Interpolation Spaces The Reiteration Theorem & The Duality Theorem

Markus Kollmann

23rd November 2010

Outline

2 Classes of Intermediate Spaces

Markus Kollmann

Repetition

Let X_0 and X_1 be Banach spaces imbedded in a normed vector space.

Definition 1 (The J and K norms)

For each fixed t > 0 we define the following functionals on $X_0 \cap X_1$ and $X_0 + X_1$ respectively:

$$\begin{aligned} J(t; u) &:= \max \{ ||u||_{X_0}, t||u||_{X_1} \} \\ \mathcal{K}(t; u) &:= \inf_{u=u_0+u_1} \{ ||u_0||_{X_0} + t||u_1||_{X_1} \} \end{aligned}$$

These functionals define norms on the corresponding spaces.

Theorem 2 (The K Method)

If and only if either $1 \le q < \infty$ and $0 < \Theta < 1$ or $q = \infty$ and $0 \le \Theta \le 1$, then the space $(X_0, X_1)_{\Theta,q;K}$ is a nontrivial Banach space with norm:

$$||u||_{\Theta,q;\mathcal{K}} := egin{cases} \left(\int_0^\infty \left(t^{-\Theta} \mathcal{K}(t;u)
ight)^q rac{dt}{t}
ight)^{rac{1}{q}} & ext{if } 1 \leq q < \infty \ ess \sup_{0 < t < \infty} \{ t^{-\Theta} \mathcal{K}(t;u) \} & ext{if } q = \infty. \end{cases}$$

Furthermore,

$$||u||_{X_0+X_1} \leq \frac{||u||_{\Theta,q;K}}{||t^{-\Theta}\min\{1,t\}||_{L^q_*}} \leq ||u||_{X_0\cap X_1}$$

so there hold the imbeddings

$$X_0 \cap X_1 \longrightarrow (X_0, X_1)_{\Theta, q; K} \longrightarrow X_0 + X_1$$

and $(X_0, X_1)_{\Theta,q;K}$ is an intermediate space between X_0 and X_1 .

Markus Kollmann

There is also a discrete Version of the K Method:

Theorem 3 (The Discrete K Method)

For each integer i let $K_i(u) := K(2^i; u)$. Then $u \in (X_0, X_1)_{\Theta,q;K}$ if and only if the sequence $(2^{-i\Theta}K_i(u))_{i=-\infty}^{\infty}$ belongs to the space l^q . Moreover, the l^q -norm of that sequence is equivalent to $||u||_{\Theta,q;K}$.

Theorem 4 (The J Method)

If either $1 < q \le \infty$ and $0 < \Theta < 1$ or q = 1 and $0 \le \Theta \le 1$, then the space $(X_0, X_1)_{\Theta,q;J}$ is a nontrivial Banach space with norm:

$$||u||_{\Theta,q;J} := \inf_{f \in S(u)} ||t^{-\Theta}J(t;f(t))||_{L^{\mathbf{q}}_{*}}$$

where

$$S(u):=\left\{f\in L^1(0,\infty;dt/t,X_0+X_1):u=\int_0^\infty f(t)\frac{dt}{t}\right\}.$$

Furthermore,

$$||u||_{X_0+X_1} \le ||t^{-\Theta}\min\{1,t\}||_{L_*^{q}}||u||_{\Theta,q;J} \le ||u||_{X_0\cap X_1}$$

so there hold the imbeddings

$$X_0 \cap X_1 \longrightarrow (X_0, X_1)_{\Theta, q; J} \longrightarrow X_0 + X_1$$

and $(X_0, X_1)_{\Theta,q;J}$ is an intermediate space between X_0 and X_1 .

Markus Kollmann

There is also a discrete Version of the J Method:

Theorem 5 (The Discrete J Method)

An element $u \in X_0 + X_1$ belongs to $(X_0, X_1)_{\Theta,q;J}$ if and only if $u = \sum_{i=-\infty}^{\infty} u_i$ where the series converges in $X_0 + X_1$ and the sequence $(2^{-i\Theta}J(2^i; u_i))_{i=-\infty}^{\infty}$ belongs to the space I^q . In this case

$$\inf\left\{||2^{-i\Theta}J(2^i;u_i)||_{I^{\mathbf{q}}}:u=\sum_{i=-\infty}^{\infty}u_i\right\}$$

is a norm on $(X_0, X_1)_{\Theta,q;J}$ equivalent to $||u||_{\Theta,q;J}$.

The following theorem guarantees that for $0 < \Theta < 1$ the J and K Methods generate the same intermediate spaces with equivalent norms:

Theorem 6 (The Equivalence Theorem)

If $0 < \Theta < 1$ and $1 \le q \le \infty$ then $(X_0, X_1)_{\Theta,q;J} = (X_0, X_1)_{\Theta,q;K}$ with equivalence of norms.

Definition 7 (Classes of Intermediate Spaces)

We define three classes of intermediate spaces X between X_0 and X_1 as follows:

• X belongs to class $\mathcal{K}(\Theta; X_0, X_1)$ if for all $u \in X$

$$K(t; u) \leq C_1 t^{\Theta} ||u||_X$$

with a constant C_1 .

3 X belongs to class $\mathcal{J}(\Theta; X_0, X_1)$ if for all $u \in X_0 \cap X_1$

$$||u||_X \leq C_2 t^{-\Theta} J(t; u)$$

with a constant C_2 .

3 X belongs to class $\mathcal{H}(\Theta; X_0, X_1)$ if X belongs to both $\mathcal{K}(\Theta; X_0, X_1)$ and $\mathcal{J}(\Theta; X_0, X_1)$.

The following theorem gives the result of constructing intermediate spaces between two intermediate spaces:

Theorem 8 (The Reiteration Theorem)

Let $0 \leq \Theta_0 < \Theta_1 \leq 1$ and let X_{Θ_0} and X_{Θ_1} be intermediate spaces between X_0 and X_1 . For $0 \leq \lambda \leq 1$ let $\Theta = (1 - \lambda)\Theta_0 + \lambda\Theta_1$.

• If $X_{\Theta_i} \in \mathcal{K}(\Theta_i; X_0, X_1)$ for i = 0, 1, and if either $0 < \lambda < 1$ and $1 \le q < \infty$ or $0 \le \lambda \le 1$ and $q = \infty$, then

$$(X_{\Theta_0}, X_{\Theta_1})_{\lambda, q; K} \longrightarrow (X_0, X_1)_{\Theta, q; K}.$$

9 If $X_{\Theta_i} \in \mathcal{J}(\Theta_i; X_0, X_1)$ for i = 0, 1, and if either $0 < \lambda < 1$ and $1 < q \le \infty$ or $0 \le \lambda \le 1$ and q = 1, then

$$(X_0, X_1)_{\Theta, q; J} \longrightarrow (X_{\Theta_0}, X_{\Theta_1})_{\lambda, q; J}.$$

 $\textbf{0} \ \ \textit{If} \ X_{\Theta_i} \in \mathcal{H}(\Theta_i; X_0, X_1) \ \textit{for} \ i = 0, 1, \ \textit{and} \ \textit{if} \ 0 < \lambda < 1 \ \textit{and} \ 1 \leq q \leq \infty, \ \textit{then}$

$$(X_{\Theta_0}, X_{\Theta_1})_{\lambda,q;J} = (X_{\Theta_0}, X_{\Theta_1})_{\lambda,q;K} = (X_0, X_1)_{\Theta,q;K} = (X_0, X_1)_{\Theta,q;J}.$$

proof:

Notation: K, J in the construction of intermediate spaces between X_0 and X_1 . K^+, J^+ in the construction of intermediate spaces between X_{Θ_0} and X_{Θ_1} .

1:
Let
$$u \in (X_{\Theta_0}, X_{\Theta_1})_{\lambda,q;K} \Longrightarrow u = u_0 + u_1, u_i \in X_{\Theta_i}$$
. Since $X_{\Theta_i} \in \mathcal{K}(\Theta_i; X_0, X_1)$:
 $\mathcal{K}(t; u) \leq \mathcal{K}(t; u_0) + \mathcal{K}(t; u_1)$
 $\leq C_0 t^{\Theta_0} ||u_0||_{X_{\Theta_0}} + C_1 t^{\Theta_1} ||u_1||_{X_{\Theta_1}}$
 $\leq C_0 t^{\Theta_0} \mathcal{K}^+ \left(\frac{C_1}{C_0} t^{\Theta_1 - \Theta_0}; u\right).$

If $\Theta = (1 - \lambda)\Theta_0 + \lambda\Theta_1$, then $\lambda = \frac{\Theta - \Theta_0}{\Theta_1 - \Theta_0}$ and

$$||t^{-\Theta} \mathcal{K}(t;u)||_{L^{\boldsymbol{q}}_*} \leq \frac{C_0^{1-\lambda} C_1^{\lambda}}{(\Theta_1 - \Theta_0)^{1/\boldsymbol{q}}} ||u||_{\lambda,\boldsymbol{q};\mathcal{K}} \quad \text{for } \boldsymbol{q} < \infty$$

and

$$||t^{-\Theta}K(t;u)||_{L^{\boldsymbol{q}}_*} \leq C_0^{1-\lambda}C_1^{\lambda}||u||_{\lambda,\boldsymbol{q};K} \quad ext{for } \boldsymbol{q} = \infty$$

Markus Kollmann

via the transformation $s = (C_1/C_0)t^{\Theta_1 - \Theta_0}$.

2: Let $u \in (X_0, X_1)_{\Theta, q; J}$. Then $u = \int_0^\infty f(s) \frac{ds}{s}$ for some f taking values in $X_0 \cap X_1$, satisfying $s^{-\Theta} J(s; f(s)) \in L^q_*$. Clearly $f(s) \in X_{\Theta_0} \cap X_{\Theta_1}$. Since $X_{\Theta_i} \in \mathcal{J}(\Theta_i; X_0, X_1)$:

$$\begin{aligned} J^{+}(s;f(s)) &\leq \max\left\{C_{0}t^{-\Theta_{0}}J(t;f(s)),C_{1}t^{-\Theta_{1}}sJ(t;f(s))\right\} \\ &= C_{0}t^{-\Theta_{0}}\max\left\{1,\frac{C_{1}}{C_{0}}t^{-(\Theta_{1}-\Theta_{0})}s\right\}J(t;f(s)) \end{aligned}$$

Now choose t such that $t^{-(\Theta_1-\Theta_0)}s=\frac{C_0}{C_1}$ and obtain

$$J^{+}(s;f(s)) \leq C_{0}\left(\frac{C_{1}}{C_{0}}s\right)^{\frac{-\Theta_{0}}{\Theta_{1}-\Theta_{0}}}J\left(\left(\frac{C_{1}}{C_{0}}s\right)^{\frac{1}{\Theta_{1}-\Theta_{0}}};f(s)\right)$$

If $\Theta = (1 - \lambda)\Theta_0 + \lambda\Theta_1$, then $\lambda = \frac{\Theta - \Theta_0}{\Theta_1 - \Theta_0}$ and

$$||s^{-\lambda}J^+(s;f(s))||_{L^q_*} \leq \frac{C_0^{1-\lambda}C_1^\lambda}{(\Theta_1-\Theta_0)^{(q-1)/q}}||u||_{\Theta,q;J} \quad \text{for } q < \infty$$

Markus Kollmann

and

$$||s^{-\lambda}J^+(s;f(s))||_{L^q_*} \leq \frac{C_0^{1-\lambda}C_1^\lambda}{(\Theta_1-\Theta_0)}||u||_{\Theta,q;J} \quad \text{for } q = \infty$$

via the transformation $g(t) = f(\frac{C_0}{C_1}t^{\Theta_1 - \Theta_0}) = f(s)$, since

$$\int_0^\infty g(t)\frac{dt}{t}=\frac{1}{\Theta_1-\Theta_0}u.$$

3 follows from 1 and 2 \Box .

From now on we just write $(X_0, X_1)_{\Theta,q}$ for $(X_0, X_1)_{\Theta,q;K} = (X_0, X_1)_{\Theta,q;J}$.

Markus Kollmann

Here we determine the dual $(X_0, X_1)_{\Theta,q}^*$ of the interpolation space $(X_0, X_1)_{\Theta,q}$ when $1 \leq q < \infty$. For proving the duality theorem we first need a few technical results:

Theorem 9

Suppose that $X_0 \cap X_1$ is dense in X_0 and X_1 . Then $(X_0 \cap X_1)^* = X_0^* + X_1^*$ and $(X_0 + X_1)^* = X_0^* \cap X_1^*$. More precisely

$$||u^*||_{X_0^*+X_1^*} = \sup_{u \in X_0 \cap X_1} \frac{|\langle u^*, u \rangle|}{||u||_{X_0 \cap X_1}}$$

and

$$|u^*||_{X_0^* \cap X_1^*} = \sup_{u \in X_0 + X_1} \frac{|\langle u^*, u \rangle|}{||u||_{X_0 + X_1}}$$

where $\langle ., . \rangle$ denotes the duality pairing.

Markus Kollmann

Theorem 10

Let X_0,X_1 be a given couple of Banach spaces. Then $(X_0,X_1)_{\Theta,q}=(X_1,X_0)_{1-\Theta,q}$

proof:

0

$$\begin{aligned} \mathcal{K}(t; u) &= \mathcal{K}(t; u, X_0, X_1) = \inf_{u = u_0 + u_1} \{ ||u_0||_{X_0} + t ||u_1||_{X_1} \} \\ &= t \inf_{u = u_0 + u_1} \left\{ ||u_1||_{X_1} + \frac{1}{t} ||u_0||_{X_0} \right\} = t \mathcal{K}(t^{-1}; u, X_1, X_0) \end{aligned}$$

2

$$\begin{split} |t^{-\Theta}\phi(t)||_{L^{\mathbf{q}}_{*}} &= \left(\int_{0}^{\infty} \left(t^{-\Theta}\phi(t)\right)^{\mathbf{q}} \frac{dt}{t}\right)^{\frac{1}{\mathbf{q}}} \\ &= \left(\int_{0}^{\infty} \left(t^{\Theta}\phi(t^{-1})\right)^{\mathbf{q}} \frac{dt}{t}\right)^{\frac{1}{\mathbf{q}}} = ||t^{\Theta}\phi(t^{-1})||_{L^{\mathbf{q}}_{*}} \end{split}$$

Markus Kollmann

Therefore:

$$||t^{-\Theta}K(t; u, X_0, X_1)||_{L^q_*} = ||t^{\Theta}K(t^{-1}; u, X_0, X_1)||_{L^q_*} = ||t^{-(1-\Theta)}K(t; u, X_1, X_0)||_{L^q_*}$$

\Box .

As a consequence of Theorem 9 we have:

Corollary 11

Assume that $X_0 \cap X_1$ is dense in X_0 and X_1 . For t > 0, the dual space of $X_0 \cap X_1$ equipped with the norm $J(t; u, X_0, X_1)$ is $X_0^* + X_1^*$ equipped with the norm $K(t^{-1}; u^*, X_0^*, X_1^*)$. More precisely:

$$\mathcal{K}(t^{-1}; u^*, X_0^*, X_1^*) = \sup_{u \in X_0 \cap X_1} \frac{|\langle u^*, u \rangle|}{J(t; u, X_0, X_1)}$$
(1)

and

Markus Kollmann

Corollary 12

Assume that $X_0 \cap X_1$ is dense in X_0 and X_1 . For t > 0, the dual space of $X_0 + X_1$ equipped with the norm $K(t; u, X_0, X_1)$ is $X_0^* \cap X_1^*$ equipped with the norm $J(t^{-1}; u^*, X_0^*, X_1^*)$. More precisely:

$$J(t^{-1}; u^*, X_0^*, X_1^*) = \sup_{u \in X_0 + X_1} \frac{|\langle u^*, u \rangle|}{K(t; u, X_0, X_1)}.$$
 (2)

Markus Kollmann

Now we can show the following theorem:

Theorem 13 (The Duality Theorem)

Let $\{X_0, X_1\}$ be a couple of Banach spaces, such that $X_0 \cap X_1$ is dense in X_0 and X_1 . Assume that $1 \le q < \infty$ and $0 < \Theta < 1$. Then

 $(X_0, X_1)_{\Theta,q}^* = (X_0^*, X_1^*)_{\Theta,q^*}$ (with equivalent norms)

where $\frac{1}{q} + \frac{1}{q^*} = 1$.

proof: If we prove

$$(X_0, X_1)_{\Theta, q; J}^* \longrightarrow (X_1^*, X_0^*)_{1-\Theta, q^*; K} (X_0^*, X_1^*)_{\Theta, q^*; J} \longrightarrow (X_0, X_1)_{\Theta, q; K}^*$$

Markus Kollmann

we get the result by the Equivalence Theorem and Theorem 10.

1:

Take $u^* \in (X_0, X_1)_{\Theta, q; J}^*$ and apply formula (1). Thus, given $\epsilon > 0$, we can find $u_i \in X_0 \cap X_1$ such that $u_i \neq 0$ and, since $u^* \in (X_0 \cap X_1)^* = X_0^* + X_1^*$,

$$\mathcal{K}(2^{-i}; u^*, X_0^*, X_1^*) - \epsilon \min\left\{1, 2^{-i}\right\} \leq \frac{\langle u^*, u_i \rangle}{J(2^i; u, X_0, X_1)}.$$

Choose a sequence (α_i) such that $(2^{-i\Theta}\alpha_i) \in l^q$ and set

$$u_{\alpha} := \sum_{i=-\infty}^{\infty} J(2^{i}; u, X_{0}, X_{1})^{-1} \alpha_{i} u_{i}$$

then $u_{\alpha} \in (X_0, X_1)_{\Theta, q; J}$. Now

$$\langle u^*, u_{\alpha} \rangle \geq \sum_{i=-\infty}^{\infty} \alpha_i \left(\mathcal{K}(2^{-i}; u^*, X_0^*, X_1^*) - \epsilon \min\left\{1, 2^{-i}\right\} \right)$$

Markus Kollmann

and

$$\langle u^*, u_{\alpha} \rangle \leq ||u^*||_{(X_0, X_1)^*_{\Theta, q; J}}||2^{-i\Theta}\alpha_i||_{I^q}$$

since

$$||u_{\alpha}||_{\Theta,q;J} \leq ||2^{-i\Theta}\alpha_i||_{I^q}.$$

Since

$$\sum_{i=-\infty}^{\infty} \alpha_i \beta_i \le M ||2^{-i\Theta} \alpha_i||_{I^{\mathbf{q}}} \Longleftrightarrow ||2^{i\Theta} \beta_i||_{I^{\mathbf{q}^*}} \le M$$

and ϵ is arbitrary, the statement follows.

2:
Let
$$u^* \in (X_0^*, X_1^*)_{\Theta, q^*; J}$$
 then $u^* = \sum_{i=-\infty}^{\infty} u_i^*$ with $u_i^* \in X_0^* \cap X_1^*$ and
 $(2^{-i\Theta}J(2^i; u_i^*, X_0^*, X_1^*)) \in I^{q^*}$. For $u \in (X_0, X_1)_{\Theta, q; K}$ we have:
 $|\langle u^*, u \rangle| \leq \sum_{i=-\infty}^{\infty} |\langle u_i^*, u \rangle| \leq \sum_{i=-\infty}^{\infty} 2^{-i\Theta}J(2^i; u_i^*, X_0^*, X_1^*)2^{i\Theta}K(2^{-i}; u_i, X_0, X_1)$

due to formula (2). Applying Hölder's inequality yields the statement \Box .

Markus Kollmann