Theorem 1.27 (Banach's fixed point theorem)

Let W be a closed subset of a Banach space V (with norm $\|\cdot\|$) and $G: W \to W$ a contraction, i.e., there exists a constant q < 1 with

$$\|G(v) - G(w)\| \leq \|v - w\| \qquad \forall v, w \in W.$$

Then there exists a unique element $u \in W$ with

$$u = G(u).$$

The sequence $(u_k)_{k \in \mathbb{N}_0}$, given by the fixed point iteration

$$u_{k+1} = G(u_k)$$

converges to the solution u for arbitrary initial values $u_0 \in W$. We also have the following error estimates for all $k \in \mathbb{N}_0$:

 $\begin{aligned} \|u_{k+1} - u\| &\leq q \|u_k - u\| & (q-\text{linear convergence}) \\ \|u_{k+1} - u\| &\leq q^{k+1} \|u_0 - u\| & (r-\text{linear convergence}) \\ \|u_{k+1} - u\| &\leq \frac{q^{k+1}}{1 - q} \|u_1 - u_0\| & (\text{constructive a-priori error estimate}) \\ \|u_{k+1} - u\| &\leq \frac{q}{1 - q} \|u_{k+1} - u_k\| & (\text{constructive a-posteriori error estimate}). \end{aligned}$

Proof: Let $u_0 \in W$ be arbitrary but fixed.

First, we show that $(u_k)_{k \in \mathbb{N}_0}$ is a Cauchy sequence. For all $m \in \mathbb{N}$:

$$||u_{m+1} - u_m|| = ||G(u_m) - G(u_{m-1})|| \le q ||u_m - u_{m-1}||.$$

This implies that for all $m \in \mathbb{N}_0$:

$$||u_{m+1} - u_m|| \le q^m ||u_1 - u_0||$$

Using the triangle inequality and the estimate above, we obtain that for $k < \ell$:

$$\|u_{\ell} - u_k\| \le \sum_{i=k}^{\ell-1} \|u_{i+1} - u_i\| \le \sum_{i=k}^{\ell-1} q^i \|u_1 - u_0\| \le \left(\sum_{i=k}^{\infty} q^i\right) \|u_1 - u_0\| = \frac{q^k}{1-q} \|u_1 - u_0\|.$$

Since $0 \le q < 1$ and q^k can be made arbitrary small for large enough k, $(u_k)_{k \in \mathbb{N}_0}$ is indeed a Cauchy sequence. Since V is complete and W is closed, we know that there exists a limit function $u \in W$: $u_k \xrightarrow{k \to \infty} u$.

As a contraction, G is Lipschity continuous, and thus continuous. Hence,

$$u = \lim_{k \to \infty} u_k = \lim_{k \to \infty} G(u_{k-1}) = G\left(\lim_{k \to \infty} u_{k-1}\right) = G(u).$$

To see that the fixed point equation has a unique solution, we assume that there are two solutions u_1 , u_2 , i.e. $u_1 = G(u_1)$ and $u_2 = G(u_2)$. Then,

$$||u_2 - u_1|| = ||G(u_2) - G(u_1)|| \le q ||u_2 - u_1||$$

Since $0 \le q < 1$, this is only possible if $||u_2 - u_1|| = 0$, which means that $u_1 = u_2$.

The first and second error estimate follow immediately from the contraction property. The third one follows from $||u_{\ell} - u_k|| \leq q^k/(1-q) ||u_1 - u_0||$ (see above) by sending $\ell \to \infty$. For the fourth estimate, we need to see that $||u_{k+1} - u_{\ell+1}|| \leq q \sum_{i=k}^{\ell-1} q^{i-k} ||u_{k+1} - u_k||$ (using the contraction property and the triangle inequality) and then send $\ell \to \infty$.