01 Show that we can write each linear second order ordinary differential equation

$$-(a(x) u'(x))' + b(x) u'(x) + c(x) u(x) = f(x),$$
(1.1)

with $a \in C^1(0, 1)$ and $b, c \in C(0, 1)$, also in the form

$$\bar{a}(x) u''(x) + \bar{b}(x) u'(x) + c(x) u(x) = f(x),$$
 (1.2)

for suitable functions $\bar{a} \in C^1(0, 1)$ and $\bar{b} \in C(0, 1)$. Show also the reverse direction.

02 Derive the variational formulation for the following two boundary value problems:

(a)
$$\begin{cases} -u''(x) + u(x) &= f(x) & \text{for } x \in (0, 1) \\ u(0) &= g_0 \\ u(1) &= g_1 \end{cases}$$
(b)
$$\begin{cases} -u''(x) + u(x) &= f(x) \\ -u'(0) &= g_0 - \alpha_0 u(0) \\ u(1) &= g_1 \end{cases}$$

In particular, specify the spaces V_g , and V_0 , the bilinear form $a(\cdot, \cdot)$, and the linear form $\langle F, \cdot \rangle$.

Hint for (b): Perform integration by parts as usual, substitute u'(0) due to the Robin boundary condition, and collect the bilinear and linear terms accordingly.

 $\boxed{03}$ Let the sequence $(u_k)_{k\in\mathbb{N}}$ of functions be defined by

$$u_k(x) = \begin{cases} 2x & \text{for } x \in \left[0, \frac{1}{2} - \frac{1}{2k}\right], \\ 1 - \frac{1}{2k} - 2k\left(x - \frac{1}{2}\right)^2 & \text{for } x \in \left(\frac{1}{2} - \frac{1}{2k}, \frac{1}{2} + \frac{1}{2k}\right), \\ 2(1 - x) & \text{for } x \in \left[\frac{1}{2} + \frac{1}{2k}, 1\right]. \end{cases}$$

Show that $u \in C^1[0, 1]$. Let u be defined by

$$u(x) = \begin{cases} 2x & \text{for } x \in \left[0, \frac{1}{2}\right], \\ 2(1-x) & \text{for } x \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

Find out if $u, u_k \in H^1(0, 1)$ or not and justify your answer. Calculate $||u_k - u||_{H^1(0, 1)}$ (or find a suitable bound for it) and show that

$$\lim_{k \to \infty} ||u_k - u||_{H^1(0,1)} = 0.$$

Use these results to show that $(u_k)_{k\in\mathbb{N}}$ is a Cauchy sequence in $C^1[0, 1]$ with respect to the H^1 -norm, but that there exists no limit in $C^1[0, 1]$.

04 Consider the boundary value problem

$$-(a(x) u'(x))' = 1 \forall x \in (0, 1),$$

$$u(0) = 0, a(1) u'(1) = 0,$$
(1.3)

where $a(x) = \sqrt{2x - x^2}$. Justify that

$$u(x) = \sqrt{2x - x^2}$$

is a classical solution of (1.3), i. e., $u \in X := C^2(0, 1) \cap C^1(0, 1] \cap C[0, 1]$. Furthermore, show that

$$\int_0^1 |u'(x)|^2 dx = \infty.$$

Note: This example shows that $u \notin H^1(0, 1)$, i. e., u is no weak solution.

 $\boxed{05}$ Let the coefficient function $a \in L^{\infty}(0, 1)$ be given by

$$a(x) = \begin{cases} a_1 & \text{for } x \in \left[0, \frac{1}{2}\right], \\ a_2 & \text{for } x \in \left(\frac{1}{2}, 1\right], \end{cases}$$

with positive constants $a_1 \neq a_2$. Derive a variational formulation for the boundary value problem

$$-a(x) u''(x) = f(x) \quad \forall x \in (0, 1) \setminus \{\frac{1}{2}\},$$

 $u(0) = g_1, \quad u(1) = g_2,$

together with the transmission conditions

$$u(\frac{1}{2}) = u(\frac{1}{2}), \quad a_1 u'(\frac{1}{2}) = a_2 u'(\frac{1}{2}),$$

where $w(\frac{1}{2}^-)$ and $w(\frac{1}{2}^+)$ denote the left sided and right sided limit of a function w, respectively.

Hint: Integration by parts is only valid on subintervals!

06 Derive the variational formulation

find
$$u \in V_q$$
: $a(u, v) = \langle F, v \rangle \quad \forall v \in V_0$ (1.4)

of the pure Neumann boundary value problem

$$-u''(x) = f(x) \quad \text{for } x \in (0, 1),$$

$$-u'(0) = g_0,$$

$$u'(1) = g_1,$$

and show the following statements:

(a) If (1.4) has a solution, then

$$\langle F, c \rangle = 0, \qquad \forall c \in \mathbb{R}.$$
 (1.5)

- (b) If u is a solution of (1.4), then, for any constant $c \in \mathbb{R}$, $\widehat{u} := u + c$ is also a solution.
- (c) If we choose $c = -\int_0^1 u(x) dx$, then

$$\widehat{u} \in \widehat{V} = \left\{ v \in H^1(0, 1) : \int_0^1 v(x) \, dx = 0 \right\}$$

(d) If $\widehat{u} \in \widehat{V}$ solves the variational problem

$$a(\widehat{u}, \widehat{v}) = \langle F, \widehat{v} \rangle \quad \forall v \in \widehat{V},$$

and if the condition (1.5) holds, then \hat{u} solves also (1.4).

Hint: Each test function $v \in H^1(0, 1)$ can be written as $v(x) = \widehat{v}(x) + \overline{v}$ with $\overline{v} = \int_0^1 v(x) dx$ and $\widehat{v} \in \widehat{V}$.