13 Consider our 1D model problem from the lecture with $g_0 = 0$, i.e.

Find
$$u \in V_0$$
: $\int_0^1 u' v' dx = \int_0^1 f v dx + g_1 v(1)$ $\forall v \in V_0$,

where $V_0 = \{ v \in H^1(0,1) : v(0) = 0 \}.$

Specify precisely the boundary value problem for $w_k \in V_0$ which corresponds to

$$w_k = \mathcal{R}(F - A u),$$

where $\mathcal{R}: V_0^* \to V_0$ is the Riesz isomorphism.

14 Prove Lemma 1.30 from the lecture: Let V be a Hilbert space, $a(\cdot, \cdot) : V \times V \to \mathbb{R}$ a bilinear form that is symmetric and non-negative on V. Let $V_0 \subset V$ and $V_g = g + V_0$ with $g \in V$. Then

find
$$u \in V_g$$
: $a(u, v) = \langle F, v \rangle \quad \forall v \in V_0$

is equivalent to

find
$$u \in V_g$$
: $J_a(u) = \inf_{v \in V_g} J_a(v)$,

with $J_a(v) = \frac{1}{2}a(v, v) - \langle F, v \rangle$. *Hint:* Follow the proof of Lemma 1.24.

15 Show that

$$a(v_h, w_h) = (K_h \underline{v}_h, \underline{w}_h)_{\ell^2}$$

where K_h is the stiffness matrix (defined according to the lecture), v_h , $w_h \in V_{0h}$ (arbitrary), \underline{v}_h , \underline{w}_h are the corresponding vectors according to the Ritz isomorphism, and $(\cdot, \cdot)_{\ell^2}$ is the Euclidean inner product. Show also that for the load vector \underline{f}_h ,

$$\langle \widehat{F}, v_h \rangle = (\underline{f}_h, \underline{v}_h)_{\ell^2}.$$

16 Consider the *pure Neumann problem* with homogeneous boundary conditions. Find $u \in V_0 = V = H^1(0, 1)$:

$$\int_0^1 u'(x) \, v'(x) \, dx = \int_0^1 f(x) \, v(x) \, dx \qquad \forall v \in V.$$

Let $\mathcal{T}_h = \{T_1, \ldots, T_{n_h}\}$ be a mesh of (0, 1) and let

$$V_{0h} = V_h := \left\{ v \in C[0,1] : v_{|T} \in \mathcal{P}^1 \quad \forall T \in \mathcal{T}_h \right\}$$

be the space of continuous and piecewise affine linear functions. Write the corresponding stiffness matrix $K_h \in \mathbb{R}^{(n_h+1)\times(n_h+1)}$ in terms of element stiffness matrices:

$$(K_h \underline{v}_h, \underline{w}_h)_{\ell^2} = \sum_{k=1}^{n_h} \left(K_h^{(k)} \begin{pmatrix} v_{k-1} \\ v_k \end{pmatrix}, \begin{pmatrix} w_{k-1} \\ w_k \end{pmatrix} \right)_{\ell^2}$$

Write the corresponding load vector $\underline{f}_h \in \mathbb{R}^{n_h+1}$ in terms of element load vectors:

$$(\underline{f}_h, \underline{v}_h)_{\ell^2} = \sum_{k=1}^{n_h} \left(f_h^{(k)}, \begin{pmatrix} v_{k-1} \\ v_k \end{pmatrix} \right)_{\ell^2}$$

Specify $K_h^{(k)}$ and $f_h^{(k)}$.

Programming.

In C⁺⁺ (or C) only! (no Fortran, no Java, no matlab)

You will need a C/C^{++} compiler and an editor, or an integrated development environment (like $DevC^{++}$, eclipse, Visual Studio, ...).

The following two exercises are a "warm-up" and will prepare for following programming excercies.

17 Use

```
typedef double Vec2[2];
typedef double Mat22[2][2];
```

to define a vector type Vec2 in \mathbb{R}^2 and a 2 × 2 matrix type Mat22.

Write a function

```
void mult (const Mat22& mat, const Vec2& vec, Vec2& res);
```

that calculates the matrix-vector product. If mat=M, $vec=\underline{v}$, and $res=\underline{r}$, then $\underline{r} = M \, \underline{v}$.

Test mult for at least two examples.

18 Use

```
typedef double (*RealFunction)(double x);
```

to define a function type RealFunction. Write a function

```
void printValues (RealFunction f, double a, double b);
```

that evaluates f at a and b and prints the values on the screen.

Test printValues with your own favourite function

```
double myFunc (double x)
{
   return ...
}
```

Provide your code on a USB-stick or e-mail it to me not later than Thursday 1.30 am.