Regularity of Convex Multifunction

Esubalewe L. Yedeg

Institute of Computational Mathematics Johannes Kepler University Linz, Austria

November 3, 2007

Univ.-Prof. Dr. Helmut Gfrerer

Contents

- 1. Introduction
- 2. Examples
- 3. Regular value and the open mapping theorem
- 4. An inversion theorem for convex multifunctions

Definitions:

• Let X and Y be two linear spaces. A multivalued function (multifunction) from X to Y is a mapping $F : X \rightrightarrows Y$ which assigns a set $F(x) \subset Y$ to each $x \in X$.

Definitions:

- Let X and Y be two linear spaces. A multivalued function (multifunction) from X to Y is a mapping $F : X \rightrightarrows Y$ which assigns a set $F(x) \subset Y$ to each $x \in X$.
- Graph of F

$$\Gamma_F := \{ (x, y) \in X \times Y : y \in F(x) \}.$$

Definitions:

- Let X and Y be two linear spaces. A multivalued function (multifunction) from X to Y is a mapping $F : X \rightrightarrows Y$ which assigns a set $F(x) \subset Y$ to each $x \in X$.
- Graph of F

$$\Gamma_F := \{ (x, y) \in X \times Y : y \in F(x) \}.$$

• Effective domain of F, dom F is the projection of Γ_F into X.

Definitions:

- Let X and Y be two linear spaces. A multivalued function (multifunction) from X to Y is a mapping $F : X \rightrightarrows Y$ which assigns a set $F(x) \subset Y$ to each $x \in X$.
- Graph of F

$$\Gamma_F := \{ (x, y) \in X \times Y : y \in F(x) \}.$$

- Effective domain of F, dom F is the projection of Γ_F into X.
- Range of F, range F is the projection of Γ_F into Y.

Definitions:

- Let X and Y be two linear spaces. A multivalued function (multifunction) from X to Y is a mapping $F : X \rightrightarrows Y$ which assigns a set $F(x) \subset Y$ to each $x \in X$.
- Graph of F

$$\Gamma_F := \{ (x, y) \in X \times Y : y \in F(x) \}.$$

- Effective domain of F, dom F is the projection of Γ_F into X.
- Range of F, range F is the projection of Γ_F into Y.
- We say F is *closed* if its graph is closed in the product space $X \times Y$.

• A set $C \subset X$ is called a convex set if and only if $\lambda x + (1 - \lambda)y \in C, \forall x, y \in C \text{ and } \lambda \in [0, 1].$

- A set $C \subset X$ is called a convex set if and only if $\lambda x + (1 - \lambda)y \in C, \forall x, y \in C \text{ and } \lambda \in [0, 1].$
- A multifunction F from a linear space X into a linear space Y is called a *convex* multifunction, if its graph is convex.

- A set $C \subset X$ is called a convex set if and only if $\lambda x + (1 - \lambda)y \in C, \forall x, y \in C \text{ and } \lambda \in [0, 1].$
- A multifunction F from a linear space X into a linear space Y is called a *convex* multifunction, if its graph is convex.
- We say F is a *closed convex multifunction* if in addition F is closed.

- A set $C \subset X$ is called a convex set if and only if $\lambda x + (1 - \lambda)y \in C, \forall x, y \in C \text{ and } \lambda \in [0, 1].$
- A multifunction F from a linear space X into a linear space Y is called a *convex* multifunction, if its graph is convex.
- We say F is a *closed convex multifunction* if in addition F is closed.
- *Inverse* of F is a multifunction from Y to X, defined by

 $F^{-1}(y) = \{ x \in X : y \in F(x) \}.$

Theorem 1 The following statements are equivalent

i. $F: X \Longrightarrow Y$ is a convex multifunction.

ii. the inclusion

 $F(\lambda x_1 + (1 - \lambda)x_2) \supset \lambda F(x_1) + (1 - \lambda)F(x_2)$ holds $\forall x_1, x_2 \in X, \lambda \in [0, 1].$

Examples In finite dimensional space: Let $X = \mathbb{R}^n$

1. If $f : X \to \mathbb{R}$ is a convex function and \mathbb{R}_+ is the set of nonnegative real numbers, then the mapping F defined by

 $F(x) := f(x) + \mathbb{R}_+,$ is a convex multifunction

Examples In finite dimensional space: Let $X = \mathbb{R}^n$

1. If $f : X \to \mathbb{R}$ is a convex function and \mathbb{R}_+ is the set of nonnegative real numbers, then the mapping F defined by $\overline{\Gamma}(\cdot) = \overline{\Gamma}(\cdot) = \overline{\Gamma}(\cdot)$

 $F(x) := f(x) + \mathbb{R}_+,$ is a convex multifunction

2. Let A be an $m \times n$ and $b \in \mathbb{R}^m$. The mapping $f : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$f(x) = Ax - b$$

Examples In finite dimensional space: Let $X = \mathbb{R}^n$

1. If $f : X \to \mathbb{R}$ is a convex function and \mathbb{R}_+ is the set of nonnegative real numbers, then the mapping F defined by

 $F(x) := f(x) + \mathbb{R}_+,$ is a convex multifunction

2. Let A be an $m \times n$ and $b \in \mathbb{R}^m$. The mapping $f : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$f(x) = Ax - b$$

is a convex multifunction.

3. Let $g_i: X \to \mathbb{R}$, $i = 1, \ldots, m$; be convex functions, then

$$F(x) = \begin{pmatrix} Ax - b \\ g(x) \end{pmatrix} + \begin{pmatrix} 0_m \\ \mathbb{R}^m_+ \end{pmatrix}, \quad g = (g_1, \dots, g_m)^T$$

In infinite dimensional spaces:

1. Let X and Y be arbitrary linear spaces, $P : X \to Y$ be a linear operator and $y_0 \in Y$, then $F : X \rightrightarrows Y$ defined by

 $F(x) = Px - y_0$

In infinite dimensional spaces:

1. Let X and Y be arbitrary linear spaces, $P : X \to Y$ be a linear operator and $y_0 \in Y$, then $F : X \rightrightarrows Y$ defined by

 $F(x) = Px - y_0$

is a convex multifunction.

2. Let $\Omega \subset \mathbb{R}^d$ and $X \subset L^2(\Omega)$, for fixed $\phi \in L^2(\Omega)$ define

 $C = \{ x \in X : x(t) \le \phi(t) \ \forall t \in \Omega \}$

then the mapping $F: X \rightrightarrows L^2(\Omega)$ defined by

$$F(x) := x - C$$

3. Let P and C be as defined in the previous examples. The mapping $F: X \rightrightarrows Y$ defined by

$$F(x) = \begin{pmatrix} Px - y_0 \\ x \end{pmatrix} - \begin{pmatrix} \mathbf{0} \\ C \end{pmatrix}$$

3. Let P and C be as defined in the previous examples. The mapping $F: X \rightrightarrows Y$ defined by

$$F(x) = \begin{pmatrix} Px - y_0 \\ x \end{pmatrix} - \begin{pmatrix} \mathbf{0} \\ C \end{pmatrix}$$

is a convex multifunction.

4. Let $g : \mathbb{R} \to \mathbb{R}$ be a convex function, $G : X \to L^2(\Omega)$ defined by G(x)(t) := g(x(t)) and $\overline{C} = \{x \in L^2(\Omega) : x(t) \le \phi(t) \ \forall t \in \Omega\}, \ \phi \in L^2(\Omega)$ then $F : X \Longrightarrow L^2(\Omega)$ defined by $F(x) = G(x) - \overline{C}$ is a convex multifunction.

Regular Values and the Open Mapping Theorem

Lemma 2 Let X and Y be normed linear spaces, and let C be a closed convex set in $X \times Y$. Denote by P_X and P_Y the projections from $X \times Y$ into X and Y respectively, and suppose that $P_X(C)$ is bounded.

a) If X is complete, then int clP_Y(C) = int P_Y(C).
b) If X is reflexive, then P_Y(C) is closed.

Regular Values and the Open Mapping Theorem

Definition Let F be a convex multifunction from a linear space X into a linear space Y, and let $y \in$ range F. We say that y is a *regular value* of F if y is an internal point of range F, and a singular value of F otherwise.

Regular Values and the Open Mapping Theorem

Definition Let F be a convex multifunction from a linear space X into a linear space Y, and let $y \in$ range F. We say that y is a *regular value* of F if y is an internal point of range F, and a singular value of F otherwise.

Theorem 3 Let X and Y be Banach spaces, and let F be a closed convex multifunction from X into Y. Let y be an internal point of range F. Then for each $x \in F^{-1}(y)$ there exists a positive η such that for each $\lambda \in [0, 1]$

 $F(x + \lambda B_X) \supset y + \lambda \eta B_Y.$

An Inversion Theorem for Convex Multifunction

Lemma 4 Let X and Y be Banach spaces, with a closed convex multifunction F from X into Y. Suppose that $x_0 \in X$ and $y_0 \in Y$ are such that for some bounded convex set $D \subset Y$ and some real numbers η and δ with $0 \leq \delta \leq \eta$,

$$y_0 + \eta D \subset F(x_0 + B_X) + \delta D.$$

Then the following inclusions hold:

a) If X is complete, then

$$y_0 + int(\eta - \delta)D \subset intF(x_0 + B_X),$$

b) If X is reflexive, then

$$y_0 + (\eta - \delta)D \subset F(x_0 + B_X).$$

An Inversion Theorem for Convex Multifunction

Convention:

for $x \in X$ and $A \subset X, d[x, A] := \inf\{||x - a|| : a \in A\}(+\infty \text{ if } A = \emptyset)$

Theorem 5 Let X be Banach spaces and Y be a normed space, and let F be a closed convex multifunction from X into Y. Let $y_0 \in F(x_0)$, and suppose that for some $\eta > 0$ and some $\delta \in [0, \eta)$,

 $y_0 + \eta B_Y \subset F(x_0 + B_X) + \delta B_Y.$

Then for any $x \in X$ and any $y \in y_0 + int)\eta - \delta B_Y$,

 $d[x, F^{-1}(y)] \le (\eta - \delta - ||y - y_0||)^{-1}(1 + ||x - x_0||)d[y, F(x)].$

THE END

THANK YOU