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Introduction

Definitions:

• Let X and Y be two linear spaces. A multivalued function (multifunc-

tion) from X to Y is a mapping F : X ⇒ Y which assigns a set F (x) ⊂ Y

to each x ∈ X.
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Introduction

Definitions:

• Let X and Y be two linear spaces. A multivalued function (multifunc-

tion) from X to Y is a mapping F : X ⇒ Y which assigns a set F (x) ⊂ Y

to each x ∈ X.

• Graph of F

ΓF := {(x, y) ∈ X × Y : y ∈ F (x)}.

• Effective domain of F , dom F is the projection of ΓF into X .

• Range of F , range F is the projection of ΓF into Y .

• We say F is closed if its graph is closed in the product space X × Y.
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λx + (1− λ)y ∈ C, ∀x, y ∈ C and λ ∈ [0, 1].
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Introduction

• A set C ⊂ X is called a convex set if and only if

λx + (1− λ)y ∈ C, ∀x, y ∈ C and λ ∈ [0, 1].

• A multifunction F from a linear space X into a linear space
Y is called a convex multifunction, if its graph is convex.

•We say F is a closed convex multifunction if in addition F
is closed.

• Inverse of F is a multifunction from Y to X , defined by

F−1(y) = {x ∈ X : y ∈ F (x)}.
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Introduction

Theorem 1 The following statements are equivalent

i. F : X ⇒ Y is a convex multifunction.

ii. the inclusion

F (λx1 + (1− λ)x2) ⊃ λF (x1) + (1− λ)F (x2)

holds ∀x1, x2 ∈ X,λ ∈ [0, 1].
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Examples
In finite dimensional space: Let X = IRn

1. If f : X → IR is a convex function and IR+ is the set of
nonnegative real numbers, then the mapping F defined by

F (x) := f (x) + IR+, is a convex multifunction
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1. If f : X → IR is a convex function and IR+ is the set of
nonnegative real numbers, then the mapping F defined by

F (x) := f (x) + IR+, is a convex multifunction

2. Let A be an m×n and b ∈ IRm. The mapping f : IRn → IRm

defined by

f (x) = Ax− b

is a convex multifunction.

3. Let gi : X → IR, i = 1, . . . ,m; be convex functions, then

F (x) =

(
Ax− b
g(x)

)
+

(
0m
IRm

+

)
, g = (g1, . . . , gm)T

is a convex multifunction.
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Examples

In infinite dimensional spaces:

1. Let X and Y be arbitrary linear spaces, P : X → Y be a
linear operator and y0 ∈ Y , then F : X ⇒ Y defined by

F (x) = Px− y0

is a convex multifunction.
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Examples

In infinite dimensional spaces:

1. Let X and Y be arbitrary linear spaces, P : X → Y be a
linear operator and y0 ∈ Y , then F : X ⇒ Y defined by

F (x) = Px− y0

is a convex multifunction.

2. Let Ω ⊂ IRd and X ⊂ L2(Ω), for fixed φ ∈  L2(Ω) define

C = {x ∈ X : x(t) ≤ φ(t) ∀t ∈ Ω}

then the mapping F : X ⇒ L2(Ω) defined by

F (x) := x− C

is a convex multifunction.
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Examples

3. Let P and C be as defined in the previous examples. The
mapping F : X ⇒ Y defined by

F (x) =

(
Px− y0

x

)
−

(
0
C

)
is a convex multifunction.
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Examples

3. Let P and C be as defined in the previous examples. The
mapping F : X ⇒ Y defined by

F (x) =

(
Px− y0

x

)
−

(
0
C

)
is a convex multifunction.

4. Let g : IR → IR be a convex function, G : X → L2(Ω) defined
by G(x)(t) := g(x(t)) and

C̄ = {x ∈ L2(Ω) : x(t) ≤ φ(t) ∀t ∈ Ω}, φ ∈ L2(Ω)

then F : X ⇒ L2(Ω) defined by F (x) = G(x)− C̄ is a convex
multifunction.
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Regular Values and the Open Mapping Theorem

Lemma 2 Let X and Y be normed linear spaces, and let C be a closed

convex set in X × Y . Denote by PX and PY the projections from X × Y
into X and Y respectively, and suppose that PX(C) is bounded.

a) If X is complete, then int clPY (C) = int PY (C).

b) If X is reflexive, then PY (C) is closed.
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Regular Values and the Open Mapping Theorem

Definition Let F be a convex multifunction from a linear space X into a

linear space Y , and let y ∈ range F. We say that y is a regular value of F if

y is an internal point of range F, and a singular value of F otherwise.
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Regular Values and the Open Mapping Theorem

Definition Let F be a convex multifunction from a linear space X into a

linear space Y , and let y ∈ range F. We say that y is a regular value of F if

y is an internal point of range F, and a singular value of F otherwise.

Theorem 3 Let X and Y be Banach spaces, and let F be a closed convex

multifunction from X into Y . Let y be an internal point of range F. Then

for each x ∈ F−1(y) there exists a positive η such that for each λ ∈ [0, 1]

F (x + λBX) ⊃ y + ληBY .
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An Inversion Theorem for Convex Multifunction

Lemma 4 Let X and Y be Banach spaces, with a closed convex multi-

function F from X into Y . Suppose that x0 ∈ X and y0 ∈ Y are such that

for some bounded convex set D ⊂ Y and some real numbers η and δ with

0 ≤ δ ≤ η,

y0 + ηD ⊂ F (x0 + BX) + δD.

Then the following inclusions hold:

a) If X is complete, then

y0 + int(η − δ)D ⊂ intF (x0 + BX),

b) If X is reflexive, then

y0 + (η − δ)D ⊂ F (x0 + BX).
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An Inversion Theorem for Convex Multifunction

Convention:

for x ∈ X and A ⊂ X, d[x,A] := inf{||x− a|| : a ∈ A}(+∞ if A = ∅)

Theorem 5 Let X be Banach spaces and Y be a normed space, and let

F be a closed convex multifunction from X into Y . Let y0 ∈ F (x0), and

suppose that for some η > 0 and some δ ∈ [0, η),

y0 + ηBY ⊂ F (x0 + BX) + δBY .

Then for any x ∈ X and any y ∈ y0 + int)η − δ)BY ,

d[x, F−1(y)] ≤ (η − δ − ||y − y0||)−1(1 + ||x− x0||)d[y, F (x)].
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