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Introduction

Definitions:

e Let X and Y be two linear spaces. A multivalued function (multifunc-
tion) from X to Y is a mapping F' : X == Y which assigns aset F'(x) C Y
to each z € X.

e Graph of F

[p={(z,y) e X XY :y € F(x)}.
o FEffective domain of ', dom F' is the projection of I'r into X.
e Range of F', range F' is the projection of I'p into Y.

e We say F'is closed if its graph is closed in the product space X x Y.
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Introduction

e A set C' C X is called a convex set if and only if
Ar + (1 =Ny € C,Va,y € C and X € |0, 1].
e A multifunction F' from a linear space X into a linear space
Y is called a conver multifunction, if its graph is convex.

e We say F'is a closed convexr multifunction it in addition F
is closed.

e /nverse of F'is a multifunction from Y to X, defined by

Fly={reX yecF(x)}



Introduction

Theorem 1 The following statements are equivalent

1. F X =Y 1s a conver multifunction.
1. the inclusion

F(Ax1+ (1 — XNxo) D AF(z1) + (1 — N F(x9)
holds Vxq, x2 € X, X € [0, 1].
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F(x):= f(zr) +R,, isa convex multifunction

2. Let Abeanm xn and b € R™. The mapping f : R" — IR™
defined by

f(x)= Az —b
1s a convex multifunction.

3. Let g;: X — R, 72=1,...,m; be convex functions, then

= (455 (35 oo

1s a convex multifunction.
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In infinite dimensitonal spaces:

1. Let X and Y be arbitrary linear spaces, P : X — Y be a
linear operator and yy € Y, then F': X = Y defined by

F(z) = Pz — yo
is a convex multifunction.
2. Let Q ¢ R and X C L*(Q), for fixed ¢ € L*(Q) define
C={zeX zt) <o) Vt €}
then the mapping F : X = L*(Q) defined by
Fx)=x-C

1s a convex multifunction.
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Examples

3. Let P and C' be as defined in the previous examples. The
mapping F' : X = Y defined by

o= ()2

1s a convex multifunction.

4. Let g : IR — IR be a convex function, G : X — L*(€) defined
by G(z)(t) := g(x(t)) and

C={zecL*0):z(t) < d(t) Vt €Q}, ¢ € L*(Q)
then F': X = L*(Q) defined by F(z) = G(x) — C is a convex

multifunction.



Regular Values and the Open Mapping Theorem

Lemma 2 Let X and Y be normed linear spaces, and let C' be a closed
conver set in X X Y. Denote by Px and Py the projections from X XY
into X and Y respectively, and suppose that Px(C') is bounded.

a) If X is complete, then int clPy(C') = int Py (C).
b) If X is reflexive, then Py(C) is closed.
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y is an internal point of range F, and a singular value of F' otherwise.



Regular Values and the Open Mapping Theorem

Definition Let F' be a convex multifunction from a linear space X into a
linear space Y, and let y € range F. We say that y is a reqular value of F'if
y is an internal point of range F, and a singular value of F' otherwise.

Theorem 3 Let X and Y be Banach spaces, and let F' be a closed convex
multifunction from X into Y. Let y be an internal point of range F. Then
for each x € F~1(y) there exists a positive n such that for each X € [0, 1]

F(z+ ABx) D y+ A\nBy.



An Inversion Theorem for Convex Multifunction

Lemma 4 Let X and Y be Banach spaces, with a closed convex multi-
function F' from X into Y. Suppose that vy € X and yy € Y are such that

for some bounded conver set D C'Y and some real numbers n and 6 with
0<o<m,
Yo +nD C F(LEO+Bx)—|—5D.

Then the following tnclusions hold:
a) If X is complete, then
Yo + int(n — 9)D C intF(xy + By),
b) If X is reflexive, then
Yo+ (n—90)D C F(xg+ Bx).



An Inversion Theorem for Convex Multifunction

Convention:

forz € X and A C X,d[z, A] := inf{||x —al| : a € A}(+o0 if A =1)

Theorem 5 Let X be Banach spaces and Y be a normed space, and let
F be a closed convexr multifunction from X into Y. Let yy € F(xg), and
suppose that for some n > 0 and some § € [0,7),

Yo + nBy C F(ZEQ =F Bx) = 5BY
Then for any x € X and any y € yo + int)n — 0) By,

dlz, F~(y)] < (=0 = |ly — wol) 7' (1 + [|z — wo| )d[y, F(2)].
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