Numerical Methods for Partial Differential Equations WS 2010 / 11
Tutorial 8 Thursday, 2 December 2010, 13.45-15.15, T 212

In this tutorial we consider the MDS (multilevel diagonal scaling) preconditioner. Let
{T,}L_ | be nested meshes of the interval (0, 1). We start with a fixed mesh 77 (with a
few elements) and construct the other meshes by uniform refinement as shown below.

® ® ® coarsest mesh
° ® ° ® °

o—O0 0 0 0 o0 o0 o o

000000000000 00000 fincst mesh
For each ¢ =1,..., L we define
Vii={ve H'(0,1):vp € P VT €T} = span{py},
with the nodal basis functions {y.;}:*, and n, being the number of elements of 7;.

Consider two consecutive meshes 7, and 7,1 and the corresponding finite element
spaces V; C V4. Recall that for every w, € V; there exist a vector w, = [we,]i%,

such that
ne
w(w) = Y wei ().
i=0
Let wy € V; be fixed. Since w, € Vi1 as well, there exists a vector w,, = [wei1,i]; 0"
such that

Te+1

we(x) = Zwe+1,i Pri1i().
i=0

Write the coefficients w1 ; in terms of wy;. Find a matrix [;T' € Rrer1+1xmetl guch
that
et
Wy = I, wy.

Let R € V* a bounded linear functional. Let ¢ < L be fixed and define the residual
vector roy = [Tev1aliy’ bY o414 = (R, @ri1,). Then,

Ne+1

<R7 W+1> = Z To4+1,i Ve+1,i = (Ee+1a 2£+1)£2
=0
for all veyy € Viqy with basis representation v, ;.
As above, define r, = [ry;];%, with re; == (R, @p.).
Write r, in terms of r,,; such that
<R7 Uf> = (fb 23)52
for all v, € V, with basis representation v,. Show that

¢ . ¢ (+1\T
re = Igrey with Ty o= (7).
In the lecture, we have treated the subspace correction equation

k
a(ei, poi)wei = (F, pri) — G(U(L)> ©i,) = (R® 0.

We define fék) = [(R®), @,)]i*,. For any arbitrary level £ < L, write fgk) in terms
of fL - K Q(Lk), where fL denotes the load vector on level L and K; the stiffness

matrix. Hint: Use Exercise .

14

Programming

Write a function

void RefineUniform (const Mesh& coarseMesh, Mesh& fineMesh);

that computes the refined mesh 7,,;=fineMesh from a given mesh 7,=coarseMesh
as shown above.

(a) Write a function
void Restrict (const Vector& fineRes, Vector& coarseRes);

that computes the coarse residual coarseRes=r, = I/ 1, ; from the fine
residual fineRes=r, ;.

Hint: Use the entries of If ; from above, but set 7,9 = 0 (due to the incorpo-
rated Dirichlet condition).

(b) Write a function
void Prolongate (const Vector& coarseVec, Vector& fineVec);

that computes fineVec=v, , = If“yz from coarseVec=uv,.
Hint: Use the entries of [f“ from above, but set v,o = 0 (due to the incorpo-
rated Dirichlet condition).

Consider mds.hh from the website and implement the class routine ApplyCL, i.e.

apply the Jacobi preconditioner to get a correction w from r
if level > O
restrict r to a coarse residual rc
call ApplyCL(level-1, rc, wc) (recursively) to get a coarse correction wc
prolongate wc to a fine correction wf
add wf tow

Your code does not have to compile!

class MDSPreconditioner

{

public:
// constructor: initialize with (total) number of levels
MDSPreconditioner (int numLevels);

// destructor
“MDSPreconditioner ();

// set the diagonal for Jacobi preconditioner for a certain level
void InitDiagonal (int level, const SMatrix& K);

// apply the preconditioner C~{-1}

inline
void Solve (const Vector& r, Vector& w) const
{
ApplyCL (numLevels_-1, r, w);
}
private:

// recursive helper routine
void ApplyCL (int level, const Vector& r, Vector& w) const;

//--- members

int numLevels_; // number of levels

std::vector<Vector> jacobi_; // diagonal for Jacobi preconditioner on each level
};

15

