
Numerical Methods for Partial Differential Equations WS 2010 / 11
Tutorial 4 Thursday, 4 November 2010, 13.45–15.15, T 212

Programming.
In this tutorial we will calculate the stiffness matrix and load vector corresponding to the

pure Neumann problem with homogeneous boundary conditions (see Exercise 16 ) and
an arbitrary mesh of (0, 1):

Th = {T1, . . . , Tnh
} where Tk = (xk−1, xk),

0 = x0 < x1 < · · · < xnh−1 < xh = 1.

19 Write a function

void ElementStiffnessMatrix (double xa, double xb, Mat22& elMat);

which for given nodes xa=xk−1 and xb=xk returns the element stiffness matrix

elMat=K
(k)
h of the element Tk.

20 Write a function

void ElementLoadVector (RealFunction f, double xa, double xb,

Vec2& elVec);

which for a given function f=f ∈ C[0, 1] and the nodes xa=xk−1 and xb=xk returns

the approximated 2-dimensional element load vector elVec≈f
(k)
h on the element Tk.

Use the trapezoidal rule to approximate the involved integrals.

21 Design a data type Mesh to store the mesh information that you need later on to
assemble of the stiffness matrix. Make sure that your data type allows

– initializing (e.g. with an equidistant mesh with a certain number of nodes)

– asking for the number of nodes

– asking for the “coordinate” of an arbitrary node

22 Design an efficient data type SMatrix to store the stiffness matrix later on. Make
sure that your data type allows

– initializing (with a certain number of rows=columns and zero entries)

– asking for any entry in the diagonal and the two off-diagonals

– adding a value to a certain entry

23 Write a function

void AssembleStiffnessMatrix (const Mesh& mesh, SMatrix& mat);

that assembles the (nh + 1)× (nh + 1) stiffness matrix mat=Kh (see Exercise 16 )
for a given mesh mesh=Th of (0, 1).

Hint: Set Kh = 0, then loop over all elements. For each element, call
ElementStiffnessMatrix and add the entries of K

(k)
h at the correct positions of

Kh.

7



24 Write a function

void AssembleLoadVector (RealFunction f, const Mesh& mesh,

Vector& vec);

that assembles the load vector vec=f
h

for the given function f=f ∈ C[0, 1] and the
given mesh.

Here Vector is your favourite vector type (you can for instance use that from
vectors.cc on the tutorial website).

Hint: Set f
h

= 0, then loop over all elements. For each element, call
ElementLoadVector and add the entries of the element load vector to the right
places.

Test all your functions for
f(x) = 2 x + 1

and at least an equidistant mesh with 20 elements. To see if your functions are correct it
might be good to add a print function for SMatrix that prints the entries to the screen.

8


