Definition 1.48

Let (\cdot, \cdot) be an inner product in \mathbb{R}^n with associated norm $\|\cdot\|$.

1. $A \in \mathbb{R}^{n \times n}$ is **self-adjoint** w.r.t. (\cdot, \cdot) iff

$$(Ay, z) = (y, Az) \qquad \forall y, z \in \mathbb{R}^n$$

2. For $(\cdot, \cdot) = (\cdot, \cdot)_{\ell^2}$ we say also **symmetric** instead of self-adjoint, because

 $A \text{ self-adjoint w.r.t. } (\cdot, \cdot)_{\ell^2} \quad \Longleftrightarrow \quad A = A^\top \,.$

3. For $A \in \mathbb{R}^{n \times n}$ we define the **spectrum** (the finite set of eigenvalues) by

$$\sigma(A) := \{ \lambda \in \mathbb{C} : \exists x \in \mathbb{C}^n \setminus \{0\} : A x = \lambda x \}.$$

If A is self-adjoint w.r.t. (\cdot, \cdot) , then $\sigma(A) \subset \mathbb{R}$. We define

$$\lambda_{\min}(A) := \min_{\lambda \in \sigma(A)} \lambda, \qquad \lambda_{\max}(A) := \max_{\lambda \in \sigma(A)} \lambda.$$

- 4. Let $A, B \in \mathbb{R}^{n \times n}$ be self-adjoint w.r.t. (\cdot, \cdot)
 - (a) A is positive semi-definite $(A \ge 0)$ iff $(Ay, y) \ge 0 \quad \forall y \in \mathbb{R}^n$
 - (b) A is **positive definite** (A > 0) iff $(A y, y) > 0 \quad \forall y \in \mathbb{R}^n \setminus \{0\}$
 - (c) $A \ge B :\iff A B \ge 0$
 - (d) $A > B :\iff A B > 0$

Lemma 1.49

(i)
$$A \ge 0 \iff \forall \lambda \in \sigma(A) : \lambda \ge 0 \iff \lambda_{\min}(A) \ge 0$$

(ii) $A > 0 \iff \forall \lambda \in \sigma(A) : \lambda > 0 \iff \lambda_{\min}(A) > 0$
(iii) $\lambda_{\min} = \inf_{y \in \mathbb{R}^n \setminus \{0\}} \underbrace{\frac{(A \, y, \, y)}{(y, \, y)}}_{\text{Rayleigh quotient}} \qquad \lambda_{\max} = \sup_{y \in \mathbb{R}^n \setminus \{0\}} \frac{(A \, y, \, y)}{(y, \, y)}$

Proof: (i), (ii) clear. (iii):

$$A \ge \alpha I \iff (A y, y) \ge \alpha (y, y) \quad \forall y \in \mathbb{R}^{n}$$
$$\iff \frac{(A y, y)}{(y, y)} \ge \alpha \quad \forall y \in \mathbb{R}^{n} \setminus \{0\}$$
$$\iff \inf_{y \in \mathbb{R}^{n} \setminus \{0\}} \frac{(A y, y)}{(y, y)} \ge \alpha$$
and
$$A \ge \alpha I \iff \lambda - \alpha \ge 0 \quad \forall \lambda \in \sigma(A)$$
$$\iff \lambda_{\min}(A) \ge \alpha$$

Lemma 1.50 If A is self-adjoint and positive definite then

$$||A|| = \sup_{y \in \mathbb{R}^n \setminus \{0\}} \frac{|(A y, y)|}{(y, y)} = \lambda_{\max}(A), \qquad ||A^{-1}|| = \frac{1}{\lambda_{\min}(A)}$$

Hence, the **condition number** $\kappa(A) := ||A|| ||A^{-1}|| = \frac{\lambda_{\max}}{\lambda_{\min}}$. *Proof:* For a self-adjoint operator,

$$\|y\| = \sup_{y \in \mathbb{R}^n \setminus \{0\}} \frac{|(A y, y)|}{(y, y)}$$

(see lectures/books on Functional Analysis).

Since A is positive definite, |(Ay, y)| = (Ay, y) and thanks to Lemma 1.49(iii),

$$||A|| = \lambda_{\max}(A).$$

First of all A^{-1} exists because of the positive definiteness. Since

$$A x = \lambda x \iff \frac{1}{\lambda} (A x) = A^{-1} (A x),$$

we see that $\lambda \in \sigma(A) \iff 1/\lambda \in \sigma(A^{-1})$. It is also easy to see that A^{-1} is self-adjoint with respect to (\cdot, \cdot) , and so

$$||A^{-1}|| = \lambda_{\max}(A^{-1}) = \frac{1}{\lambda_{\min}(A)} = \sup_{y \in \mathbb{R}^n \setminus \{0\}} \frac{(y, y)}{(A^{-1}y, y)}.$$

Lemma 1.51 Let A and C be self-adjoint w.r.t. (\cdot, \cdot) and let C > 0. Then $C^{-1}A$ is self-adjoint w.r.t. the inner product

$$(y, z)_C := (C y, z).$$

Proof:

$$(C^{-1}Ay, z)_C = (CC^{-1}Ay, z) = (Ay, z) = (y, Az)$$

= $(y, CC^{-1}Az) = (Cy, C^{-1}Az) = (y, C^{-1}Az)_C$

г		
L	_	