ÜBUNGEN ZU

ANALYSIS FÜR PHYSIKER(INNEN)

für den 27. 10. 2010

1. Seien $r, s \in \mathbb{R}$. Zeigen Sie:

$$(x^r)^s = x^{r \cdot s}$$
 für alle $x \in \mathbb{R}, \ x > 0.$

Hinweis: Zeigen Sie die Behauptung der Reihe nach zunächst für Exponenten aus \mathbb{N} , \mathbb{Z} und \mathbb{Q} .

2. Sei $a \in \mathbb{R}$ mit a > 0. Zeigen Sie:

$$a^{x+y} = a^x \cdot a^y$$
 für alle $x, y \in \mathbb{R}$.

Hinweis: Zeigen Sie die Behauptung der Reihe nach zunächst für Exponenten aus \mathbb{N} , \mathbb{Z} und \mathbb{Q} .

3. Zeigen Sie für alle $x \in \mathbb{R}$:

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\sin(3x) = 3\sin(x) - 4\sin^3(x)$$

4. Zeigen Sie für alle $x, y \in \mathbb{R}$:

$$\sin(x+y) - \sin(x-y) = 2\cos(x)\sin(y)$$

5. Stellen Sie die Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$, die durch die Funktionsgleichung

$$y = x^2 + x + 1$$

gegeben ist, grafisch dar. Bestimmen Sie einen geeigneten Definitionsbereich $A \subset \mathbb{R}$ und einen geeigneten Wertebereich $B \subset \mathbb{R}$, sodass $f \colon A \longrightarrow B$ bijektiv ist und bestimmen Sie die Umkehrfunktion.

6. Zeigen Sie:

$$\operatorname{artanh}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \quad \text{für alle } x \in \mathbb{R}, \ |x| < 1.$$

7. Zeigen Sie die Summenregel: Seien $f: A \longrightarrow \mathbb{R}$, $g: A \longrightarrow \mathbb{R}$ reelle Funktionen und $x_0 \in A$ ein nicht-isolierter Punkt. Angenommen, f und g sind in x_0 differenzierbar. Dann gilt: f + g ist ebenfalls im Punkt x_0 differenzierbar und es gilt:

$$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$

1

8. Sei $g: A \longrightarrow \mathbb{R}$ eine reelle Funktion und $x_0 \in A$ ein nicht-isolierter Punkt. Angenommen, g ist in x_0 differenzierbar und $g(x_0) \neq 0$. Zeigen Sie, dass die Funktion $\frac{1}{g}$ ebenfalls im Punkt x_0 differenzierbar und es gilt:

$$\left(\frac{1}{g}\right)'(x_0) = -\frac{g'(x_0)}{g(x_0)^2}.$$

Hinweis: $\frac{1}{g} = h \circ g$ mit der reellen Funktion $h: \mathbb{R} - \{0\} \longrightarrow \mathbb{R}, h(x) = \frac{1}{x}$.

- 9. Bestimmen Sie die Ableitungen der folgenden Funktionen:
 - (a) $f(x) = \operatorname{arcoth}(x)$.
 - (b) $f(x) = x^x \text{ mit } x > 0$
 - (c) $f(x) = x^2 \cdot \cot(2x) + \ln|x|$