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Preconditioning
[ 1}

Existence and uniqueness of a variational problem

We consider the variational problem:

Find u € H}() such that
a(u,p) = (f.p) Ve Hy(Q) = Vo (1)
for a given f € (H}(Q))* = H71(Q).
In the following, we assume that the bilinear form
a(,-): Vox Vo —R

is symmetric, Vj-elliptic and Vy-bounded, which guarantees the
existence of a unique solution of the variational problem
(Lax-Milgram theorem).



Preconditioning
oe

Galerkin approximation

Let M, C H}(Q) be a finite dimensional subspace. Then we have
the Galerkin scheme:

Find uy € M, such that
a(un, on) = (f,on) Von € My =: M.
Let {cp;}i:m be a basis for M. Inserting the representation

Up = Z uipi

into the equation above leads to

Z“ia(%,(ﬂj) = (f,p)), Jj=1,dmM,
éﬂh = fy.
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Spectral condition number and preconditioning

Due to our assumptions on the bilinear form a(-, -), our matrix A
is symmetric positive definite and we get the following (basis
dependent) condition number by choosing a nodal FE-basis:

)\max A
K(A,) = condy(A,) = )\((Ah)) = 0(h™).
min h

Other approach: Define the symmetric positive definite (SPD)
operator Ay, : M, — M} by

(Antn, on)1,(Q) = alun, on)  Yun, on € My
and the (basis independent) operator condition number is

R(Ah) . )\max(Ah)

- )\min(Ah) - O(h_ )
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What is a preconditioner?

Let B, ' : M} — M}, be another SPD operator.
A “good preconditioner” should have the following properties:

@ the action of B;l on M} is “cheap”

@ the condition number x(B, 1 Ap) << K(Ap)
Two extreme cases:

° Bh_l = I, - cheap but property 2 is not valid

o B;' = A1 - we have (B, 'A;) = k(lp) = 1 but not cheap
New notation: A, = A, B, =B

Proposition

Suppose there exist constants ci, co; > 0 with

a(Bv,v) < (Av,v) < o(Bv,v) VveM. (2)

Then k(B71A) < /a1
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Multilevel setting

Splitting © in a multilevel fashion:

derive Tk1 by deviding each triangle (A) in 7k into 4 congruent
triangles (called dyadic decomposition)

for each 7k we define hk := maxacr, diamA
=M CMyC..CMgC---CHYQ)=:V

properties of M:
e My consists of CO, piecewise linear functions on 7y

@ My is a finite dimensional, linear space, and any formulation
defined on V is also well-defined on M
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L,-projections

Let us define Ly-projections Qk : La(Q2) — My by the identity
(Qru,p) = (u,0) Vo € Mk Vu € L(), (3)
and additionally, it should be valid
(Qru,p) =(u,p) Vo e My Yue V",

where we have the notation:
[-1=1lo= 1"z () =()o=(")ra(0)-



Jackson’s (approximation) inequalities

Jackson's (approximation) inequalities

Lemma (Jackson's inequalities)

O [I(/ — Qu)ull < chllullpeqy  Vu € HA(Q)
@ (1 — Qu)ull < 1-u] Vu € Lo(Q)
O [I(/ — Qu)ull < ShZlull ey Vi € H*(Q)

with H25(Q) = [La(Q), HA(Q)]s, 0 < s < 1.

Proof
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Definitions and Remarks

Let 0 < h < hg be a fixed parameter and 7, be a family of
triangulations of €:

h  max;er, hr

U(h) :

=—-=— = uniformity number,
h miNrcr, hs

where h; is the edge length of a triangle and hs is the sphere
diameter of the incircle of a triangle.

Definition

The family 74 is called quasi-uniform if

U(h) < const Yh:0< h< hg.

Remark: We have a mapping to a reference element (unit triangle).
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Statement

Again: My C M C ... C Mg C--- C HY(Q) =: V
is a quasi-uniform family of nested dyadic refinements.

We will show:

My C H*(Q) for0§sgfy<g, (4)

where HO(Q) = L»(Q), HY(Q), H3(Q) = [L2(R), H}(Q)]s for
s € (0,1) and H3(Q) = [L2(2), H*(Q)]52 for s € (0,2) with

VI = Ivide() = IVIE + > ID*VII3
la|=1

withs =1+ 8,0 < 8 <1, but Mk ¢ H3(Q), i.e.
My C H%_E(Q) for any small € > 0.
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Convexity inequality

Theorem (Logarithmic convexity inequality)

Ills = IVl ps@ymtia i, < s2lVIB#IVIE v € H(Q)

' 1
with Cs2 = “E;Eijjgi.

The inequality follows from a more general result.
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Convexity inequality

Theorem (Convexity inequality in general)
For Xo C X C Xy with X = [Xo, X]s ik we have

ulls, VueXx? (5)

lullx < cspllull

with

1 1
C :{[ps(l—S)]/p 1< p<oo
S,p
1 , P = Q.
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Convexity inequality - Proof (I)

Prooffor‘0<s<1,1§p<oo‘:

P
||U||X |[X0 Xils.pik

= t PP KP(t; u)it
dt &0 dt
= t P KP(t; u) n +/ t PPKP(t; u)— .

IN

dt * dt

/ el G [ el
“ o0

/ e taeulf, + [ e el
[e%

a?=9)] —a™”|

ullx, + ullx,

p(l —s)
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Convexity inequality - Proof (Il)

Choose « such that
1— _
P uf = a P ullg,.

Hence, a = % Inserting « into the inequality before leads to
1

L (Nl P lullx
ol <o () Ml () el
=59 el 5 s Ul ) 10

1 1—- p(1—
—WHUW’XE Nl + Nl ul%
1-
= lullge el

ps(1—s)

1

- HUHX < (ps(il B ) HUH 5HuH§<1 Yu e X]_. [ |
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Bernstein’s (inverse) inequalities

Lemma (Bernstein's inequalities)

There exists a constant cs > 0 such that

[vlls < eshilivilo Vv e Mk (6)

for0§s§'y<%.

Proof
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Summarizing

@ Jackson's (approximation) inequalities
I(F = Qi)ullo < Shigllullas  Vu € H*(Q)

and 0<s<1

@ Bernstein's (inverse) inequalities
[vls < eshillvilo Vv € Mk

and0§s§’y<%
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Exercise

Let Q = (0,1), v(x) is given by

[0 xe€(0,4]
V(X){ 1 xE(%j).

Show: v & H2(0,1), but v € H25(0,1).
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