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Programming

50 Implement the remaining routines of MDSPreconditioner according to mds.hh.

51 Implement the PCG method (with the MDS preconditioner).
Hint: Copy and change your existing CG code according to the lecture (see slide
“Preconditioner Conjugate Gradient Method (PCG)” pcg.pdf)
The new routine should look like

template <class PRECONDITIONER, class MATRIX, class VECTOR, class REAL>

int

PCG (const MATRIX & A, VECTOR & x, const VECTOR & b,

const PRECONDITIONER & C, int & max_iter, REAL & tol);

or

int PCG (const SMatrix& A, Vector& x, const Vector& b,

const MDSPreconditioner& C, int& max_iter, double& tol);

52 Solve a boundary value problem of your choice (e.g. one from Exercise 33 ) with the
PCG-preconditioned PCG method. Start with a simple mesh of e.g. two elements
and perform uniform refinement. The core part of your main program could be as
follows:

create mesh with two elements
create K and f from mesh (with BC!)
call mds.InitDiagonal (0, K)

for m=1, . . . , L− 1
call mesh.RefineUniform()
create K and f from mesh (with BC!)
call mds.InitDiagonal (m, K)

end for
call PCG

Report the number of PCG iterations for 2k levels, where k = 0, 1, . . . , 10.

53 Let the assumptions of Lemma 1.73 (nonlinear Lax-Milgram) hold, i.e., let V be a
Hilbert space, V0 ⊂ V a closed subspace, g ∈ V , Vg := g + V0, and let A : V → V ∗0
be a nonlinear operator which is strongly monotone on Vg

∃µ1 > 0 : 〈A(v)− A(w), v − w〉 ≥ µ1 ‖v − w‖2V ∀v, w ∈ V0

and Lipschitz continuous, i.e.

∃µ2 ≥ 0 : ‖A(v)− A(w)‖V ∗
0
≤ µ2 ‖v − w‖V ∀v, w ∈ V0 ,

where ‖F‖V ∗
0

:= supv∈V0\{0}
|〈F, v〉|
‖v‖V

.

Let F1, F2 ∈ V ∗0 and let u1 ∈ Vg: A(u1) = F1, u2 ∈ Vg : A(u2) = F2. Show that
there exists a constant C ≥ 0:

‖u1 − u2‖V ≤ C ‖F1 − F2‖V ∗
0
,

i.e. the solution depends continuously on the data.
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The following two exercises consider Example 1.71. Let α : R+
0 → R+

0 be a continuous
and bounded function. For V := H1(0, 1) and V0 := {v ∈ H1(0, 1) : v(0) = 0}, we define
the operator A : V → V ∗0 by the relation

〈A(u), v〉 =

∫ 1

0

α(|u′(x)|)u′(x) v′(x) dx

and set Vg := {v ∈ H1(0, 1) : v(0) = g0}.
Note: A(u) is well-defined because the function x 7→ α(|u′(x)|) is Lebesgue-measurable in (0, 1), the
function α is bounded, so α(|u′|)u′ ∈ L2(0, 1), and therefore the above integral is always finite.

54 Assume that there exists M ≥ 0:∣∣α(s)s− α(t)t
∣∣ ≤ M |s− t| ∀s, t ∈ R+

0 .

Show that then A : V → V ∗0 is Lipschitz continuous on Vg with Lipschitz constant
µ2 = 3M .

Hint: Use that for t ≥ 0:

α(|s|)s− α(|t|)t = α(|s|)(s− t) +
[
α(|s|)− α(|t|)

]
t

= α(|s|)(s− t) + α(|s|)
(
|t| − |s|

)
+ α(|s|)|s| − α(|t|)|t|

Show and use that α(|s|) ≤M for all s ∈ R.

55 Assume that there exists m > 0:

α(s)s− α(t)t ≥ m (s− t) ∀s ≥ t ≥ 0.

Show that then A : V → V ∗0 is strongly monotone on Vg where µ1 depends on m
and the constant CF from Friedrichs’ inequality.

Hint: Set α2(s) := α(s)−m. Show and use that for all s, t ∈ R:

(a) α2(|s|) ≥ 0

(b) (α(|s|)s− α(|t|)t)(s− t) =
[
α2(|s|)s− α2(|t|)t

]
(s− t) +m (s− t)2

≥
[
α2(|s|)|s| − α2(|t|)|t|

]
(|s| − |t|) +m (s− t)2

(c)
[
α2(|s|)|s| − α2(|t|)|t|

]
(|s| − |t|) ≥ 0
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