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Introduction

Definitions:

• Let X and Y be two linear spaces. A multivalued function (multifunc-

tion) ψ : X → 2Y is a mapping from X into the set 2Y of subsets of

Y

• Graph of ψ

gph(ψ) := {(x, y) ∈ X × Y : y ∈ ψ(x), x ∈ X}.

• Effective domain of ψ, dom ψ is the projection of gph(ψ) into X .

• Range of ψ, range ψ is the projection of gph(ψ) into Y .

• We say ψ is closed if its graph is closed in the product space X × Y.
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Introduction

• A set C ⊂ X is called a convex set if and only if

λx + (1− λ)y ∈ C, ∀x, y ∈ C and λ ∈ [0, 1].

• A multifunction ψ from a linear space X into a linear space Y is called a

convex multifunction, if its graph is convex.

• We say ψ is a closed convex multifunction if in addition ψ is closed.

• Inverse of ψ is a multifunction from Y to X , defined by

ψ−1(y) := {x ∈ X : y ∈ ψ(x)}.
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Introduction

Recall:

Lemma 1 Let X and Y be normed linear spaces, and let C be a closed

convex set in X × Y . Denote by PX and PY the projections from X × Y
into X and Y respectively, and suppose that PX(C) is bounded.

a) If X is complete, then int clPY (C) = int PY (C).

b) If X is reflexive, then PY (C) is closed.
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Introduction

Recall:

Theorem 2 (Generalized Open mapping theorem)

Let X and Y be two linear spaces, and let ψ : X → 2Y be a closed convex

multifunction. Let y ∈ int(rangeψ). Then y ∈ intψ(BX(x, r)) for every

x ∈ ψ−1(y) and r > o
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Introduction

Recall:

Theorem 3 The following statements are equivalent

i. ψ : X → 2Y is a convex multifunction.

ii. the inclusion

ψ(tx1 + (1− t)x2) ⊃ tψ(x1) + (1− t)ψ(x2)

holds ∀x1, x2 ∈ X, t ∈ [0, 1].
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Examples

Examples
In finite dimensional space: Let X = IRn

1. If f : X → IR is a convex function and IR+ is the set of nonnegative real

numbers, and the mapping ψ defined by

ψ(x) := f (x) + IR+,

0 ∈ ψ(x) := f (x) + IR+,

2. Let A be an m× n and b ∈ IRm. The mapping ψ : IRn → IRm defined by

ψ(x) := {Ax− b}

0 ∈ ψ(x) := {Ax− b}
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The problem

The problem: Find x ∈ X such that

1. 0 ∈ ψ(x) := f (x) + IR+ for a convex function f : X → IR

2. 0 ∈ ψ(x) := {Ax− b} where A is m× n and b ∈ IRm.

3. combining (1) and (2)

To show: the connection

0 ∈ int(range(ψ))⇔ y+tγBY ⊂ ψ(x+tBX)⇔ dist(x, ψ−1(y)) ≤ c dist(y, ψ(x))
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Openness of a Multifunction

Definition 1: We say that the multifunction is open at a point (x0, y0) ∈
gph(ψ), at a (linear) rate γ > 0, if there exist tmax > 0 and a neighbourhood

N of (x0, y0) such that for all (x, y) ∈ gph(ψ) ∩ N and all t ∈ [0, tmax] the

following inclusion holds:

y + tγBY ⊂ ψ(x + tBX) (1)
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Openness of a Multifunction
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Openness of a Multifunction

Proposition 1: If the multifunction ψ is convex, then ψ is open at a point

(x0, y0) ∈ gph(ψ) if and only if there exist positive constant η and ν such that

y0 + ηBY ⊂ ψ(x0 + νBX) (2)

Proof:

strategy:

i) If ψ is a convex function,

ψ(tx1 + (1− t)x2) ⊃ tψ(x1) + (1− t)ψ(x2) (from first presentation)

ii) y0 + ηBY ⊂ ψ(x0 + νBX), for η, ν > 0
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”⇐ ”

Clearly (2) follows from (1) by taking ν = tmax and η = γtmax
”⇒ ”

suppose ψ is convex,

w.l.o.g we can assume that x0 = 0 and y0 = 0

Let (x, y) ∈ gph(ψ) ∩N for N := νBX × 1
2ηBY (∗)

using y ∈ ψ(x) and considering a ball in Y with center y and radius 1
2tη

we have for any t ∈ [0, 1] that

y +
1

2
tηBY = (1− t)y + t(y +

1

2
tηBY )

⊂ (1− t)y + tηBY

⊂ (1− t)ψ(x) + tψ(νBX) {from(ii)}
⊂ ψ((1− t)x + tνBX) {from(i)}
⊂ ψ(x + 2tνBX)

(3)

This implies (1), with N defined by (∗) and γ = η
4ν , tmax = 2ν
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Openness of a Multifunction

Proposition 2: Suppose that the multifunction ψ : X → 2Y is closed and

convex. Then ψ is open at (x0, y0) if and only if y0 ∈ int(rangeψ)

proof: This is just a consequence of the Generalized open mapping theorem
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Metric Regularity

Definition 2: We say that the multifunction ψ : X → 2Y is metric regular

at a point (x0, y0) ∈ gph(ψ) at a rate c, if for all (x, y) in a neighbourhood of

(x0, y0)

dist(x, ψ−1(y)) ≤ c dist(y, ψ(x)) (4)
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Metric Regularity
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Metric Regularity

Theorem 4 The multifunction ψ : X → 2Y is metric regular at a point

(x0, y0) ∈ gph(ψ), at a rate c, if and only if ψ is open at (x0, y0) at the rate

γ := c−1.

proof:

”⇒ ”

suppose ψ is open at (x0, y0), γ > 0, tmax > 0, N according to definition (1)

w.l.o.g, we can assume that N = εxBx × εxBy

reducing tmax if necessary, we can also assume that

tmaxγ ≤
1

2
ε′y . . . . . (i)
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Metric Regularity

Let (x, y) be such that ||x− x0|| < ε′x, ||y − y0||| < ε′y . . . . . (ii)

where ε′x, ε
′
y > 0 satisfying ε′x ≤ εx and γε′x + ε′y ≤ tmaxγ. . . . (iii)

⇒ ε′y ≤ 1
2εy

we can claim that definition of metric regularity holds with c = γ−1

indeed since ε′y ≤ εy and ψ is open at (x0, y0),∃ x∗ ∈ ψ−1(y) such that

||x∗ − x0|| ≤ γ−1||y − y0||

it follows that

dist (x, ψ−1(y)) ≤ ||x− x∗|| ≤ ||x− x0|| + γ−1||y − y0||
≤ ε′x + γ−1ε′y

(5)
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Metric Regularity

Consequently, if

dist(y, ψ−1(x)) ≥ γ(ε′x + γ−1ε′y) = γε′x + ε′y in particular if ψ(x) = φ

then our claim holds.

Otherwise in view of equation (iii), for small α > 0∃yα ∈ ψ(x) such that

||y − yα|| ≤ dist(y, ψ(x)) + α < γε′x + ε′y ≤ tmaxγ

Then due to eqn(i), (ii), (iii), we have

||yα − y0|| ≤ ||yα − y|| + ||y − y0|| < tmaxγ + ε′y ≤ εy. . . . . . (iv)

∴ (x, yα) ∈ gph(ψ) ∩N . . . . . . . . . (v)
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Metric Regularity

Thus combining (iv) and openness of ψ at (x0, y0)

⇒ ∃ x′ ∈ ψ−1(y) such that ||x′ − x|| ≤ γ−1||y − yα||
it follows that

dist(x, ψ−1(y)) ≤ ||x′ − x|| ≤ γ−1||y − yα|| ≤ γ−1dist(y, ψ(x)) + γ−1α

Since α > 0 is arbitrary, definition (2) follows with c = γ−1

”⇐ ”

Suppose ψ is metric regular at (x0, y0) at rate c > 0

Let (x, y) ∈ gph(ψ), z ∈ Y such that ||y − z|| < t c−1
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Metric Regularity

Then for (x, y) sufficiently close to (x0, y0) and t > 0 small enough

we have

dist(x, ψ−1(z)) ≤ c (dist(z, ψ(x))) ≤ c ||z − y|| < t

⇒ ∃ w ∈ ψ−1(z) such that ||w − x|| < t

hence z ∈ ψ(x + t Bx) �
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Conclusion - The consequence

1. Given that y0 ∈ intrange(ψ),

Let y0 = 0 Let A be an m× n and b ∈ IRm.

0 ∈ ψ(x) := {Ax− b}(⇔ Ax = b), then

range(ψ) = {Ax− b : x ∈ IRn} ⊂ IRm

– if rank(A) < m then 0 is not a regular value

– rank(A) = m then 0 ∈ intrange(ψ) is a regular value,

hence suppose x0 ∈ X : (x0, y0) ∈ gph(ψ) and ∀(x, y) in the nbhd of

(x0, y0)

Let Ax0− b = y0 and Ax̄− b = ȳ such that for sufficiently small ε we have

|x− x0| ≤ ε and |y − y0| ≤ ε then

|x− x̄| ≤ c|y − ȳ| ⇒ Metric regularity
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Conclusion - The consequence

2. Given y0 ∈ intrange(ψ)

Let y0 = 0

0 ∈ ψ(x) := g(x) + IR+, g : X → IR convex (⇔ ∃x0 : g(x0) ≤ 0)

Suppose (x0, y0) ∈ ψ(x)

Inf |x− x0| ≤ c inf |g(x) + IR+| where g(x) + IR+ ∈ [g(x),∞)

but c inf |g(x) + IR+| ⇔ inf |z| s.t z ∈ g(x) + IR+

⇒ inf{|z| : z ∈ [g(x),∞)}
(6)

=


g(x) for g(x) ≥ 0

0 for g(x) < 0

= max(0, g(x))

∴ inf g(x0)≤0|x− x0| ≤ c max(0, g(x))
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Conclusion - The consequence

Theorem 5 (Robinson- Ursescu Stability Theorem) Let ψ : X → 2Y be a

closed convex multifunction. Then ψ is metric regular at (x0, y0) ∈ gph(ψ)

if and only if the regularity condition y0 ∈ int(rangeψ) holds.

More precisely, suppose that (2)(proposition 2) is satisfied, and let (x, y)

be such that

||x− x0|| <
1

2
ν, ||y − y0|| <

1

8

then (3)(definition of Metric Regularity) holds with constant c = 4ν
η
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Conclusion - The consequence

proof:

”⇒ ” The equivalence between metric regularity and the regularity condition

y0 ∈ int(rangeψ) is just a consequence of what we have done in proposi-

tion 2 and theorem 4

”⇐ ” we only need to check the estimates of the constants
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THE END

THANK YOU
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