In this tutorial we consider the MDS (multilevel diagonal scaling) preconditioner. Let $\{\mathcal{T}_{\ell}\}_{\ell=1}^{L}$ be nested meshes of the interval (0, 1). We start with a fixed mesh \mathcal{T}_{1} (with a few elements) and construct the other meshes by uniform refinement as shown below.

For each $\ell = 1, \ldots, L$ we define

$$V_{\ell} := \{ v \in H^1(0, 1) : v_{|T} \in \mathcal{P}^1 \quad \forall T \in \mathcal{T}_{\ell} \} = \operatorname{span}\{\varphi_{\ell, i}\}_{i=0}^{n_{\ell}}$$

with the nodal basis functions $\{\varphi_{\ell,i}\}_{i=0}^{n_{\ell}}$ and n_{ℓ} being the number of elements of \mathcal{T}_{ℓ} .

44 Consider two consecutive meshes \mathcal{T}_{ℓ} and $\mathcal{T}_{\ell+1}$ and the corresponding finite element spaces $V_{\ell} \subset V_{\ell+1}$. Recall that for every $w_{\ell} \in V_{\ell}$ there exist a vector $\underline{w}_{\ell} = [w_{\ell,i}]_{i=0}^{n_{\ell}}$ such that

$$w_{\ell}(x) = \sum_{i=0}^{n_{\ell}} w_{\ell,i} \varphi_{\ell,i}(x)$$

Let $w_{\ell} \in V_{\ell}$ be fixed. Since $w_{\ell} \in V_{\ell+1}$ as well, there exists a vector $\underline{w}_{\ell+1} = [w_{\ell+1,i}]_{i=0}^{n_{\ell+1}}$ such that

$$w_{\ell}(x) = \sum_{i=0}^{n_{\ell+1}} w_{\ell+1,i} \varphi_{\ell+1,i}(x)$$

Write the coefficients $w_{\ell+1,i}$ in terms of $w_{\ell,i}$. Find a matrix $I_{\ell}^{\ell+1} \in \mathbb{R}^{n_{\ell+1}+1 \times n_{\ell}+1}$ such that

$$\underline{w}_{\ell+1} = I_{\ell}^{\ell+1} \underline{w}_{\ell}.$$

45 Let $R \in V^*$ a bounded linear functional. Let $\ell < L$ be fixed and define the residual vector $\underline{r}_{\ell+1} = [r_{\ell+1,i}]_{i=0}^{n_{\ell+1}}$ by $r_{\ell+1,i} := \langle R, \varphi_{\ell+1,i} \rangle$. Then,

$$\langle R, v_{\ell+1} \rangle = \sum_{i=0}^{n_{\ell+1}} r_{\ell+1,i} v_{\ell+1,i} = (\underline{r}_{\ell+1}, \underline{v}_{\ell+1})_{\ell^2}$$

for all $v_{\ell+1} \in V_{\ell+1}$ with basis representation $\underline{v}_{\ell+1}$. As above, define $\underline{r}_{\ell} = [r_{\ell,i}]_{i=0}^{n_{\ell}}$ with $r_{\ell,i} := \langle R, \varphi_{\ell,i} \rangle$.

Write \underline{r}_{ℓ} in terms of $\underline{r}_{\ell+1}$ such that

$$\langle R, v_{\ell} \rangle = (\underline{r}_{\ell}, \underline{v}_{\ell})_{\ell^2}$$

for all $v_{\ell} \in V_{\ell}$ with basis representation \underline{v}_{ℓ} . Show that

$$\underline{r}_{\ell} = I_{\ell+1}^{\ell} \underline{r}_{\ell+1} \quad \text{with} \quad I_{\ell+1}^{\ell} = (I_{\ell}^{\ell+1})^{\top}.$$

|46| In the lecture, we have treated the subspace correction equation

$$a(\varphi_{\ell,i}, \varphi_{\ell,i})w_{\ell,i} = \langle F, \varphi_{\ell,i} \rangle - a(u_L^{(k)}, \varphi_{\ell_i}) =: \langle R^{(k)}, \varphi_{\ell,i} \rangle.$$

We define $\underline{r}_{\ell}^{(k)} = [\langle R^{(k)}, \varphi_{\ell,i} \rangle]_{i=0}^{n_{\ell}}$. For any arbitrary level $\ell < L$, write $\underline{r}_{\ell}^{(k)}$ in terms of $\underline{f}_L - K_L \underline{u}_L^{(k)}$, where \underline{f}_L denotes the load vector on level L and K_L the stiffness matrix. *Hint:* Use Exercise 45.

Programming

47 Write a function

void RefineUniform (const Mesh& coarseMesh, Mesh& fineMesh);

that computes the refined mesh $\mathcal{T}_{\ell+1}$ =fineMesh from a given mesh \mathcal{T}_{ℓ} =coarseMesh as shown above.

48 (a) Write a function

void Restrict (const Vector& fineRes, Vector& coarseRes);

that computes the coarse residual coarseRes= $\underline{r}_{\ell} = I_{\ell+1}^{\ell} \underline{r}_{\ell+1}$ from the fine residual fineRes= $\underline{r}_{\ell+1}$.

Hint: Use the entries of $I_{\ell+1}^{\ell}$ from above, but set $r_{\ell,0} = 0$ (due to the incorporated Dirichlet condition).

(b) Write a function

```
void Prolongate (const Vector& coarseVec, Vector& fineVec);
```

that computes $\texttt{fineVec} = \underline{v}_{\ell+1} = I_{\ell}^{\ell+1} \underline{v}_{\ell}$ from $\texttt{coarseVec} = \underline{v}_{\ell}$. *Hint:* Use the entries of $I_{\ell}^{\ell+1}$ from above, but set $v_{\ell,0} = 0$ (due to the incorporated Dirichlet condition).

49 Consider mds.hh from the website and implement the class routine ApplyCL, i.e.

apply the Jacobi preconditioner to get a correction w from r
if level > 0
restrict r to a coarse residual rc

```
call ApplyCL(level-1, rc, wc) (recursively) to get a coarse correction wc prolongate wc to a fine correction wf add wf to w
```

Your code does *not* have to compile!

```
class MDSPreconditioner
ſ
public:
  // constructor: initialize with (total) number of levels
  MDSPreconditioner (int numLevels):
  // destructor
  ~MDSPreconditioner ();
  // set the diagonal for Jacobi preconditioner for a certain level
  void InitDiagonal (int level, const SMatrix& K);
  // apply the preconditioner C^{-1}
  inline
  void Solve (const Vector& r, Vector& w) const
  Ł
    ApplyCL (numLevels_-1, r, w);
  }
private:
  // recursive helper routine
  void ApplyCL (int level, const Vector& r, Vector& w) const;
  //--- members
                                 // number of levels
  int numLevels_;
  std::vector<Vector> jacobi_; // diagonal for Jacobi preconditioner on each level
}:
```