Thursday, 13 January 2011, 13.45–15.15, T 212

Assume the notations of Tutorial 10 and assume additionally that

• $a(\cdot,\cdot)$ is bounded and coercive with coercivity constant μ_1

• all the functions $t \mapsto \langle F(t), v \rangle$ are continuous with respect to t and that the solution $u \in C^1([0,T], V).$

In the following $u_h \in C^1([0,T],V_h)$ is the solution of

$$(u'_h(t), v_h)_H + a(u_h(t), v_h) = \langle F(t), v_h \rangle \qquad \forall v_h \in V_h \quad \forall t \in (0, T),$$

$$(u_h(0), v_h)_H = (u_0, v_h)_H \qquad \forall v_h \in V_h.$$
(11.1)

$$(u_h(0), v_h)_H = (u_0, v_h)_H \qquad \forall v_h \in V_h.$$
 (11.2)

Recall the projectors $R_h: V \to V_h$ and $P_h: V \to V_h$ defined by

$$a(R_h w, v_h) = a(w, v_h) \qquad \forall v_h \in V_h,$$

$$(P_h w, v_h)_H = (w, v_h)_H \qquad \forall v_h \in V_h,$$

where $w \in V$.

62 Show that

$$\frac{1}{2} \|u_h(T)\|_H^2 + \int_0^T a(u_h(t), u_h(t)) = \frac{1}{2} \|u_h(0)\|_H^2 + \int_0^T \langle F(t), u_h(t) \rangle dt. \quad (11.3)$$

Hint: Choose $v_h = u_h(t)$ in (11.1) and use Exercise | 59 |

63 Show that

$$||P_h v||_H \le ||v||_H \qquad \forall v \in V,$$

and that $||u_h(0)||_H \leq ||u_0||_H$. Show also that if $a(\cdot,\cdot)$ is symmetric then

$$||R_h v||_a \le ||v||_a \qquad \forall v \in V,$$

where $||v||_a := \sqrt{a(v, v)}$.

64 Show the following a-priori bound for u_h :

$$||u_h||_{L^2((0,T),V)} \le \frac{1}{2\mu_1} \Big(||F||_{L^2((0,T),V^*)} + \sqrt{||F||_{L^2((0,T),V^*)}^2 + 2\mu_1 ||u_0||_H^2} \Big).$$

Hint: Bound the left hand side of (11.3) from below and the right hand side of (11.3) from above to show that

$$||u_h||_{L^2((0,T),V)}^2 \le \frac{1}{2\mu_1} ||u_h(0)||_H^2 + \frac{1}{\mu_1} ||F||_{L^2((0,T),V^*)} ||u_h||_{L^2((0,T),V)},$$

and use Exercise | 63 |

65 Show that

$$\frac{d}{dt} \|\theta_h(t)\|_H \le \|\rho_h'(t)\|_H - \frac{\mu_1}{c^2} \|\theta_h(t)\|_H \quad \forall t \in (0, T) \text{ a.e.}$$

Hint: See (and modify) the proof of Lemma 2.12.

66 Show that

$$\|\theta_h(t)\|_H \le e^{-\mu_1 c^{-2}t} \|\theta_h(0)\|_H + \int_0^t e^{-\mu_1 c^{-2}(t-s)} \|\rho_h'(s)\|_H ds.$$

Hint: Estimate the term

$$\frac{d}{ds} \left[e^{\mu_1 c^{-2} s} \| \theta_h(s) \|_H \right]$$

using Exercise $\boxed{65}$ and integrate over [0, t] w.r.t. s.

Let $H = L^2(0,1)$, $V = \{v \in H^1(0,1) : v(0) = 0\}$, and V_h the corresponding Courant FE space. Show that there exists a positive constant C independent of h such that

$$||[I - P_h]w||_{L^2(0,1)} \le C h^2 |w|_{H^2(0,1)} \quad \forall w \in H^2(0,1).$$

Hint: Use Céa's Lemma in $L^2(0,1)$.