Dirichlet problem with

Dirichlet datum gD and to the 2nd kind boundary integral equation

(σI +K)v = V gN +N0f
int in H1/2(Γ)

for the trace v = γint
0 u of the interior Neumann problem with Neumann

datum gN . Similarly to Theorems (3.29) and (3.30), the overall solution u
can be reconstructed by a representation formula in both cases.

3.6 Exterior Problems

We are interested in solutions of the (for simplicity) homogeneous exterior
PDE

Lu = 0 in D∗(Ωext). (3.34)

Corollary 3.32. If u ∈ H1(Ωext) fulfills Lu = 0 in D∗(Ωext), then

u = W̃γext
0 u− Ṽ γext

1 u in Ωext. (3.35)

Proof. Choosing f int = f ext = 0 and u|Ωintr := 0, we obtain from Theo-
rem 3.11 that

u = W̃ [[γ0u]]︸ ︷︷ ︸
=γext

0 u−0

−Ṽ [[γ1u]]︸ ︷︷ ︸
=γext

1 u−0

in S∗(Rd).
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In particular,

(u, ϕ)L2(Ωext) = (W̃γext
0 u− Ṽ γext

1 u, ϕ)L2(Ωext) ∀ϕ ∈ C∞0 (Ωext).

Since C∞0 (Ωext) is dense in L2(Ωext), identity (3.35) holds in the sense of
L2(Ωext).

Warning: if the coefficient c in the differential operator L is zero or negative,
then H1(Ωext) is (usually) not used as solution space, because it has the
“wrong” decay behavior towards infinity for physically relevant problems.
Hence, for c ≥ 0, we need a different solution space. We shall discuss in
detail the case c = 0 and comment only briefly on the case c < 0. For a more
comprehensive treatment of exterior problems we refer [Steinbach, Sect. 7.5],
[McLean, p. 234ff], and [Sauter/Schwab] (where each reference has its own
particular focus).

3.6.1 The Exterior Laplace Problem

Throughout this section, we assume that

L = −∆ (A = I, c = 0).

Definition 3.33 (space of bounded energy). For R > 0 define Ωext
R := Ωext∩

BR(0) and set

H1
loc(Ω

ext) :=
{
v ∈ L1

loc(Ω
ext

) : ∀R > 0 : v|Ωext
R
∈ H1(Ωext

R )
}
.

The space of bounded energy (for the exterior Laplace problem) is given by

H1
E(Ωext) :=

{
v ∈ H1

loc(Ω
ext) :

∫
Ωext

|∇v|2 dx <∞
}
.

For v, w ∈ H1
E(Ωext) we can still evaluate the exterior bilinear form

aext(v, w) =

∫
Ωext

∇v · ∇w dx.

Lemma 3.34 (without proof). The space H1
E(Ωext) equipped with norm

‖v‖H1
E(Ωext) :=

(∫
Ωext

|∇v|2 +
|v|2

1 + ρ(x)2
dx
)1/2

is a Hilbert space, where

ρ(x) :=

{
|x| log |x| if d = 2,

|x| if d = 3.
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Hence H1
E(Ωext) can be considered a weighted Sobolev space. Furthermore,

H1
E(Ωext) = C∞0 (Ω

ext
)
|·|H1(Ωext)

,

and for d = 3, the seminorm | · |H1(Ωext) is equivalent to ‖ · ‖H1
E(Ωext).

Exercise 21. Assume d = 3 and show that if u ∈ C1(Ω
ext

) fulfills

|u(x)| = O(|x|−1) as |x| → ∞,

then u ∈ H1
E(Ωext).

Now is a good time to discuss the behavior of the two surface potentials
at infinity (which we didn’t do so far).

Decay Behavior of the Surface Potentials

Theorem 3.35. Let L = −∆ and assume that for d = 2, we use the fun-
damental solution kernel G(x) = −1/(2π) log |x|. Then for v ∈ H1/2(Γ) and
w ∈ H−1/2(Γ),

(Ṽ w)(x) =

{
− 1

2π
〈w, 1〉Γ log |x|+O(|x|−1) if d = 2,

O(|x|−1) if d = 3.

}
as |x| → ∞,

(W̃v)(x) = O(|x|1−d) as |x| → ∞.

In general,

W̃v ∈ H1
E(Ωext),

Ṽ w ∈ H1
E(Ωext)

{
if d = 2 and 〈w, 1〉Γ = 0,
or if d = 3.

Proof. Assume 0 6∈ Ω
ext

and x ∈ Ωext with |x| > max(1, 2diam(Ωint)). Then,
for any y ∈ Γ,

|x| ≤ |x− y|+ |y| ≤ |x− y|+ diam(Ωint) ≤ |x− y|+ 1
2
|x|,

and so |x− y| ≥ 1
2
|x|.

(a) Single layer potential for d = 3:

|(Ṽ w)(x)| =
∣∣ ∫

Γ

G(x− y)w(y) dsy
∣∣ ≤ ‖G(x− ·‖H1/2(Γ)︸ ︷︷ ︸

≤Ctr ‖G(x−·)‖
H1(Ωint)

‖w‖H−1/2(Γ)
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A short computation reveals that

‖G(x− ·‖2
H1(Ωint) = c1

∫
Ωint

|x− y|−2︸ ︷︷ ︸
≤4 |x|−2

dy + c2

∫
Ωint

|x− y|−4︸ ︷︷ ︸
≤16 |x|−4

dy ≤ C |x|−2 .

(b) Single layer potential for d = 2. We choose ȳ ∈ Ωint. A Taylor expansion
gives

log |x− y| = log |x|+ (ȳ − x) · y
|x− ȳ|

for some ȳ ∈ Rd.

Therefore,

(Ṽ w)(x) = − 1

2π

∫
Γ

log |x− y|w(y) dsy

= − 1

2π
log |x|

∫
Γ

w(y) dsy︸ ︷︷ ︸
=〈w, 1〉Γ

− 1

2π

∫
Γ

(ȳ − x) · y
|x− ȳ|

w(y) dsy︸ ︷︷ ︸
= (∗)

Analogously to (a), one shows that |(∗)| ≤ C ‖w‖H−1/2(Γ)|x|−1.
(c) Double layer potential for d = 2 and d = 3. Recall that for x as above,

(W̃v)(x) =

∫
Γ

∂

∂ny
G(x− y) v(y) dsy .

As we showed in the proof of Theorem 3.26,

∂

∂ny
G(x− y) =

1

2π(d− 1)
|x− y|1−d .

Hence, with the above assumptions on x and y,

|(W̃v)(x)| ≤
∥∥ ∂

∂ny
G(x− ·)

∥∥
L2(Γ)

‖v‖L2(Γ) ≤ C |x|1−d ‖v‖L2(Γ) .

(d) The H1
E(Ωext)-membership properties of the surface potentials now fol-

lows from Exercise 21.

Representation Formula The trace operator γext
0 can be extended to

H1
E(Ωext), and the conormal derivative γext

1 u can at least be (well-)defined
for u ∈ H1

E(Ωext), ∆u = 0 in D∗(Ωext), such that∫
Ωext

∇u · ∇v dx = −〈γext
1 u, γext

0 v〉 ∀v ∈ H1
E(Ωext). (3.36)

Also, the transmission property from Section 3.1 and the representation for-
mulae from Section 3.3 can be extended to the larger space.
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Theorem 3.36 (without proof). Let d = 3. If u ∈ H1
E(Ωext) fulfills −∆u = 0

in D∗(Ωext), then

u = W̃γext
0 u− Ṽ γext

1 u in Ωext.

For d = 2, a suitable constant term has to be added to the right-hand side
(namely 〈weq, γ

ext
0 u〉Γ, cf. Def. 3.42 below).

Remark 3.37. For d = 2, L = −∆, and 〈w, 1〉Γ 6= 0, the single layer

potential Ṽ w grows logarithmically towards infinity as |x| → ∞. This is a
particuliarity of the two-dimensional Laplace operator, reflected by in the
following facts:

• For d = 2, the fundamental solution kernel itself grows towards infinity.

• One can show that

1 ∈ H1
E(Ωext) for d = 2

(but 1 6∈ H1
E(Ωext) if d = 3). Hence, for u ∈ H1

E(Ωext) with −∆u = 0
in D∗(Ωext), we obtain (from (3.36) with v = 1) the condition

〈γext
1 u, 1〉Γ = 0. (3.37)

The analogous condition 〈γint
1 u, 1〉Γ = 0 holds for the interior Laplace

problem (for either d = 2 or 3). One may say that in 3D, the space
H1
E(Ωext) owns something like a Dirichlet condition at infinity, which is

not present in 2D. Correspondingly, a solution of the exterior Neumann
problem in 2D is only unique up to constants, whereas the exterior
Neumann problem in 3D is uniquely solvable.

• Comparing the compatibility condition (3.37) with Theorem 3.35, we
see that the term 〈w, 1〉Γ in front of log |x| vanishes anyway if w is the
conormal derivative of a solution.

3.6.2 The Exterior Helmholtz Problem*

For L = −∆−κ2I, d = 3, one often uses the Sommerfeld radiation conditions

|u(x)| = O(|x|−1),
∣∣∣∂u
∂ω
− iκu

∣∣∣ = O(|x|−2) as |x| → ∞,

where ω = x/|x|, cf. [Sauter/Schwab]. They essentially state that u is an
outgoing wave. An appropriate (complex-valued) solution space is

H1
H(Ωext) :=

{
u ∈ L1

loc(Ω
ext

) :

∫
Ωext

|u(x)|2 + |∇u(x)|2

1 + |x|2
+
∣∣∣∂u
∂ω
−iκu

∣∣∣2 dx <∞}.
For more details see [Sauter/Schwab], [McLean, Ch. 9].
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3.6.3 Exterior Calderón Identities

In the following, we restrict ourselves to the (homogeneous) exterior Laplace
problem in 3D.

From Definition 3.22 and the jump relations (Lemma 3.21), we get that

γext
0 Ṽ = V, γext

0 W̃ = σI +K,

γext
1 Ṽ = (−1 + σ)I +K ′, γext

1 W̃ = −D.
(3.38)

The representation formula from Theorem 3.36 and the relations (3.38)
lead immediately to the exterior Calderón identies[

γext
0 u
γext

1 u

]
=

[
σI +K −V
−D (1− σ)I −K ′

]
︸ ︷︷ ︸

=Cext

[
γext

0 u
γext

1 u

]
, (3.39)

and one can show that Cext is a projection.

Remark* 3.38. The same formulae hold for the general differential operator
L with c 6= 0 for d = 2 and d = 3. For the Laplacian in 2D, a suitable constant
term has to be added to the first line of (3.39) (namely 〈weq, γ

ext
0 u〉Γ, cf.

Def. 3.42 below).

3.6.4 Exterior Boundary Integral Equations

Assume again that d = 3 and L = −∆. Using the first line of (3.39), one
can derive the boundary integral equation

find t ∈ H−1/2(Γ) : V t = [(σ − 1)I +K]gD in H1/2(Γ) (3.40)

for the conormal derivative t := γext
0 u of the solution u of the exterior Dirich-

let problem

Lu = 0 in D∗(Ωext), γext
0 u = gD in H1/2(Γ).

If t ∈ H−1/2(Γ) solves (3.40), then

u = W̃gD − Ṽ t

defines a solution of (3.40) (where the correct solution space has to be used).
The analogous steps lead to the boundary integral equation

Dv = −(σI +K ′)gN in H−1/2(Γ)

for the exterior Neumann problem.
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3.7 Ellipticity of V and D

Recall that the boundary integral equations for the interior/exterior Dirich-
let/Neumann problem have the form

find t ∈ H−1/2(Γ) : V t = g1 in H1/2(Γ), (3.41)

find v ∈ H1/2(Γ) : Dv = g2 in H−1/2(Γ), (3.42)

where the right-hand side (g1 or g2) depends on the given data. Recall that
V : H−1/2(Γ) → H1/2(Γ) and D : H1/2 → H−1/2(Γ) are self-adjoint opera-
tors. Hence, we can write (3.41)–(3.42) in variational form with symmetric
bilinear forms:

find t ∈ H−1/2(Γ) : 〈τ, V t〉Γ = 〈τ, g1〉Γ ∀τ ∈ H−1/2(Γ), (3.43)

find v ∈ H1/2(Γ) : 〈Dv, ϕ〉Γ = 〈g2, ϕ〉Γ ∀ϕ ∈ H1/2(Γ). (3.44)

In this section, we shall investigate if/when V , D are elliptic, or in other
words, if/when the bilinear forms associated to V , D are coercive. If they
are, the Lax-Milgram theorem will imply the well-posedness of (3.41), (3.42).

3.7.1 Ellipticity of V

Definition 3.39 (H
−1/2
∗ (Γ)). We define

H−1/2
∗ (Γ) := {w ∈ H−1/2(Γ) : 〈w, 1〉Γ = 0}.

Theorem 3.40 (ellipticity of V ). Let L = −∆. Then there exists a constant
cV > 0 such that

〈w, V w〉Γ ≥ cV ‖w‖2
H−1/2(Γ)

{
∀w ∈ H−1/2

∗ (Γ) if d = 2,

∀w ∈ H−1/2(Γ) if d = 3.

Proof. Assume that w ∈ H−1/2(Γ) if d = 3, and w ∈ H−1/2
∗ (Γ) if d = 2. We

define u := Ṽ w. From Theorem 3.18, we see that u|Ωint ∈ H1(Ωint). From
Theorem 3.35, we see that u|Ωext ∈ H1

E(Ωext).
Since −∆u = 0 in Ωint/ext, we obtain from Def. 2.36 and (3.36)∫

Ωint

∇u · ∇v dx = 〈γint
1 u, γint

0 v〉Γ ∀v ∈ H1(Ωint),∫
Ωext

∇u · ∇v dx = −〈γext
1 u, γext

0 v〉Γ ∀v ∈ H1
E(Ωext).
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Choosing v = u and using the jump relations (Lemma 3.21), we obtain∫
Rd
|∇u|2 dx = 〈γint

1 u− γext
1 u︸ ︷︷ ︸

=−[[γ1u]] =w

, γ0u︸︷︷︸
= γ0Ṽ w=V w

〉Γ = 〈w, V w〉Γ . (3.45)

The expression on the left-hand side is usually referred to the total energy
(of the potential Ṽ w). For the special case of the Laplacian, we can adapt
the proof of Theorem (2.36) and show that

‖γint
1 u‖H−1/2(Γ) ≤ C int

IT

(∫
Ωint

|∇u| dx
)1/2

(3.46)

‖γext
1 u‖H−1/2(Γ) ≤ Cext

IT

(∫
Ωext

|∇u| dx
)1/2

, (3.47)

where C int
IT , Cext

IT are the constants of the interior/exterior inverse trace the-
orem. Combining (3.45) and (3.46) yields

〈w, V w〉Γ =

∫
Ωint

|∇u|2 dx+

∫
Ωext

|∇u|2 dx

≥ (C int
IT )−2 ‖γint

1 u‖2
H−1/2(Γ) + (Cext

IT )−2 ‖γext
1 u‖2

H−1/2(Γ)

≥ min{(C int
IT )−2, (Cext

IT )−2}
(
‖γint

1 u‖2
H−1/2(Γ) + ‖γext

1 u‖2
H−1/2(Γ)

)
.

(3.48)

From the jump relations and (3.48), we conclude that

‖w‖2
H−1/2(Γ) = ‖γint

1 u−γext
1 u‖2

H−1/2(Γ) ≤ 2
(
‖γint

1 u‖2
H−1/2(Γ)+‖γ

ext
1 u‖2

H−1/2(Γ)

)
.

This implies 〈w, V w〉Γ ≥ cV ‖w‖2
H−1/2(Γ)

with cV = 1
2

min{(C int
IT )−2, (Cext

IT )−2}.

Exercise 22. Prove the first line of (3.46) for all u ∈ H1(Ωint) with ∆u = 0 in
D∗(Ωint). Hint: use Step 1 in the proof of Thm. 2.36 to define the functional
γint

1 u.

Theorem 3.40 implies that V is H−1/2(Γ)-elliptic in 3D and at least

H
−1/2
∗ (Γ)-elliptic in 2D. In order to see what happens on the “rest” in 2D,

we first observe that

H−1/2(Γ) = H−1/2
∗ (Γ) ⊕ span{1Γ}, (3.49)

where 1Γ denotes the constant function on Γ with value one. Moreover, each
w ∈ H−1/2(Γ) can be decomposed uniquely : w = w1 + w0 with

w1 = w − 1

|Γ|
〈w, 1〉Γ ∈ H−1/2

∗ (Γ), w0 =
1

|Γ|
〈w, 1〉Γ = const,

where |Γ| = 〈1, 1〉Γ = (1, 1)L2(Γ) =
∫

Γ
ds.
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Lemma 3.41 (equilibrium density). For L = −∆, there exists a unique
distribution weq ∈ H−1/2(Γ) such that V weq = const and

〈w, V weq〉 = 0 ∀w ∈ H−1/2
∗ (Γ),

〈weq, 1〉 = 1.

}
(3.50)

Exercise 23. Prove Lemma 3.41. Hint: Step 1. Decompose weq = w0 + w1

as above. From (3.50), compute w0, and derive a variational equation for

w1. Use Lax-Milgram to show existence and uniqueness of w1 ∈ H−1/2
∗ (Γ).

Step 2. Using (3.49), show that there exists λ ∈ R (compute its value!) such
that

〈w, V weq〉+ λ〈w, 1〉Γ = 0 ∀w ∈ H−1/2(Γ).

and conclude from this that V weq is constant.

Definition 3.42. The distribution weq from Lemma 3.41 is called equilibrium
density.

Apparently, 〈weq, V weq︸ ︷︷ ︸
=const

〉 = (V weq) 〈weq 1〉︸ ︷︷ ︸
=1

.

Lemma 3.43 (without proof). Let L = −∆ and d = 2. If diam(Ωint) < 2,
then 〈weq, V weq〉 = V weq > 0.

The source of the condition is the estimate V weq ≥ − 1
2π

log(1
2
diam(Ωint)).

Remark* 3.44. For d = 2, the value V weq depends on the diameter of
Ωint, because we have chosen the particular fundamental solution G(x) =
− 1

2π
log |x|. If we choose Gr(x) = 1

2π
log(r/|x|), and call the associated op-

erator Vr, then for all w ∈ H−1/2
∗ (Γ), Vrw = V w. The equilibrium density

can be shown to be independent of r > 0, but the value Vrweq can take
any value in (−∞, +∞); in particular there exists a number r such that
Vrweq = 0. The quantity e−2π V weq is called logarithmic capacity and has
been well-studied in potential theory and harmonic analysis.

Lemma 3.45. Let L = −∆, d = 2, and assume that diam(Ωint) < 2. Then
there exists a constant c̃V > 0 such that

〈w, V w〉 ≥ c̃V ‖w‖2
H−1/2(Γ) ∀w ∈ H−1/2(Γ).

Proof. Let w ∈ H−1/2(Γ) be arbitrary but fixed. There exists a unique

decomposition of w = w̃ + βweq with w̃ ∈ H
−1/2
∗ (Γ) and β ∈ R. Due to

(3.50), this decomposition is “V -orthogonal”:

〈w̃, V weq〉 = 0.
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Hence,

〈w, V w〉 = 〈w̃, V w̃〉+ β2〈weq, V weq〉
Thm. 3.40

≥ cV ‖w̃‖2
H−1/2(Γ) + (V weq) β2

≥ min
(
cV

V weq

‖weq‖2
H−1/2(Γ)

) [
‖w̃‖2

H−1/2(Γ) + β2 ‖weq‖2
H−1/2(Γ)

]
.

An elementary argument yields

‖w‖2
H−1/2(Γ) ≤ 2(‖w̃‖2

H−1/2(Γ) + β2‖weq‖2
H−1/2(Γ)).

Hence, 〈w, V w〉 ≥ c̃V ‖w‖2
H−1/2(Γ)

with c̃V = min
(
cV ,

V weq

‖weq‖2
H−1/2(Γ)

)
> 0.

Summary: Let L = −∆. If d = 3, or if d = 2 and diam(Ωint) < 2, then V is
elliptic on the whole of H−1/2(Γ). In that case, the inverse V −1 : H1/2(Γ)→
H−1/2(Γ) exists and is bounded, elliptic, and self-adjoint.

Remark 3.46. In practice, the (sufficient) condition diam(Ωint) < 2 for
L = −∆, d = 2 can be enforced easily by a scaling of the coordinates.

Remark* 3.47. If Lu = −div(A∇u) + c u with c > 0, then V is H−1/2(Γ)-
elliptic (without any restrictions). For c < 0, V is Fredholm with index zero,
which implies that V is coercive with respect to the pivot space L2(Γ).

3.7.2 Ellipticity of D

Definition 3.48 (H
1/2
∗ (Γ)). Let L = −∆. We define

H1/2
∗ (Γ) := {v ∈ H1/2(Γ) : 〈weq, v〉Γ = 0}.

Apparently, we have the unique decomposition

H1/2(Γ) = H1/2
∗ (Γ) ⊕ span{1Γ}.

Exercise 24. Show that V maps H
−1/2
∗ (Γ) to H

1/2
∗ (Γ) and is an isomorphism

between these spaces.

Theorem 3.49. Let L = −∆. Then there exist positive constants cD, c̃D > 0
such that

〈Dv, v〉 ≥ cD |v|2H1/2(Γ) ∀v ∈ H1/2(Γ), (3.51)

〈Dv, v〉 ≥ c̃D ‖v‖2
H1/2(Γ) ∀v ∈ H1/2

∗ (Γ), (3.52)

and ker(D) = span{1Γ}.
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Proof. Step 1. The proof of (3.51) is similar to that of Theorem 3.40. We set

u = W̃v. This time, u|Ωext ∈ H1
E(Ωext). From the jump relations and Green’s

identity, we obtain

〈 Dv︸︷︷︸
=−γ1W̃v

, v〉 = 〈−γ1u, [[γ0u]]}〉 = −〈γext
1 u, γext

0 u〉+ 〈γint
1 u, γint

0 u〉

=

∫
Ωext

|∇u|2 dx+

∫
Ωint

|∇u|2 dx.

Using the interior trace theorem and Poincaré’s inequality, we get

|γint
0 u|2H1/2(Γ) = |γint

0 u− uΩint|2H1/2(Γ) ≤ (C int
tr )2 ‖u− uΩint‖2

H1(Ωint)

≤ (C int
tr )2 (1 + CP (Ωint)2) |u|2H1(Ωint) ,

i.e. the interior trace inequality holds with the respective seminorms. With
similar (but not completely analogous) techniques, one can show that

|γext
0 u|2H1/2(Γ) ≤ C |u|2H1(Ωext)

for some constant C ∈ (0, ∞). Combination of the last three results yields

〈Dv, v〉 ≥ 2 cD
(
|γext

0 u|2H1/2(Γ) + |γint
0 u|2H1/2(Γ)

)
≥ cD | γext

0 u− γint
0 u︸ ︷︷ ︸

=v

|2H1/2(Γ) ,

where 2cD = min((C int
tr )2(1 + CP (Ωint)2)−1, C−1) > 0.

Step 2. We show that ker(D) = span{1Γ}. Apparently, the constant function
1Ωint solves the homogeneous Laplace equation in Ωint, with Dirichlet datum
1Γ and γint

1 1Ωint = 0. Consequently, the representation formula yields

1Ωint = −W̃1Γ + 0,

and thus, 0 = −γint
1 W̃1Γ = D1Γ, which implies span(1Γ) ⊆ ker(D). However,

since span(1Γ) is the kernel of the seminorm | · |H1/2(Γ) and because of (3.51),
the kernel cannot be larger.

Step 3. Recall thatH
1/2
∗ (Γ) has codimension 1 with respect toH1/2(Γ). Using

e.g., Sobolev’s norm theorem, one can show the Poincaré-type inequality

‖v‖L2(Γ) ≤ C |v|H1/2(Γ) ∀v ∈ H1/2
∗ (Γ).

With this inequality, (3.52) can be derived straightforwardly from (3.51).

Remark* 3.50. If Lu = −div(A∇u) + cu with c > 0, then D is elliptic on
the whole of H1/2(Γ).
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3.7.3 Solvability of Two Boundary Integral Equations

Single Layer Boundary Integral Equation Assume that L = −∆ and
that either d = 3, or d = 2 and diam(Ωint) < 2. Then the boundary integral
equation

find t ∈ H−1/2(Γ) : V t = g1 in H1/2(Γ)

admits a unique solution due to Lax-Milgram.

Hypersingular Boundary Integral Equation Assume that L = −∆.
Then the boundary integral equation

find v ∈ H1/2(Γ) : D v = g2 in H−1/2(Γ)

is solvable if and only if g2 ∈ H−1/2
∗ (Γ). The solution v is unique up to an

additive constant.

Exercise 25. Show the statement above.

In case of the interior Neumann problem, g2 = (1
2
I −K ′)gN . As one can

show (see Sect. 3.7.4 below), the usual compatibility condition 〈gN , 1〉Γ = 0

implies g2 ∈ H−1/2
∗ (Γ).

3.7.4 Properties of K and K ′ *

Let L = −∆. Then the operators 1
2
I±K are isomorphisms between H

1/2
∗ (Γ)

and H
1/2
∗ (Γ), and 1

2
I±K ′ are isomorphisms between H

−1/2
∗ (Γ) and H

−1/2
∗ (Γ).

Furthermore,

ker(1
2
I +K) = span(1Γ), ker(1

2
I +K ′) = span(weq),

(1
2
I −K)1Γ = 1Γ , (1

2
I −K ′)weq = weq.

Furthermore, there exists a contraction constant cK ∈ (1
2
, 1) such that

(1− cK)‖v‖V −1 ≤ ‖(1
2
I ±K)v‖V −1 ≤ cK ‖v‖V −1 ∀v ∈ H1/2

∗ (Γ),

where V −1 denotes the inverse of V|H−1/2
∗ (Γ)

and ‖v‖V −1 =
√
〈V −1v, v〉. The

contraction property can, e.g., be used to show existence and uniqueness
of the 2nd kind integral equations from Sect. 3.5.5 via Banach’s fixed point
theorem.

If the boundary Γ is smooth, then K, K ′ are even compact operators,
however this property is lost for general Lipschitz domains.
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3.8 Steklov-Poincaré Operators*

Let L = −∆ and assume, for simplicity that d = 3. Let Sint : H1/2(Γ) →
H−1/2(Γ) denote the interior Steklov-Poincaré operator from Sect. 3.5.2. Re-
call the interior Calderón identities (3.21) for the homogenoeus PDE:[

γint
0 u
γint

1 u

]
=

[
1
2
I −K V
D 1

2
I +K ′

] [
γint

0 u
γint

1 u

]
.

Since γint
1 u = Sintγint

0 u and because V is invertible, we obtain the two alter-
native representations

Sint = V −1(1
2
I +K) = D + (1

2
I +K ′)V −1(1

2
I +K), (3.53)

where the second one reflects (again) the self-adjointness of Sint. Based on
Theorem 3.49, one can show that Sint is elliptic with respect to the H1/2(Γ)-
seminorm.

Analogously, one can show the representation

−Sext = V −1(1
2
I −K) = D + (1

2
I −K ′)V −1(1

2
I −K) (3.54)

for the exterior Steklov-Poincaré operator. The operator −Sext is H1/2(Γ)-
elliptic. Furthermore,

V −1 = Sint − Sext.



Chapter 4

Galerkin BEM

In this chapter, we discuss how to construct a Galerkin boundary element
method based on a surface triangulation of the boundary Γ. For the specific
case of two boundary integral equations for the Laplacian, we provide a priori
error estimates. Finally, we discuss some properties of the boundary element
matrices.

4.1 Construction of Galerkin BEM

4.1.1 Surface Triangulations

Throughout this chapter, we assume that Γ splits into disjoint parts {Γj}Nj=1,

Γ =
N⋃
j=1

Γj, Γj ∩ Γk = ∅ for j 6= k,

where each part Γj is the image of a (d − 1)-dimensional parameter inter-
val/polygon Qj under a diffeomorphism ζj (bijective, ζj, ζ

−1
j ∈ C1). We now

consider standard triangulations of the parameter domains Qj:
• for d = 2, Qj splits into simple intervals,

• for d = 3, Qj splits into triangles.

Let τi denote the images of these elements under the respective mapping ζj,
such that

Γ =

nel
h⋃

i=1

τ i ,

where nel
h denotes the total number of elements. The resulting (global)

mesh/triangulation of Γ is denoted by Th(Γ) = {τi}
nel
h
i=1.

64
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2π0

ζ

Q
Γ

τ
i(polar coordinates, angle)

Figure 4.1: Illustration of a meshing a circle, Example 4.1 (b). Left: Mesh
of the 1D parameter domain Q. Right: Resulting surface mesh of Γ.

Figure 4.2: Illustration of surface mesh in 3D (slightly exaggerated).

Example 4.1. (a) If Γj are already a straight lines (d = 2) or flat faces
(d = 3), then τi are straight line segments or flat triangles, respectively.

(b) Let Γ be the circle ∂B1(0) ⊂ R2. Using polar coordinates, we transform
the interval Q := [0, 2π) to Γ with ζ(ϕ) := (cos(ϕ), sin(ϕ)). We subdi-
vide Q into subintervals (ϕk, ϕk+1), e.g., ϕk := 2πk/nel

h , k = 0, . . . , nel
h .

The resulting surface mesh Th(Γ) consisting of nel
h arcs is illustrated in

Figure 4.1

(c) For an illustration of a 3D mesh consisting of curved triangles, see
Figure 4.2.
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Definition 4.2. 1. The global mesh Th(Γ) is called conforming if the in-
tersection of two different elements τi, τj is either empty, or a vertex of
both elements, or (for d = 3) a (possibly curved) edge of both elements.
(By a vertex/edge we mean the image of the corresponding parameter
vertex/edge) In particular, hanging nodes are not allowed.

2. We define the local and global mesh size by

hi := |τi|1/(d−1), h :=
nel
h

max
i=1

hi .

3. A family {Th(Γ)}h of surface meshes is called shape regular if

• the corresponding families of parameter meshes are shape regular,
i.e., ρ̃i ≥ c h̃i, where h̃i is the diameter of the corresponding pa-
rameter element and ρ̃i the radius of the largest inscribed ball in
the parameter element, with uniform constant c > 0, and if

• the geometry mappings ζj, ζ
−1
j have uniformly bounded gradients

and determinants.

In that case, diam(τi) ' hi ' h̃i ' ρ̃i.

4. A family {Th(Γ)}h of surface meshes is called quasi uniform if it is
shape regular and if there exists a uniform constant c > 0 such that

hi ≥ c h ∀i = 1, . . . , nel
h .

In the following, we assume that Th(Γ) is conforming and shape regular.

4.1.2 Trial Spaces

Let Th(Γj) := {τ ∈ Th(Γ) : τ ⊂ Γj} denote the restriction of Th(Γ) to Γj and
let Pk denote the space of ((d − 1)-variate) polynomials of degree ≤ k. We
define the spaces

S0
h(Γ) :=

{
w ∈ L2(Γ) : w|τ ◦ ζj ∈ P0 ∀τ ∈ Th(Γj), ∀j = 1, . . . , N

}
,

S1
h(Γ) :=

{
v ∈ C(Γ) : v|τ ◦ ζj ∈ P1 ∀τ ∈ Th(Γj), ∀j = 1, . . . , N

}
.

The functions in S0
h(Γ) are piecewise constant with respect to Th(Γ) and

typically discontinuous. The functions in S1
h(Γ) are continuous and may

informally be called piecewise linear.
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Lemma 4.3. The trial spaces above fulfill

S0
h(Γ) ⊂ H−1/2(Γ), S1

h(Γ) ⊂ H1/2(Γ),

i.e., they are conforming to the spaces involved in Problems (3.41) and (3.42).

A natural basis of S0
h(Γ) is given by {ϕ0

i }
nel
h
i=1, where

ϕ0
i (x) =

{
1 if x ∈ τi
0 else.

Let xk denote the vertices (nodes) of Th(Γ) and nvert
h the total number of

vertices. Then a natural basis of S1
h(Γ) is given by {ϕ1

k}
nvert
h
k=1 ,where

ϕ1
k ∈ S1

h(Γ), ϕ1
k(x`) = δk` .

4.1.3 Galerkin BEM

Recall the boundary integral equations for the homogeneous interior Dirichlet
and Neumann problem:

find t ∈ H−1/2(Γ) : 〈τ, V t〉Γ = 〈τ, (1
2
I −K)gD〉Γ ∀τ ∈ H−1/2(Γ), (4.1)

find v ∈ H−1/2(Γ) : 〈Dv, ϕ〉Γ = 〈(1
2
I −K ′)gN , ϕ〉Γ ∀ϕ ∈ H1/2(Γ). (4.2)

The corresponding Galerkin formulations read

find th ∈ S0
h(Γ) : 〈τh, V th〉Γ = 〈τh, (1

2
I −K)gD〉Γ ∀τh ∈ S0

h(Γ), (4.3)

find vh ∈ S1
h(Γ) : 〈Dvh, ϕh〉Γ = 〈(1

2
I −K ′)gN , ϕh〉Γ ∀ϕh ∈ S1

h(Γ). (4.4)

For the other boundary integral equations involving V or D, one can of course
proceed analogously.

4.1.4 Matrix-Vector Form

For simplicity, assume that the data of (4.1), (4.2) fulfills gD ∈ S1
h(Γ) and

gN ∈ S0
h(Γ), and let

g
D,h
∈ Rnvert

h , g
N,h
∈ Rnel

h

denote the coefficient vectors with respect to the natural bases.



CHAPTER 4. GALERKIN BEM 68

We define the matrix

[Vh]ij := 〈ϕ0
j , V ϕ

0
i 〉Γ for i, j = 1, . . . , nel

h

=

∫
τj

∫
τi

G(x− y) dsy, dsx ,

where for the second line, we have used Lemma 3.24 and the fact that ϕ0
i ,

ϕ0
j ∈ L∞(Γ). Moreover, we define the matrices

[Kh]ki := 〈ϕ0
i , Kϕ

1
k〉Γ

[Mh]ki :=
∫

Γ
ϕ0
i ϕ

1
k ds

}
for i = 1, . . . , nel

h , k = 1, . . . , nvert
h ,

and

[Dh]k` := 〈Dϕ1
` , ϕk〉Γ for k, ` = 1, . . . , nvert

h .

With these notations, (4.3), (4.4) are equivalent to

find th ∈ Rnel
h : Vh th = (1

2
Mh −Kh)gD,h , (4.5)

find vh ∈ Rnvert
h : Dh vh = (1

2
M>

h −K>h )g
N,h

, (4.6)

in the sense that the coefficient vectors th, vh correspond to th, vh, resp.
Calculation of matrix entries will be discussed briefly in Sect. 4.3 below.

The conditioning of Vh and Dh is the subject of Sect. 4.4. Sufficient storage
and application of boundary element matrices is treated in Chapter 5.

4.2 A Priori Error Estimates

In this section, we provide with a priori estimates for the errors t − th and
v−vh of the Dirichlet and Neumann problem, (4.1)–(4.4). Under the assump-
tion that the exact solution (t or v) is sufficiently smooth, we shall obtain
convergence as the mesh parameter h→ 0.

4.2.1 The Dirichlet Problem

Assume that the single layer potential operator V is elliptic (cf. Sect. 3.7).
From Céa’s lemma, it follows immediately that the solutions t ∈ H−1/2(Γ)
and th ∈ S0

h(Γ) of (4.1) resp. (4.3) fulfill

‖t− th‖H−1/2(Γ) ≤ C inf
wh∈S0

h(Γ)
‖t− wh‖H−1/2(Γ) , (4.7)
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where C is the reciprocal of the constant of boundedness and ellipticity of V
with respect to the norm ‖ · ‖H−1/2(Γ).

Similarly to standard FEM, we aim at an error bound of the form C hα

under the assumption that t is smoother than H−1/2(Γ). Recall, however,
that t is the normal derivative of the solution u. Since Γ is only piecewise
smooth and the normal vector is discontinuous, we cannot expect t ∈ Hs(Γ)
with s > 0.

Piecewise Sobolev Spaces

Definition 4.4. Following [Steinbach], we set

Hs
pw(Γ) := {v ∈ L2(Γ) : v|Γj ∈ Hs(Γj)} for s ∈ [0, 1],

H−spw(Γ) :=
J∏
j=1

H̃−s(Γj)︸ ︷︷ ︸
=Hs(Γj)∗

for s ∈ (0, 1],

equipped with norms

‖v‖Hs
pw(Γ) :=

( J∑
j=1

‖v‖2
Hs(Γj)

)1/2

, ‖w‖H−spw (Γ) :=
J∑
j=1

‖wj‖H̃−s(Γj) .

Lemma 4.5. Let w ∈ H−spw(Γ) with s > 0 and define the linear functional w̄

by 〈w̄, v〉Γ :=
∑N

j=1〈wj, v|Γj〉Γj . Then w̄ ∈ H−s(Γ) and

‖w̄‖H−s(Γ) ≤ ‖w‖H−spw (Γ) .

If we identify w̄ and w (which is justified), we can say that the embedding
H−spw(Γ) ⊂ H−s(Γ) is continuous (whereas the flipped embedding Hs(Γ) ⊂ Hs

pw(Γ) is

continuous for s > 0).

Proof ∗. By definition of the dual norm and of w̄,

‖w̄‖H−s(Γ) = sup
v∈Hs(Γ)\{0}

|〈w̄, v〉|
‖v‖Hs(Γ)

≤ sup
v∈Hs(Γ)\{0}

J∑
j=1

|〈wj, v|Γj〉|
‖v‖Hs(Γ)

≤ sup
v∈Hs(Γ)\{0}

J∑
j=1

|〈wj, v|Γj〉|
‖v|Γj‖Hs(Γj)

≤
J∑
j=1

sup
vj∈Hs(Γj)\{0}

|〈wj, vj〉|
‖v|Γj‖Hs(Γj)

= ‖w‖H−spw (Γ) .

Exercise 26 (for doctoral students). Show that

Hs
pw(Γ) ⊂ H−1/2

pw (Γ) for s ∈ [−1
2
, 1],

and that the embedding is continuos.
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An Approximation Result for S0
h

We study the approximation qualities of S0
h on each boundary part Γj sepa-

rately.

Theorem 4.6 (approximation by S0
h). Let Γj ⊂ Γ be a C1-manifold (as in

Sect. 4.1.1). Then, for any Sobolev indices σ ∈ [−1, 0] and s ∈ [σ, 1], there
exists a constant C independent of h such that

inf
wh∈S0

h(Γj)
‖w − wh‖Hσ(Γj) ≤ C hs−σ ‖w‖Hs(Γj) ∀w ∈ Hs(Γj).

If s > 0, the norm on the right-hand side may be replaced by the seminorm
|w|Hs(Γj). Also, the same estimate holds if the norm on the left-hand side is
replaced by the “tilde” norm ‖w − wh‖H̃σ(Γj)

.

In order to prove Theorem 4.6, we use a quasi-interpolation operator.

Definition 4.7 (quasi-interpolant). The operator Qh : L2(Γj) → S0
h(Γj) is

defined by

(Qh v, vh)L2(Γj) = (v, vh)L2(Γj) ∀vh ∈ S0
h(Γj).

We may also replace Γj by Γ.

Apparently, for an element τ ∈ Th(Γ), we have that

(Qhv)|τ =
1

|τ |

∫
τ

v ds, (4.8)

i.e., the value of Qhv on τ is the mean value of v over τ . This also shows
that Qhvh = vh for all vh ∈ Sh(Γj) and so, Qh is a projection onto Sh(Γj).

Lemma 4.8. For u ∈ Hs(Γj) with s ∈ [0, 1], we have the error estimates

‖u−Qhu‖2
L2(Γj)

≤ C
∑

τ∈Th(Γj)

h2s
τ |u|2Hs(τ) , (4.9)

‖u−Qhu‖L2(Γj) ≤ C hs |u|Hs(Γj) , (4.10)

where hτ = |τ |1/(d−1) denotes the local mesh size of τ and |u|H0(τ) := ‖u‖L2(τ).

Proof. Beforehand, we show that (4.10) follows from (4.9):

‖u−Qhu‖2
L2(Γj)

≤ C
∑

τ∈Th(Γj)

h2s
τ︸︷︷︸

≤h2s

|u|2Hs(τ) ≤ C h2s
∑

τ∈Th(Γj)

|u|2Hs(τ) .
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From the definition(s) of | · |Hs(τ), s ∈ [0, 1], we see that the sum on the
right-hand side is at least bounded from above by |u|2Hs(Γj)

.

Case s = 0. By the definition of Qh, we obtain the Galerkin orthogonality

(u−Qhu, vh)L2(Γj) = 0 ∀vh ∈ S0
h(Γj), (4.11)

showing that the projection Qh is L2(Γj)-orthogonal. Therefore, Qh must
have an operator norm ≤ 1, or equally,

‖Qhu‖L2(Γj) ≤ ‖u‖L2(Γj),

which proves (4.9) for the case s = 0. Indeed,

‖u−Qhu‖2
L2(Γj)

= (u−Qhu, u−Qhu)L2(Γj)

(4.11)
= (u−Qhu, u)L2(Γj)

C.S.

≤ ‖u−Qhu‖L2(Γj) ‖u‖L2(Γj) .

Case s ∈ (0, 1). Let τ ∈ Th(Γj) and x ∈ τ . From (4.8), we obtain∣∣u(x)− (Qhu)(x)
∣∣2 =

∣∣u(x)− 1

|τ |

∫
τ

u(y) dsy
∣∣2 =

1

|τ |2
(∫

τ

u(x)− u(y) dsy

)2

=
1

|τ |2
(∫

τ

u(x)− u(y)

|x− y|(d−1)/2+s
|x− y|(d−1)/2+s dsy

)2

C.S.

≤ 1

|τ |2

∫
τ

|u(x)− u(y)|2

|x− y|d−1+2s
dsy

∫
τ

|x− y|︸ ︷︷ ︸
≤diam(τ)

(d−1+2s) dsy .

Integrating the estimate over τ with respect to x, we obtain

‖u−Qhu‖2
L2(τ) ≤

diam(τ)d−1+2s

|τ |︸ ︷︷ ︸
≤C h2s

τ

|u|2Hs(τ) ,

where we have used the definition of | · |Hs(τ) after Sobolev-Slobodeckij (see
Remark 2.23) and the fact that diam(τ) ' hτ , due to shape-regularity. This
proves (4.9) for s ∈ (0, 1).

Case s = 1. The main idea here is to start as in the case above and to write
the difference u(x)−u(y) as a line integral over the derivative (along the line).
This directional derivative can be bounded in terms of the gradient. As an
additional difficulty, one has to transform the possibly curved element τ to
its corresponding straight/flat element in the parameter domain. A rigorous
proof can be found in [Steinbach, Theorem 10.2].
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The above L2-estimate can now be used to derive estimates in negative
norms using duality and the projection property of Qh.

Lemma 4.9. For u ∈ Hs(Γ) with s ∈ [0, 1] and for σ ∈ [−1, 0),

‖u−Qhu‖2
Hσ(Γj)

≤ C h−2σ
∑

τ∈Th(Γj)

h2s
τ |u|2Hs(τ) ,

‖u−Qhu‖Hσ(Γj) ≤ C hs−σ |u|Hs(Γj) .

The same estimates hold if ‖u−Qhu‖2
Hσ(Γj)

is replaced by ‖u−Qhu‖2
H̃σ(Γj)

.

Proof. Using the definition of the dual norm and the fact that u − Qhu ∈
L2(Γj) ⊂ H−1/2(Γj), we obtain

‖u−Qhu‖Hσ(Γj) = sup
v∈H̃−σ(Γj)\{0}

(u−Qhu, v)L2(Γj)

‖v‖H−σ(Γj)

(4.11)
= sup

v∈H̃−σ(Γj)\{0}

(u−Qhu, v −Qhv)L2(Γj)

‖v‖H−σ(Γj)

C.S.

≤ ‖u−Qhu‖L2(Γj) sup
v∈H̃−σ(Γj)\{0}

‖v −Qhv‖L2(Γj)

‖v‖H−σ(Γj)

.

We now apply Lemma 4.8 twice:

‖u−Qhu‖2
L2(Γj)

(4.9)

≤ C
∑

τ∈Th(Γj)

h2s
τ |u|2Hs(τ) ,

‖v −Qhv‖L2(Γj)

(4.10)

≤ C h−σ |v|H−σ(Γj) ≤ C h−σ ‖v‖H̃−σ(Γj)
.

Substituting these estimates into the previous one yields the desired result.
Estimates for the “tilde” norm ‖u−Qhu‖H̃σ(ΓJ ) are obtained analogously.

Lemma 4.8 and Lemma 4.9 together imply the statement of Theorem 4.6
for −1 ≤ σ ≤ 0 ≤ s ≤ 1. A proof of the remaining case −1 ≤ σ ≤ s < 0
requires another quasi-interpolation operator which is Hσ-orthogonal as well
as techniques from interpolation theory, see, e.g., [Steinbach, Theorem 10.4].

A Priori Error Estimates for the Conormal

Recall the Céa estimate (4.7),

‖t− th‖H−1/2(Γ) ≤ C inf
wh∈S0

h(Γ)
‖t− wh‖H−1/2(Γ) .
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Assumption: t ∈ Hs
pw(Γ) for some s ∈ [−1

2
, 1]. By Exercise 26 (page 69),

t ∈ H−1/2
pw (Γ). The function wh is piecewise constant w.r.t. Th(Γ). Hence, it

follows that each restriction (t − wh)|Γj lies in H̃−1/2(Γj), cf. Definition 4.4.
Because wh is piecewise constant, the infimum can be localized:

‖t− th‖H−1/2(Γ)

Lem. 4.5+Def. 4.4

≤ C inf
wh∈S1

h(Γ)

J∑
j=1

‖(t− wh)|Γj‖H̃−1/2(Γj)

≤ C
J∑
j=1

inf
wh∈S0

h(Γj)
‖t|Γj − wh‖H̃−1/2(Γj)

.

(4.12)

From Theorem 4.6, we obtain

inf
wh∈S0

h(Γj)
‖t|Γj − wh‖H̃−1/2(Γj)

≤ C h1/2+s

{
‖t|Γj‖H̃s(Γj)

for s ∈ [−1
2
, 0),

‖t|Γj‖Hs(Γj) for s ∈ [0, 1].

(4.13)

The combination of (4.12), (4.13), and Definition 4.4 yields the following
important result.

Theorem 4.10 (error estimate of the conormal). Let t and th be the solutions
of (4.1) resp. (4.3), and assume that t ∈ Hs

pw(Γ) for some s ∈ [−1
2
, 1]. Then

‖t− th‖H−1/2(Γ) ≤ C h1/2+s ‖t‖Hs
pw(Γ) .

In the optimal case t ∈ H1
pw(Γ), we get

‖t− th‖H−1/2(Γ) = O(h3/2) as h→ 0.

For piecewise constant ansatz functions, this estimate cannot be improved.

Regularity Theory*

Question: when is t ∈ Hs
pw(Γ), for s ∈ [−1

2
, 1] ?

Partial answer:

Lemma 4.11. Let Γ be piecewise smooth (cf. Sect. 4.1.1) and suppose that
u ∈ H1(Ω) with −∆u = f in D∗(Ω). Then, for s ∈ (0, 1],

u ∈ H3/2+s(Ω) =⇒ t ∈ Hs
pw(Γ).

Proof. From the assumption, we get∇u ∈ H1/2+s(Ω). One can show that the
trace operator γ0 is continuous from H1/2+s(Ω) to Hs

pw(Γ). Since the normal
vector is piecewise smooth and t = γ0(∇u · n), the assertion follows.
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The regularity of the solution u itself is a difficult field, see, e.g., [Grisvard,
Dauge]. In order to get u ∈ H3/2+s(Ω), one needs subtle assumptions on
the domain and its boundary, and regularity of the Dirichlet data, such as
gD ∈ H1+s(Γ).

A Priori Error Estimates for the Reconstructed Solution

Assume a homogeneous right-hand side, i.e., f int = 0, let t and th be the
solutions of (4.1) resp. (4.3), and let u ∈ H1(Ω) denote the corresponding
solution in the interior. Thanks to the representation formula,

u = Ṽ t− W̃gD . (4.14)

Using this identity as a motivation, we define the reconstruction ũh ∈ H1(Ω)
of the solution u by

ũh := Ṽ th − W̃gD . (4.15)

If t ∈ L∞(Γ), we obtain from Lemma 3.14 that the error u− ũh is continuous
in the interior of Ω and

u(x)− ũh(x) =

∫
Γ

G(x, y)
[
t(y)− th(y)

]
ds ∀x ∈ Ω.

Since x 6= Γ, the fundamental kernel fulfills G(x, ·) ∈ C∞(Γ) ⊂ H−σ(Γ) for
any σ ∈ R. Hence,

|u(x)− ũh(x)| ≤ ‖G(x, ·)‖H−σ(Γ) ‖t− th‖Hσ(Γ) .

Choosing σ = −1
2
, we see that the pointwise error converges at least as good

as the error in the conormal.

Remark* 4.12. Better estimates are obtained via bounds of the error in
a weaker norm, i.e., ‖t − th‖Hσ(Γ) with σ < −1

2
, using an Aubin-Nitsche

argument. Details can be found in [Steinbach, Theorem 12.3]. In the optimal
case t ∈ H1

pw(Γ), one finally obtains

|u(x)− ũh(x)| = O(h3) as h→ 0, for x ∈ Ω.

One can also analyze the H1-error of the reconstruction.

Theorem 4.13. Let u and ũh be defined according to (4.14) resp. (4.15) and
assume that the bilinear form a(·, ·) is H1

0 (Ω)-elliptic. Then there exists a
constant C independent of h such that

‖u− ũh‖H1(Ω) ≤ C ‖t− th‖H−1/2(Γ) .
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Proof. Set g̃h := γ0ũh (interior trace). From the properties of the surface
potentials and boundary integral operators, we obtain

gD = V t+ (1
2
I +K)gD ,

g̃h = V th + (1
2
I +K)gD ,

gD − g̃h = V (t− th). (4.16)

Thanks to the assumption on a(·, ·), the Dirichlet problem is well-posed, and
so u and uh can be characterized by

u = u0 + EgD, u0 ∈ H1
0 (Ω) : a(u0 + EgD, v0) = 0 ∀v0 ∈ H1

0 (Ω),

ũh = ũ0 + E g̃h, ũ0 ∈ H1
0 (Ω) : a(ũ0 + E g̃h, v0) = 0 ∀v0 ∈ H1

0 (Ω),
(4.17)

where E is the bounded extension operator from the inverse trace theorem
(Thm. 2.26). Subtraction yields

a(u0 − ũ0, v0) = a(E(g̃h − gD), v0) ∀v0 ∈ H1
0 (Ω).

An application of Lax-Milgram provides the estimate

‖u0 − ũ0‖H1(Ω) ≤
ca
ca
‖E(g̃h − gD)‖H1(Ω) . (4.18)

where ca, ca are the constants of H1-boundedness and H1
0 -ellipticity of a(·, ·),

respectively. Finally, by the characterization (4.17) of u, ũh, the triangle
inequality, and estimate (4.18), we get

‖u− ũh‖H1(Ω) ≤ ‖u0 − ũ0‖H1(Ω) + ‖E(gD − g̃h)‖H1(Ω)

≤
(ca
ca

+ 1
)
‖E(g̃h − gD)‖H1(Ω)

≤
(ca
ca

+ 1
)
CIT ‖ g̃h − gD︸ ︷︷ ︸

=V (t−th)

‖H1/2(Γ) ≤ C ‖t− th‖H−1/2(Γ) ,

where in the last line, we have used the inverse trace inequality, identity (4.16),
and boundedness of the single layer potential operator V .

Combining the last theorem with Theorem 4.10, we obtain the conver-
gence result

‖u− ũh‖H1(Ω) = O(h1/2+s) as h→ 0,

under the assumption that t ∈ Hs
pw(Γ) for s ∈ [−1

2
, 1]. In the optimal case,

we get O(h3/2).
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4.2.2 The Neumann Problem

For simplicity, we consider only the homogeneous Laplace equation. Anal-
ogous error estimates hold for Lu = −div(A∇u) + c u with c ≥ 0. Recall
Equations (4.2) and (4.4):

find v ∈ H−1/2(Γ) : 〈Dv, ϕ〉Γ = 〈(1
2
I −K ′)gN , ϕ〉Γ ∀ϕ ∈ H1/2(Γ),

find vh ∈ S1
h(Γ) : 〈Dvh, ϕh〉Γ = 〈(1

2
I −K ′)gN , ϕh〉Γ ∀ϕh ∈ S1

h(Γ).

Recall also that ker(D) = span(1Γ) and that the Neumann data gN must

fulfill the compatibility condition gN ∈ H−1/2
∗ (Γ).

Remark 4.14. In practice, one often uses regularizations of the operator D
in order to remove the kernel, e.g.,

(a) 〈D̃v, ϕ〉Γ := 〈Dv, ϕ〉Γ + 〈weq, v〉Γ 〈weq, ϕ〉Γ,

(b) 〈D̃v, ϕ〉Γ := 〈Dv, ϕ〉Γ +
∫

Γ
v ds

∫
Γ
ϕds.

Exercise 27. Show that when replacing D by D̃ in the above equations, v,
vh are still solutions of the original problems. For Choice (a), they are unique

in H
1/2
∗ (Γ). For Choice (b), they fulfill

∫
Γ
v ds =

∫
Γ
vh ds = 0.

At least, D is elliptic on the factor space H1/2(Γ)/ ker(D), and so we con-
clude by Céa’s lemma that

|v − vh|H1/2(Γ) ≤ C inf
ϕh∈S1

h(Γ)
|v − ϕh|H1/2(Γ) . (4.19)

Theorem 4.15 (approximation of S1
h, without proof). Let Ω be a Ck,1-

domain. Then, for s ∈ (1
2
, 2] with s ≤ max(3

2
, k + 1),

inf
ϕh∈S1

h(Γ)
‖ϕ− ϕh‖H1/2(Γ) ≤ C hs−1/2 |ϕ|Hs(Γ) ∀ϕ ∈ Hs(Γ).

Combining (4.19) and Theorem 4.15, we get the following result.

Theorem 4.16 (error estimate for the Dirichlet trace). Let Ω be a Ck,1-
domain and let v, vh be solutions of (4.2), resp. (4.4). If the exact Dirichlet
trace fulfills v ∈ Hs(Γ) for some s ∈ (1

2
, 2] with s ≤ max(3

2
, k + 1), then

there exists a constant C independent of h such that

|v − vh|H1/2(Γ) ≤ C hs−1/2 .

In the optimal case where v ∈ H2(Γ) (this is if the solution lies in
H5/2(Ω)), the error is O(h3/2). This result cannot be improved, at least
not with continuous piecewise linear ansatz functions.

For further estimate see, e.g., [Steinbach, Sect. 12.2].
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4.3 Calculation of Matrix Entries

4.3.1 Single and Double Layer Potential

Opposed to Collocation BEM, the Galerkin BEM requires the evaluation of
double integrals. In principle, there are three classes of evaluation formulae:

• analytic (only available for very simple situations)

• numerical quadrature (for both integrals)

• semi-analytic (analytic for the inner, quadrature for the outer integral)

Example for a Semi-Analytic Formula (Single Layer Potential)

We consider the single layer potential for the Laplace operator L = −∆ in
two dimensions. Assume that

• the space S0
h(Γ) of piecewise constants is used for the approximation of

the Neumann trace,

• each boundary element τ ∈ Th(Γ) is a straight line,

• the outer integral is approximated by the midpoint rule (for simplicity;
other quadrature rules are treated similarly).

Let i, j = 1, . . . , nel
h be element indices, and let yj denote the midpoint of

element τj. Then,

[Vh]ji =

∫
τi

∫
τj

− 1

2π
log |x− y| dsx dsy

hopefully
≈ −|τi|

2π

∫
τj

log |x− yi| dsx .

We remark that the integral above equals (up to the constant factor of |τj|)
that of a Collocation BEM with collocation points in the element midpoints.

Case 1: i = j. Only in this case, we have to evaluate an improper integral:∫
τi

log |x− yi| dsx =

∫ hi/2

−hi/2
log |ξ| dξ = 2 lim

ε→0

∫ hi/2

ε

log |ξ| dξ

= 2 lim
ε→0

[
ξ log(ξ)− ξ

]hi/2
ε

= hi(log(hi
2

)− 1)− lim
ε→0

2(ε log ε− ε)︸ ︷︷ ︸
=0

,

where the last limit can be calculated with de l’Hospital’s theorem.
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Figure 4.3: Left: Case 2 with coordinate transformation. Right: Case 3.

Case 2: i 6= j, yi not collinear with τj. Let xj, xj+1 denote the endpoints of
τj and let us introduce a coordinate transformation as in Figure 4.3 (left):

a = |z − yi|

cos θ =
|z − yi|
|x− yi|

 =⇒ |x− yi| =
a

cos θ

η = a tan θ

dsx = dη
(∗)
= a

d

dθ

(
tan θ

)
dθ =

a

cos2 θ
dθ

(∗∗)
= a (1 + tan2(θ)) dθ

Now, the integral can be calculated with the usual transformation rules:

∫
τj

log |x− yi| dsx
(∗)
= a

∫ θ2

θ1

log
( a

cos θ

) x
d

dθ

(
tan θ︸︷︷︸
= sin θ

cos θ

)
dθ

= a
[

log
( a

cos θ

)
tan θ

]θ2
θ1
− a

∫ θ2

θ1

cos θ

a

(−a) (− sin θ)

cos2 θ

sin θ

cos θ
dθ︸ ︷︷ ︸

=
∫ θ2
θ1

tan2(θ) dθ
(∗∗)
=

[
tan θ − θ

]θ2
θ1

= a
[

tan θ
(

log
( a

cos θ

)
− 1
)

+ θ
]θ2
θ1
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Case 3: i 6= j, yi collinear with τj. Assume, e.g., that yi is on the side of xj
as shown in Figure 4.3 (right). Then,∫

τj

log |x− yi| dsx =

∫ |xj+1−yi|

|xj−yi|
log |η| dη =

[
η (log η − 1)

]|xj+1−yi|

|xj−yi|
.

Numerical Quadrature

For continuous integrands, numerical quadrature is well-understood. How-
ever, the integral kernel occurring in Vh, Kh is singular. Thanks to Sauter,
Schwab, and coworkers, there exists a systematic way (based on proper case
distinction) to transform the double integrals appearing in Vh and Kh to in-
tegrals over [0, 1]2(d−1) with an analytic (and therefore continuous) integrand.
The latter can be treated with conventional quadrature rules. Details can be
found in [Sauter/Schwab, Sect. 5.2] or [Erichsen/Sauter].

4.3.2 Representation of the Hypersingular Operator D

In this subsection, we treat the Laplace operator L = −∆ and assume again
that Γ is piecewise smooth with parts Γj ∈ C1 (cf. Sect. 4.1.1).

Definition 4.17 (2D surface curl). Let d = 2. For ṽ ∈ C1(Ω), we define

curl ṽ :=

[
∂2ṽ
−∂1ṽ

]
,

where ∂k is a short hand for ∂/∂xk. For v ∈ C1(Γj), we define

(curlΓjv)(x) := n(x) · curl ṽ(x), for x ∈ Γj ,

where ṽ ∈ C1(Ω) is an extension of v from Γj to Ω.

Definition 4.18 (3D surface curl). Let d = 3. For v ∈ C1(Γj) we define

(curlΓjv)(x) := n(x)×∇ṽ(x), for x ∈ Γj ,

where ṽ ∈ C1(Ω) is an extension of v.
Note that −n × (n × f) = f − (f · n)n for vector fields f . So (curlΓjv)(x)
is (up to rotation) the projection of ∇ṽ(x) to the tangent plane defined by
n(x).

Lemma 4.19. The above definitions are independent of the choice of the
extension.
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Proof ∗ for d = 2. Let Γj = {y(t) ∈ R2 : t ∈ (0, 1)}. Then

dsy = |y′(t)| dt, n(y(t)) =
1

|y′(t)|

[ y′2(t)
−y′1(t)

]
(if positive orientation).

Hence, for ϕ ∈ D(R2),∫
Γj

curlΓjϕdsy =

∫ 1

0

1

��
��|y′(t)|

[ y′2(t)
−y′1(t)

]
· (curl ṽ)(y(t))��

��|y′(t)|ϕ(y(t) dt

=

∫ 1

0

(∇ṽ)(y(t)) · y′(t)ϕ(y(t) dt =

∫ 1

0

d

dt
v(y(t))ϕ(y(t) dt.

We see that curlΓj is essentially the tangential derivative.

For v ∈ C1
pw(Γ) (with respect to the partition Γ =

⋃J
j=1 Γj), we define

curlΓv ∈ L2(Γ) by

(curlΓv)|Γj = curlΓjv, for j = 1, . . . , J.

Theorem 4.20 (without proof). Suppose that L = −∆, Γ ∈ C1
pw and u,

v ∈ H1/2(Γ) ∩ C(Γ) ∩ C1
pw(Γ). Then, for d = 2,

〈Du, v〉Γ = − 1

2π

∫
Γ

curlΓv(x)

∫
Γ

log |x− y| curlΓu(y) dsy dsx .

For d = 3,

〈Du, v〉Γ =
1

4π

∫
Γ

∫
Γ

curlΓv(x) · curlΓu(y)

|x− y|
dsy dsx .

Remark 4.21. 1. In short, we may write

〈Du, v〉Γ = 〈curlΓv, V curlΓu〉Γ .

2. Recall that S1
h(Γ) ⊂ H1/2(Γ) ∩ C(Γ) ∩ C1

pw(Γ). Hence, the entries of
the hypersingular matrix Dh can be reduced to those of the single layer
potential matrix Vh.

3. A proof can be found in [Steinbach, Sect. 6.5] and is based on the
integration by parts formula∫

Γ

v(y) curlΓw(y) dsy = −
∫

Γ

curlΓv(y)w(y) dsy+
J∑
j=1

v(yj(t))w(yj(t))
∣∣∣1
0
,

if Γj = {yj(t) ∈ R2 : t ∈ (0, 1)} (with positive orientation). We see
that if v, w ∈ C(Γ), then the sum above can be dropped. This is the
background of phrases like “we use integration by parts for the hyper-
singular integral operator”. A similar formula holds for the Helmholtz
operator, cf. [McLean, Thm. 9.15].
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4.4 Complexity of Galerkin BEM

As pointed out earliear, the BEM matrices Vh, Kh, Dh are dense. Hence,
assembling of these matrices requires O(n2

h) floating point operations, where
nh is the number of nodes/elements of the triangulation. E.g., if the solution
of the system

Vh th = (1
2
Mh −Kh)gD,h

is obtained by Gauss’ algorithm, the computational work is proportional to

O(n3
h) = O(h−3(d−1)),

where here and below, we assume that Ω ' (0, 1)d and that Th(Γ) is quasi-
uniform triangulation.

For a quasi-uniform triangulation of Ω, a finite element method leads to
nh,FEM = O(h−d) many unknowns. Factorization by a sparse direct solver

(pivoting, nested dissection, etc., such as PARDISO) requires O(n
3/2
h,FEM) op-

erations if d = 2, and O(n2
h,FEM) if d = 3. If an optimal solver (e.g., iterative

solver with multilevel/multigrid preconditioner) the complexity (of FEM)
changes to O(nn,FEM). We compare:

direct iterative
2D unknowns memory/operations memory operations
FEM h−2 h−3 (sparse) h−2 h−2

BEM h−1 h−3 (Gauss) h−2 ?

direct iterative
3D unknowns memory/operations memory operations
FEM h−3 h−6 h−3 h−3

BEM h−2 h−6 h−4 ?

This comparison is probably unfair in many ways: (1) for FEM, extremely
good solvers have been considered, (2) in BEM we haven’t included any
reconstruction of the solution. We see, however, that in order to outperform
the FEM, in BEM, one needs

• a cheaper way to store and factorize or apply a BEM matrix, e.g.,
O(nh logα(nh)),

• a good preconditioner with comparable complexity.

For such techniques, see Chapter 5. In view of iterative solvers and precon-
ditioning, the conditioning of Vh and Dh is of interest.
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4.4.1 Conditioning of Vh

Theorem 4.22. Assume that V is elliptic, that Th(Γ) is quasi-uniform, and
let Vh denote the matrix corresponding to V with respect to the canonical
basis of S0

h(Γ). Then there exist constants c1, c2 > 0 independent of h such
that

c1 h
d ‖wh‖2

`2 ≤ (Vhwh, wh)`2 ≤ c2 h
d−1 ‖wh‖2

`2 ∀wh ∈ Rnel
h .

Hence,
κ(Vh) = O(h−1).

For comparison: for a quasi-uniform triangulation of Ω, the condition number
of a FEM stiffness matrix is O(h−2).

Proof ∗. Let wh ∈ S0
h(Γ) correspond to the vector wh ∈ Rnel

h . Then

(Vhwh, wh)`2 = 〈wh, V wh〉Γ .

Upper bound. Since wh ∈ L2(Γ) ⊂ H−1/2(Γ),

‖wh‖H−1/2(Γ) = sup
v∈H1/2(Γ)\{0}

(wh, v)L2(Γ)

‖v‖H1/2(Γ)

≤ sup
v∈H1/2(Γ)\{0}

(wh, v)L2(Γ)

‖v‖L2(Γ)

C.S.

≤ ‖wh‖L2(Γ) .

Since V is bounded in H−1/2(Γ),

〈wh, V wh〉Γ ≤ C ‖wh‖2
H−1/2(Γ) ≤ C ‖wh‖2

L2(Γ)

≤ C

nel
h∑

i=1

w2
i |τi|︸︷︷︸
.hd−1

i

≤ C hd−1 ‖wh‖2
`2 ,

where wi = wh|τi are the entries of wh.

Lower bound. We need some tools (for details, see [Steinbach, Lemma 12.6]).

(i) We define the space of local bubble functions

SBh (Γ) := span(ϕBi )
nel
h
i=1 ⊂ H1/2(Γ),

where the basis functions ϕBi are defined via the reference interval (0, 1)
and triangle {(x, y) ∈ [0, 1]2 : y ≤ 1− x} by

ϕB(ξ) :=

{
ξ(1− ξ) if d = 2,

ξ1ξ2(1− ξ1 − ξ2) if d = 3.
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(ii) We have the inverse inequality

‖vh‖H1/2(Γ) ≤ C h−1/2 ‖vh‖L2(Γ) ∀vh ∈ SBh (Γ),

which can, e.g., be obtained from an interpolation of corresponding
estimates in the L2- and H1-norm.

(iii) We define QB
h : L2(Γ)→ SBh (Γ) by the relation∫

τi

(QB
hw) ds =

∫
τi

w ds ∀i = 1, . . . , nel
h , ∀w ∈ L2(Γ).

It follows immediately that for all (piecewise constant) wh ∈ S0
h(Γ),

(wh, Q
B
hwh)L2(Γ) =

nel
h∑

i=1

w|τi

∫
τi

QB
hwh ds︸ ︷︷ ︸

=|τi|w|τi

= ‖wh‖2
L2(Γ) .

(iv) The operator QB
h fulfills the stability estimate

‖QB
hw‖L2(Γ) ≤

√
2 ‖w‖L2(Γ) ∀w ∈ L2(Γ).

Now,

‖wh‖H−1/2(Γ) = sup
v∈H1/2(Γ)\{0}

〈wh, v〉Γ
‖v‖H1/2(Γ)

≥
(wh, Q

B
hwh)L2(Γ)

‖QB
hwh‖H1/2(Γ)

(iii)
=

‖wh‖2
L2(Γ)

‖QB
hwh‖H1/2(Γ)

(ii)

≥ 1

C h−1/2

‖wh‖2
L2(Γ)

‖Qhwh‖L2(Γ)

(iv)

≥ h1/2

C
√

2
‖wh‖L2(Γ) .

Using the ellipticity of V , the above estimate, and quasi-uniformity of Th(Γ),
we obtain the desired lower bound

〈wh, V wh〉Γ ≥ cV ‖wh‖2
H−1/2(Γ) ≥

cV
2C2

h ‖wh‖2
L2(Γ)

=
cV

2C2
h

nel
h∑

i=1

w2
i |τi|︸︷︷︸
'hd−1

' hd ‖wh‖2
`2 .

This concludes the proof.
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4.4.2 Conditioning of Dh

Theorem 4.23. Assume that Th(Γ) is quasi-uniform, let Dh be denote the
matrix corresponding to D with respect to the canonical basis of S1

h(Γ). Then
for Lu = −div(A∇u) + c u with c > 0, there exist constants c1, c2 > 0
independent of h such that

c1 h
d−1 ‖vh‖2

`2 ≤ (Dh vh, vh)`2 ≤ c2h
d−2 ‖vh‖2

`2 ∀vh ∈ Rvert
h .

For c = 0, the same estimate holds when Dh is replaced by a suitable regu-
larization D̃h, corresponding to Remark 4.14.

Proof ∗. Let vh ∈ S1
h(Γ) correspond to the vector vh. Then

(Dhvh, vh)`2 = 〈Dvh, vh〉Γ .

Upper bound. Using that D is bounded in H1/2(Γ) and using the inverse
inequality

‖vh‖H1/2(Γ) ≤ C h−1/2 ‖vh‖L2(Γ) ,

we obtain

〈Dvh, vh〉Γ . ‖vh‖2
H1/2(Γ) . h−1 ‖vh‖2

L2(Γ) = h−1

nel∑
i=1

‖vh‖2
L2(τi)

.

Let Vi the set of vertices of τi (≤ 3 many). Due to shape-regularity, each
vertex belongs to a uniformly bounded number of elements. Therefore,

nel∑
i=1

‖vh‖2
L2(τi)

' hd−1
∑
k∈Vi

v2
i . C hd−1 ‖vh‖2

`2 ,

which altogether implies the upper bound.

Lower bound. Since D is elliptic, similar arguments yield

〈Dvh, vh〉Γ & ‖v‖2
H1/2(Γ)︸ ︷︷ ︸

≥‖v‖2
L2(Γ)

&

nel
h∑

i=1

|τi|v2
i & hd−1 ‖vh‖2

`2 ,

where quasi-uniformity was used.



Chapter 5

Fast BEM*

5.1 Motivation

We have seen that the crucial problem is the storage of the matrices Vh, Kh,
etc. For a quasi-uniform mesh we need O(h2(d−1)) memory where we have
only O(hd−1) unknowns. The basic idea of fast boundary element methods
is to approximate the matrices with less storage amount. Here we give a
motivation why this can be possible. Let Γ be the boundary of a three-
dimensional domain, let τi, τk, τ`, etc. be elements, where τi is far away from
τk and all the remaining elements touch τk, see the figure below.

Γ

τ

τ

y x
i

l

k
τfar

For d = 3, L = −∆, and the definition of Vh as in Sect. 4.1.4 we have

[Vh]ik =

∫
τi

∫
τk

1

4π

1

|x− y|
dsx dsy .

Since 1/|x−y| decays very fast if |x−y| becomes large, we can write |x−y| ≈
|x∗i − x∗k| where x∗i and x∗k are the centers of τi and τk, respectively. Thus the
double integral is approximated by a constant. For an element τ` touching
τk, we have

[Vh]i` ≈ [Vh]ik

85
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because the difference |x∗i−x∗k| ≈ |x∗i−x∗` |. In the figure above we can approx-
imate six double integrals (six entries of the matrix) by one constant, which
leads to a reduced storage amount. Using some tricks one can generalize this
concept.

Among many fast BEM approaches are

• wavelets (here one constructs a special basis which leads to a sparse
representation),

• the fast multipole method (using taylor expansion one can realize at
least a fast application of the matrices),

• hierarchical matrices and data-sparse approximation

For more details see e. g., [Steinbach] and [Bebendorf]. We will follow the
last approach. There the main tricks are

• low-rank matrices, and

• hierarchical clustering.

The hierarchical matrices were introduced by Hackbusch and Khoromskij.
The data-sparse approximation that we will discuss is named adaptive cross
approximation (ACA) and was introduced by Bebendorf and Rjasanow. Other
techniques and references can be found in [Bebendorf], [Steinbach], and also
online at www.hlib.org.

5.2 Low-rank Matrices

For a matrix A ∈ Rm×n we define

range(A) := {Ay : y ∈ Rn} , rank(A) := dim(range(A)) .

Lemma 5.1. (i) rank(A) ≤ min(m, n) ∀A ∈ Rm×n

(ii) rank(AB) ≤ min(rank(A), rank(B)) ∀A ∈ Rm×p , B ∈ Rp×n

(iii) rank(A+B) ≤ rank(A) + rank(B) ∀A, B ∈ Rm×n

Definition 5.2. We define the set of matrices with rank at most k (in short:
rank-k matrices),

Rm×n
k := {A ∈ Rm×n : rank(A) ≤ k} .
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Attention: Rm×n
k does not form a linear space because addition of two

rank-k matrices can increase the rank beyond k.

Lemma 5.3.

A ∈ Rm×n
k ⇐⇒ ∃U ∈ Rm×k , V ∈ Rn×k : A = U V >

The above representation U V > of a rank-k matrix is called outer product
form. Note that if we have such a representation, the matrix-vector multi-
plication

Ay = U (V >y)︸ ︷︷ ︸
∈Rk

can be computed in O(k(m+ n)) operations. Also, the storage amount of U
and V is only k(m+ n).

Definition 5.4. A matrix A ∈ Rm×n
k is said to have low rank if

k(m+ n) < mn .

Obviously we should represent (in particular store) low-rank matrices in
outer product form.

Remark 5.5. Two low-rank matrices can be multiplied and added in low
complexity. Also the singular value decomposition (SVD)

A = U ΣV >

(with U ∈ Rm×k, V ∈ Rn×k orthogonal and Σ ∈ Rk×k diagonal) of a low-rank
matrix can be computed cheaply. Using that one, for A, B ∈ Rm×n

k , the best
approximation C of the sum A+B with respect to the Frobenious norm, i. e,

‖A+B − C‖F → min
C∈Rm×nk

,

can be computed also efficiently. We refer to this approximated addition by
rounded addition. It is a similar concept to the rounded addition of fixed
floating point operations in processors, but here we do not cut the precision
of a number but the rank of a matrix. The computational complexity of the
rounded addition is O(k2(m+ n)).
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5.3 Degenerate Kernels

Unfortunately, boundary element matrices cannot be approximated by low-
rank matrices (but as will turn out certain matrix blocks can). They would,
if the kernel of the underlying integral operator had a different form.

Definition 5.6. Let D1, D2 be subsets of Rd or a manifold Γ. An integral
kernel κ : D1 ×D2 → R is called degenerate if there exists a constant k ∈ N
and functions u` : D1 → R, v` : D2 → R for ` = 1, . . . , k such that

κ(x, y) =
k∑
`=1

u`(x) v`(y) ∀x ∈ D1, y ∈ D2 .

The number k is called degree of degeneracy.

Suppose we have a matrix A defined by

Aij =

∫
Γ

∫
Γ

κ(x, y)ψj(y)ϕi(x) dsx dsy

and suppose we have index sets I and J and submanifolds D1, D2 ⊂ Γ with

supp(ϕi) ⊂ D1 ∀i ∈ I , supp(ψj) ⊂ D2 ∀j ∈ J .

If κ (restricted to D1 ×D2) is degenerate of degree k then

Aij =
k∑
`=1

∫
D1

u`(x)ϕi(x) dsx

∫
D1

v`(y)ψj(y) dsy ∀i ∈ I, j ∈ J ,

and so the block [Aij]i∈I, j∈J has rank k.
The kernels appearing in our boundary integral operators are not degen-

erate. However, we can try to approximate them by degenerate kernels.

5.4 Asymptotically Smooth Kernels

Definition 5.7. An integral kernel κ : D1×Rd → R with κ(x, ·) ∈ C∞(Rd \
{x}) for all x ∈ D1 is called asymptotically smooth in D1 with respect to y if
there exist constants γ, c > 0 such that for all x ∈ D1 we have∣∣∂αy κ(x, y)

∣∣ ≤ c |α|! γ|α| |κ(x, y)|
|x− y||α|

∀multi-indices α ∀y ∈ Rd \ {x} .
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Remark 5.8. The kernels U∗(x, y) and ∂
∂nx

U∗(x, y) appearing in V and K
can be shown to be asymptotically smooth.

We want to exploit this smoothness for a Taylor expansion. However, in
the vicinty of the singulary we cannot expect good convergence. Therefore
we will assume that x and y are sufficiently far away from each other.

Definition 5.9. For sets D1, D2 and x ∈ D1 we define the distances

dist(x, D2) := inf
y∈D2

|x− y| , dist(D1, D2) := inf
x∈D1, y∈D2

|x− y| .

Assume now that a kernel κ : D1 × D2 → R is analytic with respect to
the second argument (y) and assume at least that dist(D1, D2) > 0. Then
by Taylor’s expansion we have

κ(x, y) =
∑
|α|<p

1

α!
∂αy κ(x, ξD2) (y − ξD2)α︸ ︷︷ ︸

=:Tp[κ](x, y)

+Rp(x, y) ,

where

Rp(x, y) =
∑
|α|≥p

1

α!
∂αy κ(x, ξD2) (y − ξD2)α

and ξD2 is the Chebyshev center of D2, defined as the center of the ball of
minimum radius that contains D2. We denote the minimum radius by ρD2 ,
see below.

D
2

ξD
2

D
2

ρ

The next lemma clarifies how much error we make when cutting the Taylor
series.

Lemma 5.10. Let κ : D1×D2 → R an integral kernel which is analytic with
respect to y and let κ : D1×Rd → R be asymptotically smooth. Furthermore,
suppose that the condition

η dist(ξD1 , D2) ≥ ρD2

holds for some η > 0 with 2 γ
√
d η < 1. Then∣∣κ(x, y)− Tp[κ](x, y)
∣∣ ≤ (2 γ

√
d η)p

1− 2 γ
√
d η
|κ(x, ξD2)| .
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The lemma states that if D1 is sufficiently far away from D2, we have
exponential convergence of the Taylor series as p → ∞. I.e. there is hope
that we can cut the series for a rather small p (which leads to a low rank
representation) and to make only a small error.

Usually, we consider integral kernels which are analytic and asymptot-
ically smooth with respect to both variables x and y. Then we use the
symmetric condition

min(ρD1 , ρD2) ≤ η dist(D1, D2) (5.1)

instead of the condition in Lemma 5.10.

5.5 Admissible Blocks

For index sets I = {1, . . . , n} and J = {1, . . . ,m} we denote by t ⊂ I, s ⊂ J
(index) blocks. Note that the entries need not be contiguous (a block can
also look like {2, 5, 7}). For A ∈ Rn×m = RI×J we define

At×s := [Aij]i∈t, k∈s ,

i. e., the restriction to the block t× s. Finally, we denote by |t| the number
of indices in the block t.

Definition 5.11. Let At×s correspond to∫
D1

∫
D2

κ(x, y)ψj(y)ϕi(x) dsx dsy for i ∈ t, j ∈ s ,

with
⋃
i∈t suppϕi ⊂ D1 and

⋃
j∈s suppψj ⊂ D2. Then we call the block t× s

admissible if (5.1) is fulfilled.

Lemma 5.12. For an admissible block t× s and κ : D1 ×D2 → R analytic
and asymptotically smooth in both variables, the matrix block At×s (defined as

above) can be approximated by a low-rank matrix Ãt×s ∈ Rt×s
k . Let ε denote

the approximation error (with respect to ‖ · ‖F ), then

k ≤ pd ' | log ε|d ,

where p denotes the order of the Taylor expansion.

The ultimate goal is to find a partition of I × J into blocks where we can
use the Taylor expansion and the low-rank approximation.
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Definition 5.13. A set P ⊂ P(I × J) (where P(·) denotes the power set) is
called partition of I × J if

I × J =
⋃
b∈P

b , and b1 6= b2 ∈ P =⇒ b1 ∩ b2 = ∅ .

A block b = t × s of a partition is called small if min(|t|, |s|) < n0 where
n0 is a positive parameter. Finally, we call a partition P admissible if each
block b ∈ P is either admissible or small.

In the next two sections we construct admissible partitions of I×J . There
we restrict ourselves to a special class of partitions which are constructed by
organizing the index sets I and J separately in a hierarchical tree structure.

5.6 Cluster Trees

Definition 5.14. (i) Let T = (V , E) be a tree (i. e., a simple, directed,
and connected graph with no cycles). Here V and E are the set of
vertices and edges of the graph, respectively. For a vertex t ∈ V we
define the set of sons

S(t) := {t′ ∈ V : (t, t′) ∈ E} .

The root of the tree is a unique vertex which is not a son of any other
vertex. We call a vertex a leaf if it has no sons. The set of leaves is

L(T ) := {t ∈ V : S(t) = ∅} .

We define the level of a vertex t: if t is the root, level(t) := 0, for all
other vertices t, level(t) is the minimal number of edges connecting t
and the root. Finally, the depth of the tree is then defined as

depth(T ) := max
t∈V

level(t) + 1 .

(ii) A tree TI = (V , E) is called cluster tree of a finite index set I if the
following conditions hold:

(a) I is the root of TI ,

(b) for each vertex t ∈ V we have that t is a non-empty subset of I,
its sons are pairwise disjoint, and t =

⋃
t′∈S(t) t

′,

(c) all vertices which are not leaves have at least two sons.
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HH
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{1, 2, 3, 4, 5, 6, 7, 8} ←− root

Figure 5.1: Example of a (binary) cluster tree.

Notation: For cluster trees we identify the tree with its vertices and
write t ∈ TI instead of t ∈ V .

(iii) We call a cluster tree TI balanced if

R := min
t∈TI\L(TI)

min
{ |t1|
|t2|

: t1, t2 ∈ S(t)}

is bounded from below by a positive constant, independently of |I|.

Figure 5.1 shows an example of a cluster tree for the set I = {1, . . . , 8}.

Lemma 5.15. Let TI be a balanced cluster tree. Then depth(TI) = O(log |I|).
The storage complexity of TI is then O(|I| log |I|).

For an index set I which represents a collection of elements {τi}i∈I , we
want to generate a cluster tree TI which will eventually lead to an admissible
partition of I × I (or I × J for another cluster tree TJ). Here, we use the
principal component analysis (PCA). To this end we associate to each element
τi a point yi (e. g., its center of gravity).

Definition 5.16. Let t ⊂ I be a block.

• We define the centroid mt :=
∑

i∈t
|τi|∑
j∈t |τj |

yi

• A vector wt ∈ Rd, |wt| = 1 where the maximum

max
v∈Rd, |v|=1

∑
i∈t

|v · (yi −mt)|2

is attained is called main direction of t.
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τ

yi

i

m
t

w
t

hyperplane

Figure 5.2: Example of block subdivision by the principal component analysis
(d = 2).

• We define the covariance matrix Ct :=
∑

i∈t(yi−mt) (yi−mt)
> ∈ Rd×d.

Obviously, the computation of mt can be done in linear time. But how to
get the main direction? It is rather easy to see that wt is a main direction of
t if and only if |wt| = 1 and wt is an eigenvector to the maximal eigenvalue
of Ct. Thus, in order to compute wt we can form the covariance matrix Ct
(in linear time) and compute its eigensystem.

Having mt and wt at our disposal we now subdivide the block t (which
represents a collection of elements {τi}i∈t) using the hyperplane through mt

with normal wt. We define the sons of t in the cluster tree by

S(t) := {t1, t2}
t1 := {i ∈ t : wt · (y1 −mt) > 0}
t2 := t \ t1 ,

see also Figure 5.2. We apply this recursively to the set I and stop if a block
contains less than nmin elements, where nmin is a fixed parameter. This way
we get a cluster tree which we call geometrically balanced. Recall that we
assume a shape-regular and quasi-uniform mesh. Then it can be shown that
the cluster tree is also balanced in the sense of Definition 5.14(iii).

Lemma 5.17. The construction of a cluster tree TI for a collection of ele-
ments {τi}i∈I using the principal component analysis as described above re-
quires only O(|I| log |I|) operations.

5.7 Block Cluster Trees

We now use the cluster trees from the last section to construct an admissible
partition for I × J . Let TI and TJ cluster trees for I and J , respectively, as



CHAPTER 5. FAST BEM* 94

constructed above. We define the block cluster tree TI×J by specifying the
root to be I × J and defining for each block t× s the sons,

SI×J(t× s) :=


∅ if t× s is admissible

or SI(t) = ∅ or SJ(s) = ∅ ,
SI(t)× SJ(s) else.

Above, SI×J indicates that the sons are to be understood with respect to
the tree TI×J , and SI with respect to the tree TI etc. Obviously, by this
construction,

depth(TI×J) ≤ min{depth(TI), depth(TJ)} .

If TI and TJ are binary trees (each vertex has two sons or is a leaf), TI×J is
a quadtree (each vertex has four sons or is a leaf).

Most importantly, by this construction the partition generated by the
leaves of the block cluster tree TI×J is admissible. This is because a leaf
t × s is either admissible, or we have that t or s is itself a leaf of TI or TJ ,
respectively, which implies that min(|t|, |s|) ≤ nmin, and so the block is small
if we choose nmin accordingly.

A measure for the complexity of a block cluster tree is the so-called spar-
sity constant. Here, we introduce this concept only briefly, as we will just
use it once on page 96. For a block t ∈ TI we define

crow
sp (TI×J , t) :=

∣∣{s ⊂ J : t× s ∈ TI×J
}∣∣ ,

i. e. the number of blocks t × s in the block cluster tree TI×J with t being
fixed. Similarly, for s ∈ TJ we define

ccol
sp (TI×J , s) :=

∣∣{t ⊂ I : t× s ∈ TI×J
}∣∣ .

Finally, we define the sparsity constant of TI×J by

csp(TI×J) := max
{

max
t∈TI

crow
sp (TI×J , t) , max

s∈TJ
ccol

sp (TI×J , s)
}
.

One can show that if TI and TJ are geometrically balanced (e. g. constructed
by the PCA) and the original mesh is shape-regular and quasi-uniform, the
sparsity constant is bounded.

Lemma 5.18. Let TI and TJ be balanced cluster trees. Then the construction
of the block cluster tree TI×J as described above requires only O(|I| log |I|+
|J | log |J |) operations.
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Figure 5.3: Example of a typical H-matrix. Approximation of the single
layer potential on a half-sphere discretized by 932 triangles. Green blocks:
low-rank blocks (black numbers: local rank used by ACA). Red blocks: dense
blocks.

5.8 The Set of Hierarchical Matrices

We will now work with the partition generated by our block cluster tree and
define a special kind of matrix related to it.

Definition 5.19. The set of hierarchichal matrices on the block cluster tree
TI×J with an admissible partition P = L(TI×J) and block-wise rank k is
defined as

H(TI×J , k) :=
{
A ∈ RI×J : rank(At×s) ≤ k ∀ admissible blocks t×s ∈ P

}
.

In short we call this set the set of H-matrices.

An H-matrix is stored as follows:

• for an admissible block t× s we use the outer product representation;
the storage amount is then k(|t|+ |s|),

• for all other blocks we use the conventional entry-wise storate; the
storage amount is then bounded by nmin(|t|+ |s|).

A typical H-matrix is shown in Figure 5.3 (for the ACA see the next section).
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We now sketch how to prove that the total storage amount Nst(A) of an
H-matrix A ∈ H(TI×J , k) fulfills

Nst = O
(

max(k, nmin) (|I| log |I|+ |J | log |J |)
)
.

In order to get the storage amount we have to sum up the individual storage
amounts of each leave. In fact we will bound this by a sum over all blocks in
the tree and use the sparsity constant (see page 94):

Nst ≤
∑

t×s∈L(TI×J )

max(k, nmin) (|t|+ |s|) ≤
∑

t×s∈TI×J

max(k, nmin) (|t|+ |s|)

≤ max(k, nmin)
{∑
t∈TI

∑
s∈TJ :t×s∈TI×J

|t|+
∑
s∈TJ

∑
t∈TI :t×s∈TI×J

|s|
}

≤ csp(TI×J) max(k, nmin)
{∑
t∈TI

|t|+
∑
s∈TJ

|s|
}

≤ C̃ max(k, nmin) (|I| log |I|+ |J | log |J |)
)
.

Many algorithms in the context of H-matrices perform the same kind of
operations blockwise. The above technique can be used to estimate the total
complexity of these algorithms.

Remark 5.20. H-matrices generalize sparse matrices. One can e. g. show
that a FEM stiffness matrix can be stored as an H-matrix even with O(n)
storage requirements. In constrast to sparse matrices, we call H-matrices
data-sparse.

Lemma 5.21. The computational complexity of the H-matrix by vector mul-
tiplication is O

(
max{k, nmin}

(
|I| log |I|+ |J | log |J |

))
.

This means that we can not only use H-matrices to represent approxi-
mations of BEM matrices, but also for iterative solver, as for instance CG,
where only the application of the matrix to a vector is required. To get
quasi-optimal solvers one needs of course preconditioners, and one can in
fact generalize the known multi-level preconditioners for FEM (such as BPX
type preconditioners) also for this purpose.

However, we will not discuss that issue, but instead point out that a
whole H-arithmetic is available, similar to the floating point arithmetic in
processors. E. g. we can add two H-matrices which are defined on the same
block cluster tree by using conventional addition in the dense blocks and
rounded addition in the low-rank blocks. This way, we obtain again an H-
matrix which is an approximation of the exact sum. Multiplication is rather
straigtforward and can be based on the multiplication and rounded addition
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of low-rank matrices. With the following idea one can even approximate the
inverse of an H-matrix by an H-matrix. Consider a block t split into two
sub-blocks t1 and t2 and suppose that

Att =

[
At1t1 At1t2
At2t1 At2t2

]
.

Then by block-elimination, we have

A−1
tt =

[
A−1
t1t1 + A−1

t1t1At1t2S
−1At2t1A

−1
t1t1 −A−1

t1t1At1t2S
−1

−S−1At2t1A
−1
t1t1 S−1

]
,

with the Schur complement S := At2t2 − At2t1A
−1
t1t1At1t2 . Using rounded

addition, multiplication and recursive H-inverse approximations for all the
involved operations, one reaches some point where blocks are small and where
one can use and form the conventional inverses exactly. With the same idea
one can derive an H-LU decomposition.

The following lemma summarizes the computational complexities.

Lemma 5.22. 1. Rounded addition of two H-matrices requires

O(|I| log |I|+ |J | log |J |)

operations.

2. For I = J , rounded multiplication of two H-matrices requires

O(k2 |I| log |I|+ k3 |I|)

operations.

3. For I = J , the H-inverse of an H-matrix can be formed in

O(k2 |I| log |I|+ k3 |I|)

operations.

4. For I = J , the H-LU decomposition of an H-matrix can be computed
in

O(k2 |I| log2 |I|)

operations. Once the decomposition is computed, solving can be done
by forward-backward substitution.
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5.9 The Adaptive Cross Approximation (ACA)

Prescribing a maximal rank and using the Taylor expansion, on could ap-
proximate our BEM matrices by suitable H-matrices. However, (i) an error
control is hard to be achieved, and (ii) we have to write new code for the
integrals due to the Taylor expansion. In this final section we describe an
algorithm where one can reuse existing code and where one has error control.

In order to introduce this technique we formally run the following algo-
rithm for a matrix A ∈ Rm×n.

R0 := A

For ` = 0, 1, . . .

Find a non-zero pivot-element (i`, j`)

R`+1 := R` −
1

[R`]i`j`
(R`)1:m,j` (R`)i`,1:n

Until ?

Here, (R`)1:m,j` denotes the j`-th column and (R`)i`,1:n the i`-th row of R`.

Example 5.23.

R0 =


0.431 0.345 0.582 0.417 0.455
0.491 0.396 0.674 0.449 0.427
0.446 0.358 0.583 0.413 0.441
0.380 0.328 0.557 0.372 0.349
0.412 0.340 0.516 0.375 0.370


i1=1

j1=3
→ 1

0.582


0.582
0.674
0.583
0.557
0.516




0.431
0.354
0.582
0.417
0.455


>

R1 =


0 0 0 0 0

−0.008 −0.014 0 −0.033 −0.100
0.014 0.003 0 −0.004 −0.014
−0.032 −0.011 0 −0.026 −0.087
0.029 0.025 0 0.005 −0.034


i2=2

j2=5
→ 1

−0.1


0

−0.100
−0.014
−0.087
−0.034



−0.008
−0.014

0
−0.033
−0.100


>

R2 =


0 0 0 0 0
0 0 0 0 0

0.016 0.005 0 0.000 0
−0.020 0.001 0 0.002 0
0.032 0.030 0 0.017 0


i3=3

j3=1
→ 1

0.016


0
0

0.016
−0.020
0.032




0.016
0.005

0
0.000

0


>

In the (only illustrative) example we see that we formally subtract a
“cross” build by the row and column we have chosen. Also, the absolute
values of the remaining matrix entries get smaller and smaller.

Suppose that we stop the iteration after k steps, we have

A = Sk +Rk , with Sk =
k∑
`=1

u` v
>
` .
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The matrix Sk (which is naturally provided in outer-product representation)
will be used as an approximation. Obviously, for the computation of Sk we
only need to know some matrix entries on demand, i. e., we can reuse existing
code.

The remaining two questions are how to chose the pivot elements and
when to stop. We will only answer partially them. There exist algorithms to
choose the right pivot elements such that when we use the stopping criterion

|u`| |v`| ≤
ε (1− η)

1 + ε
‖Sk‖F

for a prescribed tolerance ε and the parameter η from the admissibility con-
dition, we get the guaranteed error bound

‖A− Sk‖F ≤ ε ‖A‖F .

The total computational complexity of the approximation is

O(n log n | log ε|2d)

with n = |I| ∼ |J | for building the approximation. The storage amount and
the complexity of the matrix-vector multiplication is

O(n log n | log ε|d) .

The ACA can also used for preconditioning (by choosing ε large, e. g., 0.1).

Software packages:

• Hlib, see www.hlib.org

• AHMED (by Mario Bebendorf)

Further reading: [Bebendorf].
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FEM-BEM Coupling*

For simplicity, we consider the coupling of a three-dimensional interior do-

main Ωint and the corresponding exterior domain Ωext = R3 \Ω
int

with inter-
face Γ, see Figure 6.1, left.

The global equation in distributional form is

find u ∈ H1
E(R3) : −div(α∇u) + c u = f in D∗(R3), (6.1)

where
f ∈ L2(R3), f|Ωext = 0,

and α, c ∈ L∞(R3) fulfilling

α(x) ≥ α0 > 0, c(x) ≥ c0 > 0 ∀x ∈ Ωint a.e.

α|Ωext = αext = const > 0, c|Ωext = 0.

In the above situation, neither the FEM alone is suitable (because R3 is
unbounded), nor the BEM (because α and/or c is non-constant).

Ω
int

n

Ω
ext

Γ

ΩΩ
1 2

Γ
12

Figure 6.1: Left: Ωint, Ωext, interface Γ. Right: Bounded domain Ω splits
into two subdomains Ω1, Ω2.

100
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Problem (6.1) is equivalent to

find u ∈ H1
E(R3) :

∫
R3

α∇u ·∇v+c u v dx =

∫
Ωint

f v dx ∀v ∈ H1
E(R3).

Thanks to the definition of the exterior normal derivative γext
1 , we have that∫

Ωext

αext∇u · ∇v dx = −〈γext
1 u, γ0v〉Γ ∀v ∈ H1

E(Ωext).

Therefore, we can rewrite (6.1) as

find u ∈ H1(Ωint) : (6.2)∫
Ωint

α∇u · ∇v + c u v dx︸ ︷︷ ︸
=: aint(u, v)

−〈t, γint
0 v〉Γ =

∫
Ωint

f v dx ∀v ∈ H1(Ωint),

where t = γext
1 uext is the exterior conormal derivative of uext ∈ H1

E(Ωext),
fulfilling

−αext∆uext = 0 in D∗(Ωext),

γext
0 uext = γint

0 u in H1/2(Γ).
(6.3)

Remark 6.1. 1. The restrictions d = 2 and c0 ≥ 0 were chosen to avoid
certain technicalities, the coupling formulations below, however, can
essentially be used also for the more general differential operator Lu =
−div(α∇u) + c u and also for d = 2.

2. A similar coupling problem is the following. Let Ω be a bounded
(weakly) Lipschitz domain that splits into two disjoint parts Ω1, Ω2

(again Lipschitz) such that

Ω = Ω1 ∪ Ω2

with the interface Γ12 := ∂Ω1 ∩ ∂Ω2, see Fig. 6.1, and with the usual
PDE posed in Ω with suitable boundary conditions. In that case, a
similar formulation to (6.2)–(6.3) can be derived.

6.1 Non-symmetric Coupling

Since (6.3) is an exterior Dirichlet problem, we obtain from Sect. 3.6.4 that
the conormal derivative t ∈ H−1/2(Γ) fulfills

V t = (−1
2
I +K)γint

0 u.
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Rewriting this boundary integral equation in variational form, we obtain
together with (6.2) the mixed variational problem

find (u, t) ∈ H1(Ωint)×H−1/2(Γ) : (6.4)

aint(u, v)− 〈t, γint
0 v〉Γ =

∫
Ωint

f v dx ∀v ∈ H1(Ωint),

〈τ, (1
2
I −K)γint

0 u〉Γ + 〈τ, V t〉Γ = 0 ∀τ ∈ H−1/2(Γ).

Adding up the two equations leads to a non-symmetric bilinear form B :
V × V → R with V := H1(Ωint)×H−1/2(Γ).

Remark 6.2. The following result can be shown (cf. [Steinbach2011]). If
α(x) ≥ α0 >

1
4
αext for almost every x ∈ Ωint, then B is elliptic on V with

respect to the norm (‖u‖2
H1(Ωint) + ‖t‖2

H−1/2(Γ)
)1/2.

Assume that Ω is polyhedral and consider a triangulation Th(Ωint). We
discretize the variable u with FEM using the space

S1
h(Ω

int) := {v ∈ C(Ωint) : v|τ ∈ P1 ∀τ ∈ Th(Ωint)}

of continuous and piecewise linear functions. The volume triangulation Th(Ωint)
naturally induces a surface triangulation Th(Γ) (by restriction). Using the
space

S0
h(Γ) = {w ∈ L2(Γ) : w|τ ∈ P0 ∀τ ∈ Th(Γ)},

we can discretize t.
The Galerkin discretization of (6.4) using the two spaces above reads

find (uh, th) ∈ S1
h(Ω

int)× S0
h(Γ) : (6.5)

aint(uh, vh)−
∫

Γ

th vh ds =

∫
Ωint

f vh dx ∀vh ∈ S1
h(Ω

int),

〈τh, (1
2
I −K)γint

0 uh〉Γ + 〈τh, V th〉 = 0 ∀τh ∈ S0
h(Γ).

Let Ah be the FE stiffness matrix corresponding to aint(·, ·) with respect to
a basis of S1

h(Ω
int) ⊂ H1(Ωint) (e.g., the common hat functions). Then (6.5)

takes the form [
Ah Mh

1
2
Mh −Kh Vh

] [
uh
th

]
=

[
f
h

0

]
. (6.6)

This formulation is often used by engineers.

Remark 6.3. If B above is elliptic (see Remark 6.2), its Galerkin discretiza-
tion (6.8) is uniquely solvable. Stability and convergence follow from Céa’s
lemma and from the error estimates for S1

h(Ω
int) and S0

h(Γ).
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6.2 Symmetric Coupling

In contrast to the previous section, we use the complete Calderón equations
in Ωext: the Cauchy data (γint

0 u, t) fulfill

V t+ (1
2
I −K)γint

0 u = 0,

t = −Dγint
0 u+ (1

2
I −K ′)t.

Substituting the second identity into the term −〈t, γint
0 v〉Γ, we obtain the

following problem.

Find (u, t) ∈ H1(Ωint)×H−1/2(Γ) : (6.7)

aint(u, v) + 〈Dγint
0 u, γint

0 v〉Γ − 〈(1
2
I −K ′)t, γint

0 v〉Γ =

∫
Ωint

f v dx

〈τ, (1
2
I −K)γint

0 u〉Γ + 〈τ, V t〉Γ = 0

∀v ∈ H1(Ωint) ∀τ ∈ H−1/2(Γ).

When multiplying the second equation by −1, the corresponding bilinear
form becomes symmetric.

Exercise 28. Show that S((u, t), (v, τ)) =
∫

Ωint α∇u · ∇v + c u v dx +
〈Dγint

0 u, γint
0 v〉Γ − 〈(1

2
I −K ′)t, γint

0 v〉Γ + 〈τ, (1
2
I −K)γint

0 u〉Γ + 〈τ, V t〉Γ is a
bounded and elliptic bilinear form on V with respect to the norm (‖u‖2

H1(Ω) +

‖t‖2
H−1/2(Γ)

)1/2.

Using the analogous discretization as in Sect. 6.1, we obtain a linear
system of the form[

Ah +Dh −1
2
M>

h +K>h
1
2
Mh −Kh Vh

] [
uh
th

]
=

[
f
h

0

]
. (6.8)

Multiplying the last line by −1 yields a symmetric (indefinite) system matrix.
As in the previous section, convergence follows from Céa’s lemma and the
approximation estimates for S1

h(Ω
int) and S0

h(Γ).
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