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1.1 Real Interpolation of Sobolev Spaces

1.1.1 Definitions

Definition 1. Sobolev spaces for k € Ny are defined as follows,

Wy (Q) = {u € L"(Q) : [Jullwg (o) < oo}

P
where D*u is the weak partial derivative.
1/p

lullwe o) = Z ID%ull7 o

lo| <k

denotes the standard norm in Wlﬂ“ () and 2 C R™ is a bounded Lipschitz do-
main. Interpolation spaces provide a concept of fractional-order derivatives,
extending the definition of Sobolev spaces. We choose one definition of inter-
polation spaces to motivate the following definition of fractional order Sobolev
spaces;

Definition 2. Sobolev-Slobodecki Spaces (s € (0,1), k € Ny)
W;”S(Q) ={ue W;f(Q) : ||u||W§+5(Q) < oo},

where

|Du(x) — Du(y)l”
bl gy = Nl ey + D / / |xi e dady.

lee| =k



We are concerned with the case p = 2 and will use interchangeably W]f (©) and
H*(Q) i.e W (Q) = H*(Q). For the case k = 0, then H(Q) = Ly(€2).

Definition 3. E : W;7(Q2) — W (R") is an extension operator if E is linear,
bounded and satisfies the condition,

Bulg =u for ue W; (). [2]

In the proof of the following theorem we will make use of the equivalence of
norms of interpolated spaces for 2 = R", a result that will be proved later on.

Theorem 4. Let 0 < s < 1. If Q has a Lipschitz boundary, then
k+s _ ik k-+1
Wp (Q) - [Wp (Q)’ Wp (Q)]S,P
and the norms are equivalent.
Proof. We assume that the proposition is valid for 2 = R™. That is:
k+s ny __ k n k+1 n
Wp (R ) - [Wp (R )7Wp (R )]571)

If Q is Lipschitz, 1 < p < oo, then we have an extension operator Ey, : W]f Q) —
W} (R™) defined for W} () and is also an extension operator on Wr+1(€) [2].
Interpolating this operator we have,

Hu||W§+S(Q) = ||Eku||wg+°‘(sz)

| Exull wh+s(gny> Sobolev-Slobodecki spaces

IN N

CHEku”[WI’f (R, WETL (R, by equivalence of norms

IN

C’Hu||[W;(Q)J/‘,ﬁl(Q)]W7 by exact interpolation

Conversely, there exists an extension operator, Eg : Wf*S(Q) — WZ’f*S(R”)
such that Egulg = u, Q a Lipschitz domain.
We then have,

1l oy witi)., = 1Eeulwrq) witi@.,

IN

| Ecul| Wk ®R), Wyt (R,

IN

C||EG“||W§+S(R")7 by equivalence of norms

IN

Cluullyyrs -

As such, the Sobolev-Slobodecki norm is equivalent to the real interpolation
norm when € is Lipschitz.
O



1.2 Equivalence for () = R"

In this section we would like to prove!
Wy o (RY) 2 Wy (R™), Wyt (R (L.1)

which was our assumption in the proof of Theorem 4.
For simplicity we will prove, that (1.1) is valid for p = 2 and k = 0, i.e.

H*(R™) = [H°(R"), H'(R™)], . (1.2)
To prove (1.2) we will introduce a new space Hi(R™) and show that:

H*(R") = Hi(R") = [Hp(R"), Hp(R")]s = [H°(R") , H' (R")]; .

1.2.1 The Space H;.(R")

In this subsection we will introduce the new space H3(R™). To do this we recall
the definition of the Fourier transform in R™ and its basic properties.

Definition 5 (Fourier transformation). Let u € L?(R") . The Fourier-transform
@ of u is defined by the formula:

1

(&) = W /n e y(z)dx, VEER™. (1.3)

The Fourier transformation has the following properties [3]:

e Isomorphism in L?(R"):
[ @ az = [ Jaor de.

Deu(€) = (i€)a(€) .

(e = w0)(€) = 7" a(x)(§) .-
Now we are in the position to define the new space Hi(R™).
Definition 6.
Hp(R") = {u e L2R") : lullmy@e) < o0} |
where

lullng ooy = [ (1162 laco) dg)é . (14)

1We introduced the new symbol 2 which means that the sets are the same and the norms
are equivalent.




To show that H3(R™) is equivalent to H*(R™) we will use the following lemma
and properties of the Fourier transform mentioned above.

Lemma 7. Let 0 < s < 1. The integral

oo
a ::/ tfzsfl/
0 |w|=1

does not depend on £ and is finite, that is 0 < as < co.

e

2
“—1‘ dwdt, (1.5)

Proof. In order to prove this lemma, we have to introduce spherical coordinates.
For simplicity, we consider the two-dimensional case n = 2. We split the integral
into two integrals:

s 2
/ t—QS—l/ "*’—1‘ dwdt
0 |w|=1
1 se 2 [e)
:/ t*%*l/ eZT""fll dwdt+/ t*25*1/
0 |w|=1 1 jw]=1

The second integral is finite because:

.t
Tel

e

. 2
it _ 1‘ dwdt.

(1.6)

;i te
'Tel

e

|

2
‘<4

and therefore:

)
/ t—QS—l/
1 |w|=1

for s > 0.
Let consider the first integral from 0 to 1. The inner integral can be written

as:
it w o 2 _ ﬁ . — Sl E .
/|w_1 e'Te 1‘ dw_/|u|_1 cos<€| w) 1+zsm<£| w)
:/ 2 — 2cos (tgw) dw (1.7)
wl=1 I3

Now, we will use the estimate

;L€ 2 >
STEY 1’ dwdt < / t~2718rdt < o0,
1

2
dw =

x
costl—?, for0<z<1. (1.8)
We can do this because the argument in cosine in our case is smaller than 1:

t t
é.wsmmwswgl.

After substituting (1.8) into (1.7) we get



e\ ) <£-w>2
dw dw = S *
/WQ 2‘m<|| > S/WHQ “(m > . t/w_l G

Using polar substitution:

2 5w>2 (51 & >2d
t/w1<|£ t/o e g ne) e

Also we know that there exists some angle 6 such that ‘% cos 6 and ‘ =gsinf
and therefore:
2m § 2 o i .
t2/ <|§| CoSp + T= |£| blngo) d‘P:t2/ (COS@COSQO—FSin@Sin(p) de = / COSQ(QO—@)dQO:t2W
0 0 |

We get the estimate for the inner integral:

/w_l
Follows that:

1
/ t_2s_1/
0 |w|=1
for s < 1.

In conclusion the whole integral (1.5) is finite for 0 < s < 1.
The independence of ¢ follows from rotation invariance of expression in the inner
integral. O

it o

2
e Tel —1‘ dw < ?r7

1
¢
eT”—l‘ dwdt<7r/ t=2T 1 dt < 00,
0

Theorem 8.
Hj(R™) =2 H*(R™), Vs € [0, 1].

Proof. Let us consider the cases s =0, s =1, and s € (0, 1) separately:

e s=0:
lull o = llallz2 = ||ullr2 .



lully = [ to@Fa+ [ e {616 o

:/" da:—i—/ Z|Z§]‘ a(g)
:/n d:1:+2/ (i) a($)|* de

lee|=1

:/" dx+|az:1/ d§
— [ i@l e+ [ 0mu@ ag = fulfs
lal=1

o 0 < s < 1: After substituting y =  + h we get, from Definition 2:

lll :/R dx—i—/n/n xﬁhﬁn;su( E g an
:/n| )| d“/nlhl"ﬁ/mn‘ u(z 4+ h) —u(z)|*dzdh
= [aor g+ [ o [ i+ 1)@ — @) )P acan

ihé _q 2
= [ weracs [aor [ S ane )

R

Now we take the inner integral in the last term of (1.9) and use generalized
polar substitution h = pw, p = |h|, w = TZI’ dh = p"~tdpdw, so that:

/ |eih'§— 1|2dh /oo 71725/ | ipw-§ 1|2d d¢
L — = e — w
o |hft2e 0 ’ w|=1
2 1
- 1‘ dw— dt

— >~ t—1—2$ 1+2s = a, 2s , 1.10
e [ gt = el (10

by using the substitution p = t/|¢|, dp = 1/|¢|dt and Lemma 7.
Now after plugging (1.10) into (1.9):

L
e'Ter v

|7 :/]R (14 aslé]*) [a(©)[* A& ~ |lullfr, (1.11)
because there exists constants C; and Cy such that
Cr(1+1€)° <1+ ayle < Ca(1 + [€P)". (112)

These constants exist because both expressions in (1.12) have the same
limit in oco.

O



1.2.2 Equivalence Theorem

In this subsection we will prove the equivalence of the spaces H*(R™) and
[HO(R™), HY(R™)]s. In fact, we will prove the equivalence of the spaces H$(R™)
and [H%(R"™), HL(R")];. But according to Theorem 8 we know that the spaces
H*(R") and Hi(R™) are equivalent for s € [0,1]. From this follows also
[HO.(R™), H(RV)], = [HOR™), H(R™)),.

For the proof we will need the following two lemmas.

Lemma 9. For fixed real numbers Ay, A; > 0, and for a complex number z

. 2 2 ApAy 2
min (Agl|z0|” + A1 |21]7) = ——— |2
min (Ao faol® + A1 1) = 208 o
and that minimum is achieved when Agzg = A121 = A’?)OJFAAI z.

Proof. Let zg, 21 be arbitrary complex numbers such that z = zg + 2z1. Let

0=z +1y. (1.13)
Then
z1=Rz—2z)+i(Sz—vy). (1.14)
Our task is to find minimum of the function f of two variables z,y:
fla,y) = Ao(2® +9%) + A1 (Rz —2)* + (Sz —y)?) . (1.15)
We compute the partial derivative of f and set it equal to zero:
0
5)% =2Apx —2A;(Rz—2) =0
0
aﬁi = 2A0y - 2A1(SZ — y) =0.
This system of linear equations has following solution:
Ay Al
= = . 1.1
x A0A1§Rz, Y AOAl\sz (1.16)
In order to be sure that for these values the function is minimum, we compute
Hessian matrix of f:
2 _ 2A0 + 2A1 0
Vf—( 0 240+24;)°

Given that Ay and A; are positive, this Hessian matrix is positive definite and
therefore we can conclude that for the values in (1.16), we have a minimum. To
compute the minimal value of f we substitute (1.16) into (1.15):

A% 2 A% A\ 2
Jmin(2,y) = Ao (MO_FAI)Q(%Z) + m(\fz) )
A2 2 A2 )2
+ Aq ((Ao +0A1)2 (R2)” + 4(A0 +0A1)2 (S2) >

_ ApAi(Ap + A4y) Ao Ay

o Ty (R 4 (32)%) = P02



If we also substitute (1.16) into (1.13) and (1.14) we obtain:

Ay Ao
0= ———"77"2, 2=——T"7T7%,
T A+ AT T Ao+ Ay
i.e. that zg and z; satisfy the relationships given in the statement of the lemma.
O
Lemma 10. The integral
e e} tl—QS
[
o 1+t
is finite for s € (0, 1).
Proof.
o] t1—25 1 tl—Qs [e s} tl—QS
——dt = dt —dt
/0 1412 /0 1+ 1¢2 +/1 1+ ¢2
1 oo 11—-2s
t 1 1
< [ #1725 qd¢ dt = — <0,
- /0 +_/1 t2 2—2s + 25 ~
for 0 < s < 1. O

Remark 11. Using contour integration we can evaluate the value of the previous

integral:
00 tl*QS T
dt = . s€(0,1).
/0 1+¢2 2sin(7s) s€(0,1)

Theorem 12.
H*(R™) = [HO(R™), H'(R™)],, Vs € (0, 1).

Proof. According to the discussion at the beginning of this subsection, we will
use the Fourier norm || - || gz . Recall the definition of K-functional:

K2(t;u) = inf{||ug |30 + t2[Jur |31 : = ug + ug,uo € H®,uy € H'}.

and the norm of the interpolation space

s 2 dt
lulfe. = [ oK - (117
Let u = up + u1, ug € H%, u; € H'. Then
luollFo + ¢ [lur |32 :/ L Jao(§)* + 21+ [€]?) laa (§)[2dg. (1.18)
Rn\Af’ \—A,_/
0 1

Since we have 4(€) = 6o (€)+11(§), according to Lemma 9 the integrand in (1.18)
is minimal V¢ when ug and uy are such that:

0(€) = 21+ €P)in (6) = —— L F1ED)

Ty e En



it follows that,

2y = [ EOFIER) e
Ks) = | e de. (119
Now we can continue from (1.17):
2 _ [T —2s (1 +1¢%) 2., dt
fulfes = [ ekt = [T [ A @ P
e [ e _EAHEP)
- [ 1ato) /O e T e, (1.20)

The inner integral can be adjusted by substituting z = ¢(1 + [¢[*)2, dz =
(1+1£/?)2 dt to have the form in Lemma 10:

0 2 2 oS 2
/0 t_25_1t(1+|§|))dt:/0 ~2s-1(y + el )z<+1 dz

L+ 2(1+ €2 1422 (1+[¢2)2
[e%} Z—Zs+1
=(1+ |§|2)3/0 e (1.21)
—
After substituting (1.21) in (1.20) we get:
Julfes = C [ TP +1€R)*dé = Cllulfy -
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