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Main Task: Construction of efficient preconditioners for so-called saddle point
problems (optimal control problem)

We consider problems, where some critical model parameter α and (due to
discretization) a discretization parameter h are involved.

We want to construct preconditioners such that the convergence rate of some
preconditioned Krylov subspace method (MINRES) is robust with respect to
these parameters.
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Optimal Control Problem

We consider the following optimal control problem (distributed elliptic optimal
control):

Find the state y ∈ V = H1
0 (Ω) and the control u ∈ Q = L2(Ω) that minimizes

the cost functional

J(y , u) =
1
2
||y − yd ||2L2 +

α

2
||u||2L2

subject to the state equation

−∆y = u in Ω

y = 0 on Γ

or, more precisely, subject to the state equation in its weak form, given by

(∇y ,∇z)L2 = (u, z)L2 ∀z ∈ V .
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The Lagrangian functional associated to this problem is given by:

L(y , u, p) = J(y , u) + (∇y ,∇p)L2 − (u, p)L2 ,

which leads to the following optimality system

(y , z)L2 + (∇z ,∇p)L2 = (yd , z)L2 ∀z ∈ V ,

α(u, v)L2 − (v , p)L2 = 0 ∀v ∈ Q,

(∇y ,∇q)L2 − (u, q)L2 = 0 ∀q ∈ V ,

which characterizes the solution (y , u) ∈ V × Q of the optimal control problem
with Lagrangian multiplier (co-state) p ∈ V .
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From the second equation we have that u = α−1p, therefore we get the
reduced optimality system

(y , z)L2 + (∇z ,∇p)L2 = (yd , z)L2 ∀z ∈ V , (1)

(∇y ,∇q)L2 − α−1(p, q)L2 = 0 ∀q ∈ Q.
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Discretization

Discretization of (1) with the finite element method on a simplicial subdivision
of Ω with continuous and piecewise linear functions for the state and co-state
leads to the linear system

A
„

y
p

«
=

„
Myd

0

«
with A =

„
M K
K −α−1M

«
(2)

M...mass matrix representing the L2 inner product
K ...stiffness matrix representing the elliptic operator of the state equation

The system matrix in (2) is indefinite.
proof:
M and K are symmetric and positive definite =⇒ S = α−1M + KM−1K is
symmetric and positive definite.
We have:„

M K
K −α−1M

«
=

„
I 0

KM−1 I

«„
M 0
0 −S

«„
I M−1K
0 I

«
.

Since
„

M 0
0 −S

«
is indefinite, the statement follows from Sylvester’s law of

inertia. �.
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Now:

Construct block diagonal preconditioner P =

„
PV 0
0 PQ

«
such that

Estimation of condition number of P−1A independent of α and h

=⇒ robust convergence rates for Krylov subspace method
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Introduction

For the solution of a linear system

Kx = b

Krylov subspace methods produce a chain of vectors

x0 → x1 → ...→ xm

which converges to the exact solution x as m increases. In some sense, the
Krylov subspace methods can be seen as improvements of a simple fixed point
iteration of the form

xm+1 = xm + αrm

where rm is the residual in the m-th step

rm = b − Kxm

but more robust and more efficient.
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The iterates xm satisfy
xm ∈ x0 +Km(K , r0)

where
Km(K , r0) = span{r0,Kr0, ...,Km−1r0}

is the Krylov subspace of order m, x0 is some initial guess and r0 is the initial
residual.
For each m, the Krylov subspace Km(K , r0) has dimension m. Because of the
m degrees of freedom in the choice of the iterate xm, m constraints are
required to make xm unique.
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Minimal Residual Method

MINRES
The Minimal Residual Method is a Krylov subspace method for the solution of
a symmetric and indefinite matrix system

Kx = b.

In this method, xm ∈ x0 +Km(K , r0) is characterized by

xm = argmin
y∈x0+Km

||b − Ky ||2

i.e., xm minimizes the residual (three-term recurrence relation).

In our purposes:
P−1Kx = P−1b

with P symmetric and positive definite.
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For the preconditioned MINRES method we have the following convergence
result:

Theorem (Greenbaum)

‖r2m‖P−1 ≤
2qm

1 + q2m ‖r0‖P−1

where

rm = b − Kxm and q =
κ(P−1K)− 1
κ(P−1K) + 1

,

κ denotes the condition number:

κ(P−1K) = ||P−1K ||P ||(P−1K)−1||P = ||P−1/2KP−1/2||2||(P−1/2KP−1/2)−1||2.

Note that P−1K and P−1/2KP−1/2 have the same spectrum.
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The General Case

In general, saddle point problems are of the following form:„
A BT

B −C

«„
u
p

«
=

„
f
g

«
(3)

with A and C being symmetric and positive semidefinite. In the following, we
will present some examples where preconditioners, which lead to robust
convergence rates, are known.
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Case 1

C = 0

A non-singular =⇒ A positive definite

Schur complement S = BA−1BT non-singular =⇒ B has full rank

Then problem (3) reads„
A BT

B 0

«„
u
p

«
=

„
f
g

«
with indefinite system matrix.
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Case 1 contd. I

Now we have the following theorem

Theorem

If

A =

„
A BT

B 0

«
is preconditioned by

P =

„
A 0
0 S

«
then the preconditioned matrix T = P−1A has exactly three distinct
eigenvalues, namely 1 and

`
1±
√
5
´
/2.

proof:

T =

„
I A−1BT

S−1B 0

«
;
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Case 1 contd. II

Eigenvalue problem: „
I A−1BT

S−1B 0

«„
x
y

«
= λ

„
x
y

«
⇐⇒ 1) x + A−1BT y = λx

2) S−1Bx = λy

From 1): (λ− 1)x = A−1BT y

Case λ = 1: Since BT has full rank =⇒ y = 0. Plug into 2) =⇒
x ∈ KerB =⇒ 1 is eigenvalue.

Case λ 6= 1: x = 1
λ−1A

−1BT y . Plug into 2) =⇒ (λ2 − λ− 1)y = 0.
Therefore the statement follows. �.
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Case 1 contd.

Corollary

If

A =

„
A BT

B 0

«
is preconditioned by

P =

„
A 0
0 S

«
then the preconditioned matrix T = P−1A satisfies

(T − I )
„
T − 1

2

“
1 +
√
5
”
I
«„
T − 1

2

“
1−
√
5
”
I
«

= 0.
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Case 1 contd.

Remark

It directly follows from the Corollary that for any vector r the Krylov subspace

Km(T , r) = span{r , T r , ..., T m−1r}

is of dimension at most 3, therefore MINRES will terminate in at most 3
iterations with the solution.

Remark

Forming the preconditioned matrix T is essentially as expensive as computing
the inverse of A directly. In practice, the exact preconditioner P needs to be
replaced by an approximation,

P̂ =

„
Â 0
0 Ŝ

«
where both Â and Ŝ are approximations of A and S, respectively.
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Case 1 contd. I

Remark

For the condition number of T we therefore obtain

κ(T ) =
|λmax |
|λmin|

=

`
1 +
√
5
´
/2`√

5− 1
´
/2
≈ 2.62.

It follows that:
c||z ||P ≤ ||Az ||P−1 ≤ c||z ||P

where

c =

√
5− 1
2

and c =
1 +
√
5

2
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Case 1 contd. II

proof:

||Az ||P−1

||z ||P
≤ sup

z 6=0

||Az ||P−1

||z ||P

= sup
z 6=0

p
〈P−1Az ,Az〉p
〈Pz , z〉

= sup
x 6=0

p
〈P−1/2AP−1/2x ,P−1/2AP−1/2x〉p

〈x , x〉

= ||P−1/2AP−1/2||2.

The lower estimate can be shown analoguously �.
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Case 2a

C 6= 0

A non-singular

Schur complement S = C + BA−1BT non-singular

Then problem (3) reads„
A BT

B −C

«„
u
p

«
=

„
f
g

«
with indefinite system matrix.
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Case 2a contd. I

Theorem

If

A =

„
A BT

B −C

«
is preconditioned by

P =

„
A 0
0 S

«
then the eigenvalues of the preconditioned matrix T = P−1A are in`
−1, 1

2 (1−
√
5)
˜
∪ {1} ∪

`
1, 1

2 (1 +
√
5)
˜
.

proof:

T =

„
I A−1BT

S−1B −S−1C

«
;
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Case 2a contd. II

Eigenvalue problem:

1) x + A−1BT y = λx

2) S−1Bx − S−1Cy = λy

From 1): (λ− 1)x = A−1BT y

Case λ = 1: Since BT has full rank =⇒ y = 0. Plug into 2) =⇒
x ∈ KerB =⇒ 1 is eigenvalue.

Case λ 6= 1: x = 1
λ−1A

−1BT y . Plug into 2):

1
λ− 1

S−1BA−1BT y − S−1Cy = λy

⇐⇒ −λCy = (λ2 − λ− 1)Sy .

Multiplication by yT from the left and the fact that S is positive definite
and C is positive semidefinite yields:

−λ2 + λ+ 1
λ

= ρ
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Case 2a contd. III

where ρ ∈ [0, 1). Therefore

λ = −1
2

“
(ρ− 1)±

p
(1− ρ)2 + 4

”
(4)

Due to ρ and the fact that (4) is monotonically decreasing in ρ, the
statement follows �.
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Case 2a contd.

Now we have

c||z ||P ≤ ||Az ||P−1 ≤ c||z ||P
with c and c independent of parameters.
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Case 2b

C 6= 0

C non-singular

R = A + BTC−1B non-singular

With

P =

„
R 0
0 C

«
we have, analoguously as in Case 2a,

c||z ||P ≤ ||Az ||P−1 ≤ c||z ||P
with c and c independent of parameters.
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Back to our problem

A
„

y
p

«
=

„
yd

0

«
with A =

„
M K
K −α−1M

«
This fits into the general Case 2 with A = M, B = BT = K and C = α−1M.
Therefore we have the following two preconditioners

P0 =

„
M 0
0 S

«
P1 =

„
R 0
0 α−1M

«
where

S = α−1M + KM−1K and R = M + αKM−1K

which lead to robust estimates

c||z ||P0 ≤ ||Az ||P−1
0
≤ c||z ||P0

c||z ||P1 ≤ ||Az ||P−1
1
≤ c||z ||P1 .
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S = α−1M + KM−1K and R = M + αKM−1K :

matrices which result from the discretization of a differential operator of fourth
order

=⇒ Possible but hard to work with

=⇒ Interpolation of the two preconditioners
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Interpolation Theorem

Theorem

Let A : Rn −→ R
n with

||Az ||Y0 ≤ c0||z ||X0 and ||Az ||Y1 ≤ c1||z ||X1 ,

where the norms ||.||Xi and ||.||Yi are the norms associated to the inner
products:

(x , y)Xi = 〈Mix , y〉 and (x , y)Yi = 〈Nix , y〉

Then, for XΘ = [X0,X1]Θ and YΘ = [Y0,Y1]Θ, we have

||Az ||YΘ ≤ c1−Θ
0 cΘ

1 ||z ||XΘ .

||.||XΘ , ||.||YΘ are the norms associated to the inner products

(x , y)XΘ = 〈MΘx , y〉 with MΘ = M1/2
0

“
M−1/2

0 M1M
−1/2
0

”Θ

M1/2
0

(x , y)YΘ = 〈NΘx , y〉 with NΘ = N1/2
0

“
N−1/2

0 N1N
−1/2
0

”Θ

N1/2
0
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In our problem:

M0 = P0, M1 = P1, N0 = P−1
0 and N1 = P−1

1

We have:

||Az ||P−1
0
≤ c||z ||P0 and ||Az ||P−1

1
≤ c||z ||P1

||A−1y ||P0 ≤ c||y ||P−1
0

and ||A−1y ||P1 ≤ c||y ||P−1
1
.
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Interpolation with Θ = 1
2 gives:

P1/2 =

„
M +

√
αK 0

0 α−1M + α−1/2K

«
proof:
Since we have block diagonal matrices:

P1/2 =

„
[M,M + αKM−1K ]1/2 0

0 [α−1M + KM−1K , α−1M]1/2

«
.

Observe that

1√
2

(1 +
√
x) ≤

√
1 + x ≤ 1 +

√
x ∀x ≥ 0,

therefore

(I + L)1/2 ∼ I + L1/2 ∀L ≥ 0 (matrix function).
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Now we have:

[M,M + αKM−1K ]1/2 = M1/2
“
M−1/2(M + αKM−1K)M−1/2

”1/2
M1/2

= M1/2
“
I + αM−1/2KM−1KM−1/2

”1/2
M1/2

∼ M + M1/2√α
“
M−1/2KM−1KM−1/2

”1/2
M1/2

= M +
√
αK ,

and

[α−1M + KM−1K , α−1M]1/2 = [α−1M, α−1M + KM−1K ]1/2

= α−1/2M1/2
“√

αM−1/2(α−1M + KM−1K)
√
αM−1/2

”1/2
α−1/2M1/2

= α−1/2M1/2
“
I + αM−1/2KM−1KM−1/2

”1/2
α−1/2M1/2

∼ α−1M + α−1/2K �.

=⇒ matrix which results from the discretization of a differential operator of
second order
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Interpolation Theorem gives:

c||z ||P1/2 . ||Az ||P−1
1/2
. c||z ||P1/2

=⇒ robust estimate of the condition number of P−1
1/2A

Markus Kollmann



Introduction Saddle Point Problem Discretized Problem Krylov Subspace Method: MINRES The General Case Interpolation

Conclusion

Two preconditioners which lead to robust convergence rates

But hard to realize (fourth order)

Interpolation of the two preconditioners

=⇒ Preconditioner which leads to robust convergence rates

Preconditioner results from the discretization of a differential operator of
second order
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