Openness and Metric Regularity of a Multifunction

Blessing O. Uzor

Institute of Computational Mathematics Johannes Kepler University Linz, Austria

November 25, 2009

Supervisor:

a.Univ.-Prof. Dr.Walter Zulehner

Contents

- 1. Introduction
- 2. Examples
- 3. The problem
- 4. Openness of a Multifunction
- 5. Metric Regularity
- 6. Conclusion The consequence

Definitions:

- Let X and Y be two linear spaces. A multivalued function (multifunction) $\psi : X \to 2^Y$ is a mapping from X into the set 2^Y of subsets of Y
- Graph of ψ

$$gph(\psi) := \{(x,y) \in X \times Y : y \in \psi(x), x \in X\}.$$

- Effective domain of ψ , dom ψ is the projection of $gph(\psi)$ into X.
- Range of ψ , range ψ is the projection of $gph(\psi)$ into Y.
- We say ψ is *closed* if its graph is closed in the product space $X \times Y$.

• A set $C \subset X$ is called a convex set if and only if

 $\lambda x + (1 - \lambda)y \in C, \forall x, y \in C \text{ and } \lambda \in [0, 1].$

- A multifunction ψ from a linear space X into a linear space Y is called a *convex* multifunction, if its graph is convex.
- We say ψ is a *closed convex multifunction* if in addition ψ is closed.
- *Inverse* of ψ is a multifunction from Y to X, defined by

$$\psi^{-1}(y) := \{ x \in X : y \in \psi(x) \}.$$

Recall:

Lemma 1 Let X and Y be normed linear spaces, and let C be a closed convex set in $X \times Y$. Denote by P_X and P_Y the projections from $X \times Y$ into X and Y respectively, and suppose that $P_X(C)$ is bounded.

a) If X is complete, then int $clP_Y(C) = int P_Y(C)$.

b) If X is reflexive, then $P_Y(C)$ is closed.

Recall:

Theorem 2 (Generalized Open mapping theorem)

Let X and Y be two linear spaces, and let $\psi : X \to 2^Y$ be a closed convex multifunction. Let $y \in int(range\psi)$. Then $y \in int\psi(B_X(x,r))$ for every $x \in \psi^{-1}(y)$ and r > o

Recall:

Theorem 3 The following statements are equivalent

- i. $\psi: X \to 2^Y$ is a convex multifunction.
- ii. the inclusion

$$\psi(tx_1 + (1-t)x_2) \supset t\psi(x_1) + (1-t)\psi(x_2)$$

holds $\forall x_1, x_2 \in X, t \in [0, 1].$

Examples In finite dimensional space: Let $X = \mathbb{R}^n$

1. If $f: X \to \mathbb{R}$ is a convex function and \mathbb{R}_+ is the set of nonnegative real numbers, and the mapping ψ defined by

 $\psi(x) := f(x) + \mathbb{R}_+,$ $0 \in \psi(x) := f(x) + \mathbb{R}_+,$

2. Let A be an $m \times n$ and $b \in \mathbb{R}^m$. The mapping $\psi : \mathbb{R}^n \to \mathbb{R}^m$ defined by

 $\psi(x) := \{Ax - b\}$ $0 \in \psi(x) := \{Ax - b\}$

The problem

The problem: Find $x \in X$ such that

- 1. $0 \in \psi(x) := f(x) + \mathbb{R}_+$ for a convex function $f: X \to \mathbb{R}$
- 2. $0 \in \psi(x) := \{Ax b\}$ where A is $m \times n$ and $b \in \mathbb{R}^m$.
- 3. combining (1) and (2)

To show: the connection

 $0 \in int(range(\psi)) \Leftrightarrow y + t\gamma B_Y \subset \psi(x + tB_X) \Leftrightarrow dist(x, \psi^{-1}(y)) \leq c \, dist(y, \psi(x))$

Definition 1: We say that the multifunction is open at a point $(x_0, y_0) \in gph(\psi)$, at a (linear) rate $\gamma > 0$, if there exist $t_{max} > 0$ and a neighbourhood N of (x_0, y_0) such that for all $(x, y) \in gph(\psi) \cap N$ and all $t \in [0, t_{max}]$ the following inclusion holds:

$$y + t\gamma B_Y \subset \psi(x + tB_X) \tag{1}$$

Proposition 1: If the multifunction ψ is convex, then ψ is open at a point $(x_0, y_0) \in gph(\psi)$ if and only if there exist positive constant η and ν such that

$$y_0 + \eta B_Y \subset \psi(x_0 + \nu B_X) \tag{2}$$

Proof:

strategy:

- i) If ψ is a convex function, $\psi(tx_1 + (1-t)x_2) \supset t\psi(x_1) + (1-t)\psi(x_2)$ (from first presentation)
- ii) $y_0 + \eta B_Y \subset \psi(x_0 + \nu B_X), for \eta, \nu > 0$

Clearly (2) follows from (1) by taking $\nu = t_{max}$ and $\eta = \gamma t_{max}$ " \Rightarrow "

suppose ψ is convex,

w.l.o.g we can assume that $x_0 = 0$ and $y_0 = 0$ Let $(x, y) \in gph(\psi) \cap N$ for $N := \nu B_X \times \frac{1}{2}\eta B_Y$ (*) using $y \in \psi(x)$ and considering a ball in Y with center y and radius $\frac{1}{2}t\eta$ we have for any $t \in [0, 1]$ that

$$y + \frac{1}{2}t\eta B_Y = (1-t)y + t(y + \frac{1}{2}t\eta B_Y)$$

$$\subset (1-t)y + t\eta B_Y$$

$$\subset (1-t)\psi(x) + t\psi(\nu B_X) \{from(ii)\}$$

$$\subset \psi((1-t)x + t\nu B_X) \{from(i)\}$$

$$\subset \psi(x + 2t\nu B_X)$$
(3)

This implies (1), with N defined by (*) and $\gamma = \frac{\eta}{4\nu}, t_{max} = 2\nu$

Proposition 2: Suppose that the multifunction $\psi : X \to 2^Y$ is closed and convex. Then ψ is open at (x_0, y_0) if and only if $y_0 \in int(range\psi)$

proof: This is just a consequence of the *Generalized open mapping theorem*

Definition 2: We say that the multifunction $\psi : X \to 2^Y$ is metric regular at a point $(x_0, y_0) \in gph(\psi)$ at a rate c, if for all (x, y) in a neighbourhood of (x_0, y_0)

$$dist(x,\psi^{-1}(y)) \le c \ dist(y,\psi(x)) \tag{4}$$

Theorem 4 The multifunction $\psi : X \to 2^Y$ is metric regular at a point $(x_0, y_0) \in gph(\psi)$, at a rate c, if and only if ψ is open at (x_0, y_0) at the rate $\gamma := c^{-1}$.

proof:

 $" \Rightarrow "$

suppose ψ is open at $(x_0, y_0), \gamma > 0, t_{max} > 0, N$ according to definition (1) w.l.o.g, we can assume that $N = \epsilon_x B_x \times \epsilon_x B_y$ reducing t_{max} if necessary, we can also assume that

$$t_{max}\gamma \leq \frac{1}{2}\epsilon'_y \qquad \dots \qquad (i)$$

Let (x, y) be such that $||x - x_0|| < \epsilon'_x, ||y - y_0||| < \epsilon'_y \dots$ (*ii*) where $\epsilon'_x, \epsilon'_y > 0$ satisfying $\epsilon'_x \le \epsilon_x$ and $\gamma \epsilon'_x + \epsilon'_y \le t_{max} \gamma \dots$ (*iii*) $\Rightarrow \epsilon'_y \le \frac{1}{2} \epsilon_y$ we can claim that definition of metric regularity holds with $c = \gamma^{-1}$ indeed since $\epsilon'_y \le \epsilon_y$ and ψ is open at $(x_0, y_0), \exists x^* \in \psi^{-1}(y)$ such that $||x^* - x_0|| \le \gamma^{-1}||y - y_0||$

it follows that

$$dist \ (x, \psi^{-1}(y)) \le ||x - x^*|| \le ||x - x_0|| + \gamma^{-1}||y - y_0|| \\ \le \epsilon'_x + \gamma^{-1}\epsilon'_y$$
(5)

Consequently, if

$$dist(y,\psi^{-1}(x)) \ge \gamma(\epsilon'_x + \gamma^{-1}\epsilon'_y) = \gamma\epsilon'_x + \epsilon'_y \text{ in particular if } \psi(x) = \phi$$

then our claim holds.

Otherwise in view of equation (*iii*), for small $\alpha > 0 \exists y_{\alpha} \in \psi(x)$ such that

$$||y - y_{\alpha}|| \le dist(y, \psi(x)) + \alpha < \gamma \epsilon'_{x} + \epsilon'_{y} \le t_{max}\gamma$$

Then due to eqn(i), (ii), (iii), we have

$$||y_{\alpha} - y_{0}|| \leq ||y_{\alpha} - y|| + ||y - y_{0}|| < t_{max}\gamma + \epsilon'_{y} \leq \epsilon_{y}....$$
 (iv)
$$\therefore (x, y_{\alpha}) \in gph(\psi) \cap N....$$
 (v)

Thus combining (iv) and openness of ψ at (x_0, y_0) $\Rightarrow \exists x' \in \psi^{-1}(y)$ such that $||x' - x|| \leq \gamma^{-1}||y - y_{\alpha}||$ it follows that

$$dist(x,\psi^{-1}(y)) \le ||x'-x|| \le \gamma^{-1}||y-y_{\alpha}|| \le \gamma^{-1}dist(y,\psi(x)) + \gamma^{-1}\alpha$$

Since $\alpha > 0$ is arbitrary, definition (2) follows with $c = \gamma^{-1}$

" ⇐ "

Suppose ψ is metric regular at (x_0, y_0) at rate c > 0Let $(x, y) \in gph(\psi), z \in Y$ such that $||y - z|| < t c^{-1}$

Then for (x, y) sufficiently close to (x_0, y_0) and t > 0 small enough we have

 $dist(x, \psi^{-1}(z)) \le c \ (dist(z, \psi(x))) \le c \ ||z - y|| < t$ $\Rightarrow \exists w \in \psi^{-1}(z) \text{ such that } ||w - x|| < t$ hence $z \in \psi(x + t \ B_x)$ \Box

Conclusion - The consequence

1. Given that
$$y_0 \in intrange(\psi)$$
,
Let $y_0 = 0$ Let A be an $m \times n$ and $b \in \mathbb{R}^m$.
 $0 \in \psi(x) := \{Ax - b\}(\Leftrightarrow Ax = b)$, then
 $range(\psi) = \{Ax - b : x \in \mathbb{R}^n\} \subset \mathbb{R}^m$
 $- \text{ if } rank(A) < m \text{ then } 0 \text{ is not a regular value}$
 $- rank(A) = m \text{ then } 0 \in intrange(\psi) \text{ is a regular value}$,
hence suppose $x_0 \in X : (x_0, y_0) \in gph(\psi)$ and $\forall (x, y)$ in the nbhd of
 (x_0, y_0)
Let $Ax_0 - b = y_0$ and $A\bar{x} - b = \bar{y}$ such that for sufficiently small ϵ we have
 $|x - x_0| \le \epsilon$ and $|y - y_0| \le \epsilon$ then
 $|x - \bar{x}| \le c|y - \bar{y}| \implies Metric regularity$

of

Conclusion - The consequence

2. Given
$$y_0 \in intrange(\psi)$$

Let $y_0 = 0$
 $0 \in \psi(x) := g(x) + \mathbb{R}_+, g : X \to \mathbb{R} \text{ convex} (\Leftrightarrow \exists x_0 : g(x_0) \leq 0)$
Suppose $(x_0, y_0) \in \psi(x)$
 $Inf|x - x_0| \leq c \inf|g(x) + \mathbb{R}_+| \text{ where } g(x) + \mathbb{R}_+ \in [g(x), \infty)$

but
$$c \inf |g(x) + \mathbb{R}_{+}| \Leftrightarrow \inf |z| \ s.t \ z \in g(x) + \mathbb{R}_{+}$$

 $\Rightarrow \inf \{|z| : z \in [g(x), \infty)\}$

$$= \begin{cases} g(x) & \text{for } g(x) \ge 0\\ 0 & \text{for } g(x) < 0 \end{cases}$$

$$= \max(0, g(x))$$

$$\therefore \inf_{g(x_{0}) \le 0} |x - x_{0}| \le c \max(0, g(x))$$
(6)

Theorem 5 (Robinson- Ursescu Stability Theorem) Let $\psi : X \to 2^Y$ be a closed convex multifunction. Then ψ is metric regular at $(x_0, y_0) \in gph(\psi)$ if and only if the regularity condition $y_0 \in int(range\psi)$ holds.

More precisely, suppose that (2) (proposition 2) is satisfied, and let (x, y) be such that

$$||x - x_0|| < \frac{1}{2}\nu, \ ||y - y_0|| < \frac{1}{8}$$

then (3)(definition of Metric Regularity) holds with constant $c = \frac{4\nu}{\eta}$

Conclusion - The consequence

proof:

- " \Rightarrow " The equivalence between metric regularity and the regularity condition $y_0 \in int(range\psi)$ is just a consequence of what we have done in proposition 2 and theorem 4
- " \Leftarrow " we only need to check the estimates of the constants

THE END

THANK YOU