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Abstract. The topic of this report is taken from our presentations in the
seminar Interpolation Spaces and Applications in Numerical Analysis at the

Institute of Computational Mathematics, JKU Linz. The report deals with
preconditioning, Jackson’s and Bernstein’s inequalities in Sobolev-Slobodecki

spaces and multilevel representation of the Hs-norm. The subject matter is

taken from lectures of Bramble. Moreover, the reader is referred to have a look
at [2] and [4] for more details.

1. Preconditioning

1.1. Existence and uniqueness of a variational problem. We consider the
variational problem: Find u ∈ H1

0 (Ω) such that

(1) a(u, ϕ) = 〈f, ϕ〉 ∀ϕ ∈ H1
0 (Ω) =: V0

for a given f ∈ (H1
0 (Ω))∗ = H−1(Ω). In the following, we assume that the bilinear

form

a(·, ·) : V0 × V0 → R

is symmetric, V0-elliptic and V0-bounded, which guarantees the existence of a unique
solution of the variational problem (by the Lax-Milgram theorem).

1.2. Galerkin approximation. Let Mh ⊂ H1
0 (Ω) be a finite dimensional sub-

space. Then we have the following Galerkin scheme: Find uh ∈Mh such that

a(uh, ϕh) = 〈f, ϕh〉 ∀ϕh ∈Mh =: M.

Let {ϕi}i=1,dimMh
be a basis for Mh. Inserting the representation

uh =
dimMh∑
i=1

uiϕi

into the equation above leads to
dimMh∑
i=1

uia(ϕi, ϕj) = 〈f, ϕj〉, j = 1,dimMh

A
h
uh = f

h
,

where A
h

has the entries a(ϕi, ϕj), uh the entries ui and f
h

the entries 〈f, ϕj〉.

1.3. Spectral condition number and preconditioning. Due to our assump-
tions on the bilinear form a(·, ·), our matrix A

h
is symmetric positive definite and we

get the following (basis dependent) condition number by choosing a nodal FE-basis:

κ(A
h
) = cond2(A

h
) =

λmax(A
h
)

λmin(A
h
)

= O(h−2).
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Other approach: Define the symmetric positive definite (SPD) operator Ah : Mh →
M∗h by

(Ahuh, ϕh)L2(Ω) = a(uh, ϕh) ∀uh, ϕh ∈Mh

and the (basis independent) operator condition number is

κ(Ah) =
λmax(Ah)
λmin(Ah)

= O(h−2).

1.4. Properties of a preconditioner. Let B−1
h : M∗h → Mh be another SPD

operator. A “good preconditioner” should have the following properties:
• the action of B−1

h on M∗h is “cheap”
• the condition number κ(B−1

h Ah) << κ(Ah)
Two extreme cases:

• B−1
h = Ih - cheap, but the second property is not valid

• B−1
h = A−1

h - we have that κ(B−1
h Ah) = κ(Ih) = 1, but that’s not cheap

In the following, we will use the notation: Ah = A,Bh = B.

Proposition 1. Suppose there exist constants c1, c2 > 0 with

(2) c1(Bv, v) ≤ (Av, v) ≤ c2(Bv, v) ∀v ∈M.

Then κ(B−1A) ≤ c2/c1.

2. Preliminaries

2.1. Geometry and Mesh. Bounded domain Ω ⊂ Rd (here d = 2)
Family of meshes {Tk}k∈N with meshsize hk
• Triangulation with triangles
• global quasi uniform (i.e maxk hk

mink hk
≤ c)

• nested dyadic refinement

(3) c12−k ≤ hk ≤ c22−k

Familiy of nested finite element spaces {Mk}k∈N

M1 ⊂M2 ⊂M3 ⊂ . . . ⊂Mk ⊂ . . . ⊂ H1(Ω) =: V

where each space Mk corresponds to S1
hk

(set of continuous, piecewise linear func-
tions).

3. Jackson’s and Bernstein’s inequalities in Sobolev-Slobodecki
spaces

Let {Qk}k∈N be a family of L2-projections, where Qk : L2(Ω) → Mk and Qk is
defined by

(4) (Qku, ϕk)0 = (u, ϕk)0, ∀ϕk ∈Mk, ∀u ∈ L2(Ω).

Additionally, it should be valid

(Qku, ϕk)0 = 〈u, ϕk〉, ∀ϕk ∈Mk, ∀u ∈ V ∗,

where we have the notation ‖ · ‖0 = ‖ · ‖L2(Ω) and (·, ·)0 = (·, ·)L2(Ω).

Lemma 1. For the sequence {Qi}i∈N of L2-projection operators we have the fol-
lowing properties:

(1) Qku ∈Mk

(2) QkQj = QjQk = Qmin{k,j}
(3) ‖Qk‖ = 1
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Proof. We have to distinguish three cases: For uj ∈ Mj , we have Qjvj = vj ∈ Mj

and therefore QjQjv = Qjv for all v ∈ L2(Ω). In the case j < k we have Mj ⊂Mk.
Then Qjv ∈Mj ⊂Mk and QkQjv = Qjv. In the case j < k we have

(Qkv, vj)0 = (v, vj)0, ∀vj ∈Mj

and therefore

(QkQjv, vk)0 = (Qjv, vk)0 = (v, vk)0 = (Qkv, vk)0, ∀vk ∈Mk ⊂Mj .

The last property follows from

‖Qku‖0 = ‖Q2
ku‖0 ≤ ‖Qk‖‖Qku‖0.

�

Lemma 2 (Jackson’s (approximation) inequalities). We have
(1) ‖(I −Qk)u‖0 ≤ ch2

k‖u‖2, ∀u ∈ H2(Ω)
(2) ‖(I −Qk)u‖0 ≤ 1 · ‖u‖0, ∀u ∈ L2(Ω)
(3) ‖(I −Qk)u‖0 ≤ csh2s

k ‖u‖2s, ∀u ∈ H2s(Ω)
with H2s(Ω) = [L2(Ω), H2(Ω)]s, 0 < s < 1.

Proof. (1): We have

‖(I −Qk)u‖20 = ((I −Qk)u, (I −Qk)u)0 = ((I −Qk)u, u−Qku)0

= ((I −Qk)u, u− ϕk)0 ≤ ‖(I −Qk)u‖0‖u− ϕk‖0
for all ϕk ∈Mk, where we have used (4). Hence

‖(I −Qk)u‖0 ≤ inf
ϕk∈Mk

‖u− ϕk‖0.

With ϕk being the interpolant of u, we obtain

inf
ϕk∈Mk

‖u− ϕk‖0 ≤ ch2
k‖u‖2

for all u ∈ H2(Ω), which proves statement (1).
(2): By (1) and taking ϕk = 0 ∈Mk, we get

‖(I −Qk)u‖0 ≤ inf
ϕk∈Mk

‖u− ϕk‖0 ≤ ‖u− 0‖0 = 1 · ‖u‖0

for all u ∈ L2(Ω).
(3): By applying the space interpolation theorem (for more details, see [1]) with
(1) and (2), we obtain

‖(I −Qk)u‖0 ≤ 11−s(ch2
k)s‖u‖2s = csh2s

k ‖u‖2s
for all u ∈ H2s(Ω).
Altogether, we have proven

‖(I −Qk)u‖0 ≤ csh2s
k ‖u‖2s

for all u ∈ H2s(Ω) with 0 ≤ s ≤ 1. �

As next, we want to prove Bernstein’s inequalities. For that, we need an impor-
tant tool: the convexity inequality.

Lemma 3 (Convexity inequality). For X0 ⊂ X ⊂ X1 with X = [X0, X1]s,p;K we
have

‖u‖X ≤ cs,p‖u‖1−sX0
‖u‖sX1

, ∀u ∈ X1

with

cs,p =


(

1
ps(1−s)

) 1
p

, 1 ≤ p <∞
1 , p =∞.



4 MICHAEL KOLMBAUER, MONIKA KOWALSKA

Proof. Proof for 0 < s < 1, 1 ≤ p <∞:

‖u‖pX = ‖u‖p[X0,X1]s,p;K

=
∫ ∞

0

t−psKp(t;u)
dt

t

=
∫ α

0

t−psKp(t;u)
dt

t
+
∫ ∞
α

t−psKp(t;u)
dt

t

≤
∫ α

0

t−pstp‖u‖pX1

dt

t
+
∫ ∞
α

t−ps‖u‖pX0

dt

t

=
∫ α

0

t−ps+p−1dt‖u‖pX1
+
∫ ∞
α

t−ps−1dt‖u‖pX0

=
1

p(1− s)
αp(1−s)‖u‖pX1

+
1
ps
α−ps‖u‖pX0

Choose α such that
αp(1−s)‖u‖pX1

= α−ps‖u‖pX0
.

Hence, α = ‖u‖X0
‖u‖X1

. Inserting α into the inequality before leads to

‖u‖pX ≤ 1
p(1− s)

(
‖u‖X0

‖u‖X1

)p(1−s)
‖u‖pX1

+
1
ps

(
‖u‖X0

‖u‖X1

)−ps
‖u‖pX0

=
1

p(1− s)
‖u‖p(1−s)X0

‖u‖psX1
+

1
ps
‖u‖p(1−s)X0

‖u‖psX1

=
1

ps(1− s)
‖u‖p(1−s)X0

‖u‖psX1
.

=⇒ ‖u‖X ≤
(

1
ps(1−s)

) 1
p ‖u‖1−sX0

‖u‖sX1
∀u ∈ X1.

The proof for p =∞ is analogous and is left to the reader. �

For proving Bernstein’s inequalities, we need the logarithmic convexity inequality
with X0 = L2(Ω) and X1 = H1(Ω), i.e.

Lemma 4 (Logarithmic convexity inequality).

‖u‖s ≤ cs,2‖u‖1−s0 ‖u‖s1, ∀u ∈ H1(Ω)

with cs,2 = 1√
2s(1−s)

.

Here, Hs(Ω) = [L2(Ω), H1(Ω)]s and

‖u‖2s = ‖u‖2Hs(Ω) := ‖u‖21 +
∑
|α|=1

‖Dαu‖2β ,

where s = 1 + β and 0 < β < 1
2 . Now, we can prove Bernstein’s inequalities.

Lemma 5 (Bernstein’s (inverse) inequalities). There exists a constant c > 0 such
that

‖u‖s ≤ ch−sk ‖u‖0, ∀u ∈Mk

for 0 ≤ s < 3
2 .

Proof. Case 1: 0 ≤ s ≤ 1:
For s = 1, we use a statement from the lectures of Numerical Methods for Elliptic
Partial Differential Equations, i.e.

‖u‖1 ≤ ch−1
k ‖u‖0, ∀u ∈Mk.
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Together with the logarithmic convexity inequality from Lemma 4, we obtain

‖u‖s ≤ cs,2‖u‖1−s0 ‖u‖s1
≤ cs,2‖u‖1−s0 (ch−1

k ‖u‖0)s

≤ cs,2csh−sk ‖u‖
1−s
0 ‖u‖s0

= ch−sk ‖u‖0

with a constant c > 0.
Case 2: 1 ≤ s < 1 + β with 0 < β < 1

2 :
It is to show that we have for all piecewise constant functions over each triangle in
Tk:

‖w‖β ≤ ch−βk ‖w‖0.

The norm is defined by

‖w‖β =
∫ ∞

0

t−2β−1K2(t;w)dt

with

K2(t;w) = inf
v∈H1(Ω)

(‖w − v‖20 + t2‖v‖21)

(for more information, see Seminar 01 and Seminar 02). Now, we have to consider
the two limit cases, i.e. t around zero and t around infinity. For that, we split the
integral into two integrals.
(a) t around infinity:

∫ ∞
hk

t−2β−1K2(t;w)dt =
∫ ∞
hk

t−2β−1 inf
v∈H1(Ω)

(‖w − v‖20 + t2‖v‖21)dt

≤
∫ ∞
hk

t−2β−1‖w‖20dt

by choosing v = 0 in the last step. Hence,∫ ∞
hk

t−2β−1K2(t;w)dt ≤
∫ ∞
hk

t−2β−1dt‖w‖20 =
1

2β
h−2β
k ‖w‖20.

So,
∫∞
hk
t−2β−1K2(t;w)dt ≤ ch−2β

k ‖w‖20.
(b) t around zero:
We have a look at the integral∫ hk

0

t−2β−1K2(t;w)dt.

The aim is to find a proper v ∈ H1(Ω) such that K2(t;w) is around 0, for t around
0. For that, we take a fixed triangle τi and define, for t ≤ hk, a smooth function φi
on Ω as follows:

φi(x) =
{

0 , x ∈ τi
1 , dist(x, ∂τi) ≥ t.

Then, |∇φi| ≤ ct−1 with a constant c > 0. We take

v =
∑
i

φiw,
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where w is piecewise constant and v ∈ H1. Then, we have

‖w − v‖2L2(τi)
=
∫
τi

|w − v|2dx =
∫
τi

|w − φiw|2dx

≤
∫
τi

|1− φi|2|w|2dx ≤
∫
τi

1dx‖w‖2L∞(τi)

= |τi|‖w‖2L∞(τi)
≤ chkt‖w‖2L∞(τi)

and

‖v‖2H1(τi)
= ‖v‖2L2(τi)

+ ‖∇v‖2L2(τi)

= ‖φiw‖2L2(τi)
+ ‖∇φiw‖2L2(τi)

≤ 1 · ‖w‖2L2(τi)
+
∫
τi

ct−2dx‖w‖2L∞(τi)

≤ ‖w‖2L2(τi)
+ chkt

−1‖w‖2L∞(τi)
.

So, we have

K2(t;w) = inf
v∈H1(Ω)

(‖w − v‖20 + t2‖v‖21)

≤
∑
i

(‖w − v‖2L2(τi)
+ t2‖v‖2H1(τi)

)

for our choice v =
∑
i φiw, and therefore

K2(t;w) ≤
∑
i

chkt‖w‖2L∞(τi)
+ t2

∑
i

(‖w‖2L2(τi)
+ chkt

−1‖w‖2L∞(τi)
)

=
∑
i

ch−1
k h2

kt‖w‖2L∞(τi)
+ t2

∑
i

(‖w‖2L2(τi)
+ ch−1

k h2
kt
−1‖w‖2L∞(τi)

)

≤ ch−1
k t‖w‖2L2(Ω) + t2(‖w‖2L2(Ω) + ch−1

k t−1‖w‖2L2(Ω))

= ch−1
k t‖w‖2L2(Ω) + t2‖w‖2L2(Ω) + ch−1

k t‖w‖2L2(Ω)

≤ ch−1
k t‖w‖2L2(Ω) + h−1

k t‖w‖2L2(Ω) + ch−1
k t‖w‖2L2(Ω)

because t ≤ hk and hk < 1 < h−1
k . So, t2 ≤ hkt ≤ h−1

k t. Altogether, we obtain

K2(t;w) ≤ ch−1
k t‖w‖2L2(Ω)

and ∫ hk

0

t−2β−1K2(t;w)dt ≤
∫ hk

0

t−2β−1ch−1
k t‖w‖20dt

= ch−1
k

∫ hk

0

t−2βdt‖w‖20

= ch−1
k

1
1− 2β

hk
1−2β‖w‖20

and so ∫ hk

0

t−2β−1K2(t;w)dt ≤ chk−2β‖w‖20.

Now, we put the two integrals from (a) and (b) together and get∫ ∞
hk

t−2β−1K2(t;w)dt+
∫ hk

0

t−2β−1K2(t;w)dt ≤ ch−2β
k ‖w‖20

and finally,
‖w‖β ≤ chβk‖w‖0,
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with a constant c > 0 for all piecewise constant functions w. This proves our
statement of case 2 and hence, together with case 1, we have proven the whole
lemma. �

Remark 1. Altogether, we have that

Mk ⊂ H3/2−ε(Ω)

for any small ε > 0, but Mk 6⊂ H
3
2 (Ω).

4. Multilevel representation of the Hs-norm and precontioning

We introduce another family of L2 projectors, that turn out to be more suited
since they impose an orthogonal splitting of the space L2(Ω).

Definition 1.
D1 := Q1

Dk := Qk −Qk−1, k = 2, 3, . . .

Lemma 6. For the sequence {Dk}k∈N of L2 projection operators we have the fol-
lowing properties:

(1) Dku ∈Mk

(2) DkDj = 0 for k 6= j (orthogonality property).
(3) DkDk = Dk (projection property).
(4) Dk is self-adjoint in L2(Ω), i.e (Dku, v)0 = (Dkv, u)0.

Proof. Since Qku ∈Mk and Qk−1u ∈Mk−1 ⊂Mk we have Dku = Qku−Qk−1u ∈
Mk. The projection property follows from

D2
k = (Qk −Qk−1)2 = Q2

k −Qk−1Qk −QkQk−1 +Q2
k−1

= Qk −Qk−1 −Qk−1 +Qk−1 = Qk −Qk−1 = Dk.

Next without loss of generality we assume k > j.

DkDj = (Qk −Qk−1)(Qj −Qj−1) = QkQj −Qk−1Qj −QkQj−1 +Qk−1Qj−1

= Qj −Qj −Qj−1 +Qj−1 = 0

Finally we have

(Dku, v)0 = (Qku, v)0 − (Qk−1u, v)0 = (Qkv, u)0 − (Qk−1v, u)0 = (Dkv, u)0.

�

Hence we can conclude, that Dk is an orthogonal projector wrt (·, ·)0. Using
this family of orthogonal projectors Dk we can give an orthogonal decomposition
of L2(Ω).

Corollary 1 (Orthogonal decomposition of L2(Ω)). We have
(1) L2(Ω) =

∑
k∈NOk, where Ok = {ϕ : ϕ = Dku, u ∈ L2(Ω)}

(2) u =
∑
k∈N Dku in L2-sense.

(3) ‖u‖20 =
∑
k∈N ‖Dku‖20, ∀u ∈ L2(Ω)

Proof. First we observe by evaluating a telescoping sum that
∑k
j=1Dku = Qk.

Hence we have

‖u−
k∑
j=1

Dku‖0 = ‖u−Qku‖0
k→∞−→ 0

Furthermore from the orthogonality property we conclude

‖u‖20 = ‖
∑
j∈N

Dju‖20 =
∑
j∈N

∑
k∈N

(Dju,Dku)0 =
∑
j∈N

(Dju,Dju)0 =
∑
j∈N
‖Dju‖20.

�
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Furthermore we can prove corresponding approximation and inverse inequality
in terms of variants of Jackson’s and Bernstein’s inequality for the orthogonal pro-
jectors Dk.

Lemma 7 (Approximation properties). We have

‖Dku‖0 ≤ chsk‖u‖s, ∀u ∈ Hs(Ω)

for 0 ≤ s ≤ 2.

Proof.

‖Dku‖0 = ‖(Qk −Qk−1)u‖0 = ‖(Qk −QkQk−1)u‖0 ≤ ‖Qk‖‖(I −Qk−1)u‖0
≤ cshsk−1‖u‖s ≤ c2shsk‖u‖s

�

Indeed, choosing u = Dkv ∈ Hs(Ω) for 0 ≤ s < 3
2 we obtain a weaker result.

(5) ‖Dkv‖0 ≤ chsk‖Dkv‖s, ∀v ∈ Hs(Ω)

for 0 ≤ s < 3
2 . Note, that the structural similarity of (5) to the following inverse

inequality allows us to combine these two results in Lemma 9.

Lemma 8 (Inverse inequalities). We have

‖Dku‖s ≤ ch−sk ‖Dku‖0, ∀u ∈ L2(Ω)

for 0 ≤ s < 3
2 .

Proof. Apply Bernstein’s inequality for Dku ∈Mk. �

Next we want to combine the approximation and inverse inequalities. Indeed
this means to extend the inverse inqualities stated in Lemma 8 to the case |s| < 3

2 .
Therefore we have to introduce Sobolev-Slobodecki spaces for negative indices.

Definition 2. For s > 0 the space H−s is defined by the adjoint space of Hs, i.e.
H−s := (Hs)∗. The associated norm is given by ‖u‖−s = supϕ∈Hs

〈u,ϕ〉
‖ϕ‖s

.

The next lemma is the combination of the inverse and approximation properties
of Dk.

Lemma 9 (Extended inverse inequalities ). We have

‖Dku‖s ≤ ch−sk ‖Dku‖0, ∀u ∈ L2(Ω)

for |s| < 3
2 .

Proof. It remains to prove the inequality for negative s. Therefore let t > 0.

‖Dku‖−t = sup
ϕ∈Ht

〈Dku, ϕ〉
‖ϕ‖t

= sup
ϕ∈Ht

(Dku, ϕ)0

‖ϕ‖t
= sup
ϕ∈Ht

(Dku,Dkϕ)0

‖ϕ‖t

≤ sup
ϕ∈Ht

‖Dkϕ‖0
‖ϕ‖t

‖Dku‖0 ≤ chtk‖Dku‖0

�

Lemma 10. We have

(u, v)s ≤ ‖u‖s+ε‖v‖s−ε, ∀u, v ∈ Hs+ε(Ω)

for |s+ ε| < 3
2 and ε > 0.
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Proof. For this proof we have to recall the representation of scalar products and
norms in terms of the spectral decomposition of some generating operator. (For
details see e.g. Seminar 05, or the corresponding literature [3]).

Let Λ be the symmetric and positive definite operator defined by the equality

‖u‖2 = ‖Λu‖0.

Since Λ is symmetric and positive definite, we have an eigensystem (λi, ϕi)i∈N of
Λ, where λi ∈ R+ and the {ϕi}i∈N is orthogonal and complete in L2(Ω). Hence

u =
∑
i∈N

(u, ϕi)0ϕi Λu =
∑
i∈N

λi(u, ϕi)0ϕi

Additionally we also have a spectral representation for all 0 ≤ s ≤ 2

(u, v)s =
∑
k∈N

λsi (u, ϕi)0(v, ϕi)0

‖u‖2s =
∑
k∈N

λsi |(u, ϕi)0|2.

This technique can also be extended to the case −2 ≤ s ≤ 0, leading to

(u, v)s =
∑
k∈N

λsi (u, ϕi)0(v, ϕi)0, ∀|s| ≤ 2.

Now using this spectral representation, the proof can be done in a very easy manner.

(u, v)s =
∑
i∈N

λsi (u, ϕi)0(v, ϕi)0 =
∑
i∈N

λ
s+ε
2

i (u, ϕi)0λ
s−ε
2

i (v, ϕi)0

≤
√∑

i∈N
λs+εi |(u, ϕi)0|2

√∑
i∈N

λs−εi |(v, ϕi)0|2 = ‖u‖s+ε‖v‖s−ε

�

Note, that Lemma 10 will also be used in a very specific regime. Choosing s = 0
and ε = t, we have (u, v)0 ≤ ‖u‖t‖v‖−t for |t| < 3

2 . This result also directly follows
by the definition of the dual norm ‖v‖−t = supu∈Ht

〈u,v〉
‖u‖t

= supu∈Ht
(u,v)0
‖u‖t

.

4.1. The infinite case. By considering a weighted linear combination of the or-
thogonal L2 projection operators Dk, we define the multilevel operatof Bs

Bs :=
∑
k∈N

h−2s
k Dk

which induces an equivalent norm in the Sobolev space Hs(Ω).

Theorem 1 (Equivalent norm in Hs). We have

cB1 ‖u‖2s ≤ (Bsu, u)0 ≤ cB2 ‖u‖2s, ∀u ∈ Hs(Ω)

for |s| < 3
2 .

Proof. Representation: Using the fact that Dk is a projection, we easily obtain

(Bsu, u)0 =
∑
k∈N

h−2s
k ‖Dku‖20.

Upper bound: For proving the upper bound, we are using the projection and
orthogonality properties of Dk, Lemma 10 for the special case (’s = 0’ and ’ε = s’)
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and the extended inverse inequality for negative values.∑
k∈N

h−2s
k ‖Dku‖20 =

∑
k∈N

h−2s
k (Dku,Dku)0 =

∑
k∈N

h−2s
k (u,Dku)0

= (u,
∑
k∈N

h−2s
k Dku)0 ≤ ‖u‖s‖

∑
k∈N

h−2s
k Dku‖−s

= ‖u‖s

(
‖
∑
k∈N

h−2s
k Dku‖2−s

) 1
2

= ‖u‖s

∑
j∈N
‖Dj

∑
k∈N

h−2s
k Dku‖2−s

 1
2

≤ c‖u‖s

∑
j∈N

h2s
j ‖Dj

∑
k∈N

h−2s
k Dku‖20

 1
2

= c‖u‖s

∑
j∈N

h2s
j ‖Djh

−2s
j u‖20

 1
2

= c‖u‖s

∑
j∈N

h−2s
j ‖Dju‖20

 1
2

Chanceling the squareroot term we obtain the upper bound.
Lower bound: For proving the lower bound, we use the decompositon of any L2

function u =
∑
i∈N Dku. Note, that this decomposition is orthogonal in L2(Ω), but

not in Hs(Ω). Furthermore we use Lemma 10, the extended inverse inequality and
the L2 orthogonality of Dk.

‖u‖2s = (u, u)s = (
∑
k∈N

Dku,
∑
j∈N

Dju)s

=
∑
k∈N

∑
j∈N

(Dku,Dju)s ≤
∑
k∈N

∑
j∈N
‖Dku‖s+ε‖Dju‖s−ε

≤ c
∑
k∈N

∑
j∈N

h
−(s+ε)
k ‖Dku‖0h−(s−ε)

j ‖Dju‖0

= c
∑
k∈N

∑
j∈N

(
hj
hk

)ε
h−sk ‖Dku‖0h−sj ‖Dju‖0

≤ c
∑
k∈N

∑
j∈N

2−ε|j−k|h−sk ‖Dku‖0h−sj ‖Dju‖0

By denoting M = (Mkj)k,j∈N with Mkj = 2−ε|j−k| and v = (vk)k∈N with vk =
h−sk ‖Dku‖0, we proceed∑

k∈N

∑
j∈N

2−ε|j−k|h−sk ‖Dku‖0h−sj ‖Dju‖0 = (Mv, v)l2 ≤ ‖M‖l2‖v‖2l2

Here ‖ · ‖l2 is the spectral norm given by ‖M‖l2 =
√
λmax(MTM), which in-

deed is the appropriate matrix norm of the Euklidean vector norm, i.e. ‖Ax‖l2 ≤
‖A‖l2‖x‖l2 . Now from Schur’s Lemma [5, Lemma 13.17]

‖M‖l2 ≤ sup
k∈N

∑
j∈N
|Mkj |

we obtain the final estimate. Using property (3) we can conclude that

sup
k∈N

∑
j∈N
|Mkj | = sup

k∈N

∑
j∈N

2−ε|j−k|
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Evaluating the geometric series (q = 2−ε < 1 for ε > 0) yields

∑
k∈N

q|k−j| =
j−1∑
k=1

qj−k +
∞∑
k=j

qk−j ≤ 2
∑
k∈N

qk =
2

1− q
.

This finishes the proof. �

The next theorem states, that the decomposition of L2, that realizes the infimum
is essentially u =

∑
k∈N Dku.

Theorem 2. If s > 0, then

∑
k∈N

h−2s
k ‖Dku‖20 ≈ inf

u=
P

k∈N uk

{∑
k∈N

h−2s
k ‖uk‖20

}

Proof. Upper bound: Choosing the specific decomposition uk = Dku.
Lower bound: For proving the lower bound, we first choose any decompostion

u =
∑
j∈N uj .∑

k∈N
h−2s
k (Dku, u)0 =

∑
k∈N

∑
j∈N

h−2s
k (Dku, uj)0

≤
∑
k∈N

∑
j∈N

h−2s
k ‖Dku‖0‖uj‖0 =

∑
k∈N

∑
j∈N

(
hj
hk

)s
h−sk ‖Dku‖0h−sj ‖uj‖0

Analogous to the proof of Theorem 1, we can rewrite this double sum as a vector-
matrix-vector multiplication and apply Schur’s lemma. Hence

∑
k∈N

∑
j∈N

(
hj
hk

)s
h−sk ‖Dku‖0h−sj ‖uj‖0 ≤ c

(∑
k∈N

h−2s
k ‖Dku‖20

) 1
2
(∑
k∈N

h−2s
k ‖uk‖20

) 1
2

Chanceling the squareroot term we obtain the lower bound, since the decompostion
uk was arbitrary. �

For the inverse operator (Bs)−1 again a multilevel representation can be given.

Theorem 3 (Inverse Operator). The inverse operator (Bs)−1 allows the represen-
tation

(Bs)−1 =
∑
k∈N

h2s
k Dk.

Proof.

(Bs)−1Bs =
∑
k∈N

∑
j∈N

h2s
k h
−2s
j DkDj =

∑
k∈N

Dk = I

�

By using Theorem 1, the multilevel operator Bs is bounded and Hs-elliptic. The
inverse operator (Bs)−1 is bounded and H−s elliptic. In particular, the spectral
equivalence (2) is valid. Hence Bs can be used as a preconditioner resulting in
mesh-independent convergence rates in any appropriate iterative method.
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4.2. The finite case. Let uJ ∈MJ with J >> 1.
We have

DkuJ = QkuJ −Qk−1uJ =

{
uJ − uJ = 0, for k > J

DkuJ . for k ≤ J
By considering a weighted linear combination of the orthogonal L2 projection op-
erators Dk, we define the finite multilevel operatof Bs

BsJ :=
J∑
k=0

h−2s
k Dk

which induces an equivalent norm in the Sobolev space Hs(Ω).

Corollary 2 (Equivalent norm in MJ). We have

‖uj‖2s ≈
J∑
k=1

h−2s
k ‖DkuJ‖20, ∀uJ ∈MJ

for |s| ≤ 3
2 .

Corollary 3. If s > 0, then
J∑
k=1

h−2s
k ‖Dku‖20 ≈ inf

u=
PJ

k=1 uk

{
J∑
k=1

h−2s
k ‖uk‖20

}
Remark 2 (Realization). For the H1(Ω) case see e.g. [5, p. 315-319]
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