BVP: -u''(x) = f(x) = 2x + 1 u(0) = g_0 = 3 u'(1) = g_1 = -1/2 ---------------------------- output: creating equidistant mesh of (0, 1) with 20 elements... stiffness matrix = TridiagonalMatrix(diag=[20, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 20], lower=[0, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20], upper=[0, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20]) load vector = [60, 60.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.105, 0.11, 0.115, 0.12, 0.125, 0.13, 0.135, 0.14, 0.145, -0.425] system solved u = [3, 3.07375, 3.14475, 3.21275, 3.2775, 3.33875, 3.39625, 3.44975, 3.499, 3.54375, 3.58375, 3.61875, 3.6485, 3.67275, 3.69125, 3.70375, 3.71, 3.70975, 3.70275, 3.68875, 3.6675]