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Introduction

Definitions:

e Let X and Y be two linear spaces. A multivalued function (multifunc-
tion) v : X — 2¥ is a mapping from X into the set 2% of subsets of
Y

e Graph of ¢
gph(¥) ={(z,y) € X xY :y € Y(z),z € X}.
e Fffective domain of 1, dom 1 is the projection of gph(1)) into X.

e Range of ¥, range 9 is the projection of gph(1)) into Y.
e We say 1) is closed if its graph is closed in the product space X x Y.



Introduction

o A set C' C X is called a convex set if and only if
A+ (1 =Ny eC,Ve,y e Cand X € |0, 1].
e A multifunction v from a linear space X into a linear space Y is called a
conver multifunction, if its graph is convex.
e We say 1 is a closed conver multifunction if in addition 1 is closed.

e [nverse of 1 is a multifunction from Y to X, defined by

v (y) ={r e X :y e y(a)}.



Introduction

Recall:

Lemma 1 Let X and Y be normed linear spaces, and let C' be a closed
convex set in X X Y. Denote by Px and Py the projections from X XY
into X and Y respectively, and suppose that Px(C') is bounded.

a) If X is complete, then int clPy(C) = int Py (C).

b) If X is reflexive, then Py(C) is closed.



Introduction

Recall:

Theorem 2 (Generalized Open mapping theorem)

Let X and Y be two linear spaces, and let 1 : X — 27 be a closed convex
multifunction. Let y € int(rangey). Then y € inty(Bx(z,r)) for every
z e (y) andr > o



Introduction

Recall:

Theorem 3 The following statements are equivalent

i. X — 2 is a conver multifunction.
1. the inclusion

Ytz + (1 —t)z2) D tp(z1) + (1 — ¢)p(2)
holds V1, o € X,t € [0,1].



Examples
In finite dimensional space: Let X = IR"

L If f: X — IR is a convex function and IR, is the set of nonnegative real
numbers, and the mapping v defined by

P(z) = f(z) + Ry,
0€¢(z) = flz)+R,,
2. Let A be an m x n and b € R™. The mapping ¢ : R" — R™ defined by
(x) == {Az — b}
0 € ¢Y(x) = {Ax — b}



The problem

The problem: Find x € X such that

1. 0 € ¥(x) := f(x) + R, for a convex function f: X — IR
2.0 € Y(x) = {Ax — b} where Aism x n and b € R™.
3. combining (1) and (2)

To show: the connection

0 € int(range(y))) < y+tyBy C Y(x+tBx) < dist(x, v (y)) < cdist(y, ¥(z))



Openness of a Multifunction

Definition 1: We say that the multifunction is open at a point (zg,y) €
gph(v), at a (linear) rate v > 0, if there exist t,,,; > 0 and a neighbourhood

N of (zg,yo) such that for all (z,y) € gph(y)) N N and all t € [0, t,,4.] the
following inclusion holds:

Y+ t’yBy C 'QD(ZE + th) (1)



Openness of a Multifunction

N~ / 3 t > 0suchthat

y + tYBy g (x + tBy)




Openness of a Multifunction

Proposition 1: If the multifunction v is convex, then 1) is open at a point
(0, y0) € gph(v) if and only if there exist positive constant 7 and v such that

Yo + UBY C ¢($0 = VBX) (2)

Proof:
strategy:

i) If ¢ is a convex function,
Y(try + (1 —t)zg) D tp(z1) + (1 — t)1p(x2) (from first presentation)

ii) yo +nBy C ¥(xg +vBx), for n,v >0



P e
Clearly (2) follows from (1) by taking v = t,,4, and 1 = Ytas

N

suppose 1) is convex,

w.l.o.g we can assume that zo = 0 and yy =0

Let (z,y) € gph(¢) NN for N :=vBx x snBy (%)

using y € 1(z) and considering a ball in Y with center y and radius 3tn
we have for any ¢ € [0, 1] that

y+ %tnBy = (1 -ty +tly+ ;tnBy)
C (1 —t)y+tnBy
C (1 —t)y(z) + t(vBx) { from(ii)} (3)
C (1 —t)z +tvBx) {from(i)}

C @D(ZL‘ + QtVBX)
This implies (1), with IV defined by (*) and v = &, t00 = 2V



Openness of a Multifunction

Proposition 2: Suppose that the multifunction v : X — 2¥ is closed and
convex. Then 1 is open at (g, o) if and only if yy € int(rangey))

proof: This is just a consequence of the Generalized open mapping theorem



Metric Regularity

Definition 2: We say that the multifunction ¢ : X — 2V is metric regular
at a point (zg,yo) € gph(y) at a rate ¢, if for all (z,y) in a neighbourhood of

(0, yo)

dist(z,9~(y)) < c dist(y, (z)) (4)



Metric Regularity

dist(x, w'(y)) < cdist(y, wix)

Y
% v
=
_2--: Yo
i)
e
T Y ylx)

L % vy
dist(x, w'tw)




Metric Regularity

Theorem 4 The multifunction ¢ : X — 2¥ is metric reqular at a point

(0, y0) € gph(v), at a rate ¢, if and only if 1 is open at (xg,yo) at the rate
1

Yi=cC .
proof:

» 7
suppose ¥ is open at (zg, yo),y > 0, tpae > 0, N according to definition (1)
w.l.o.g, we can assume that N = ¢, B, X €,B,

reducing t,,.. if necessary, we can also assume that

1
tmax/y S 56; ..... (Z)



Metric Regularity

Let (z,y) be such that ||z — xo|| < €, [ly —woll| <€, . . . .. (77)
where €, ¢, > 0 satisfying €, < €, and ve), + €, < tynery. - . (449)
=€, < 1€,

we can claim that definition of metric regularity holds with ¢ = y~*

indeed since €, < €, and ¢ is open at (zg,y0),3 =% € ¥~ (y) such that
[lz* = zoll <7 ly — woll

it follows that

dist (z,9 "' () < ||z — 2*|| < ||z — zol| + 7|y — wol|
< e;%—v_le’y

(5)



Metric Regularity

Consequently, if
dist(y, ™" (@)) > v(e, +77'€,) = 7€, + €, in particular if ¢(z) = ¢

then our claim holds.
Otherwise in view of equation (7i7), for small a > 03y, € ¥(x) such that

|y — vall < dist(y,¥(z)) + a < ve, + €, < tmary
Then due to eqn(i), (ii), (7i7), we have
||ya - y0|| < Hyoz - yH + Hy - y0|| < tmax’Y"'Eg; <€y (iV)
(T, ya) € gph(W) NN L (v)



Metric Regularity

Thus combining (iv) and openness of ¥ at (xg, yo)
= 32’ € ¥ !(y) such that ||z’ — z|| < v 7|y — yal|
it follows that

dist(z, ™ (y)) < |la" — ]| <77y — yall < 77 dist(y,d(@)) +7 @

Since o > 0 is arbitrary, definition (2) follows with ¢ = !

7 ¢ 7
Suppose 1 is metric regular at (xg, yo) at rate ¢ > 0
Let (z,y) € gph(1)), z € Y such that ||y — 2|| <t c™*



Metric Regularity

Then for (z,y) sufficiently close to (xg,yy) and ¢ > 0 small enough
we have

dist(w,7'(2)) < ¢ (dist(z, (@) < ¢ ||z =yl <t

= Jw € ¥ (2) such that ||w — z|| < ¢
hence z € Y(x +t B,) O



Conclusion - The consequence

L.

Given that yy € intrange(v),

Let yp =0 Let A be an m x n and b € R™.
0 € ¢¥(x) :={Az — b}(& Az =b), then
range(y) = {Ax —b:x € R"} C R™

— if rank(A) < m then 0 is not a regular value

— rank(A) = m then 0 € intrange(t)) is a regular value,

hence suppose o € X : (zg,y0) € gph(v) and V(z,y) in the nbhd of

(33(), yO)
Let Axg— b = yg and AT — b = y such that for sufficiently small € we have

|z — xo| < €and |y — yo| < € then

lz— x| <cly—y| = Metric regularity



Conclusion - The consequence

2. Given gy, € intrange()
Let 4o =0
0ey(r) =g(x)+R,.,¢g: X — R convex (& Jzg : g(xp) <0)

Suppose (2o, Y0) € ¥()
Inflz — xo| < cinflg(z) + R, | where g(z) + R, € [g(x), 00)

but cinflg(x) + R, | < inf|z| st z € g(x) + R,
= inf{lz|: z € [g(x),00)}

{ g(x)  for g(z) >0

(6)

0 for g(z) < 0

= maz(0, g(v))
infg(xo)ﬁ()‘x - .T()‘ <c max(O, g(il?))



Conclusion - The consequence

Theorem 5 (Robinson- Ursescu Stability Theorem) Let 1) : X — 2¥ be a
closed convex multifunction. Then 1 is metric reqular at (zo,yo) € gph(1)
if and only if the regularity condition yy € int(range) holds.

More precisely, suppose that (2)(proposition 2) is satisfied, and let (x,y)
be such that

| l<=v | <+
T — —v - —

then (3)(definition of Metric Regularity) holds with constant ¢ = %”



Conclusion - The consequence

proof:

7 = 7 The equivalence between metric regularity and the regularity condition
Yo € int(range) is just a consequence of what we have done in proposi-
tion 2 and theorem 4

7 <7 we only need to check the estimates of the constants
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