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Introduction Formulation of the (sub-)problem

Some properties

Optimization problem

In this talk we want to solve problems like

(Pq) ;"6'2 Jq(2)

subject to Ez=0
where Jo(2) == J(z) + Vq4(2)

= a2+ Y [ vrale @0~ i)
i=1 i

Vi g (2)=
@ Z is a Hilbert space
e E:Z — V bounded and linear
Zg:={ze€Z : Ez=10}
° gi:Z— L7(Q))and ¢; € L($;)
@ 1jq: R — (—00,00] is a penalty function
@ Assume q to be fixed
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Model problem

Introduction Formulation of the (sub-)problem

Some properties

(MPg) min Jg(2)

z=(y,u)
subject to —Ay=u
=0
where V,(z)
gi(z) ==u
8(z) =y

= J(z)+ V4(2)

1 gl
= 5”)’ - Yd||%2(9) + EHU - Ud||i2(Q) + Wq(2)

in Q
on Of)
3
=3 / i (1(2)(x) — 0i(x))dx

i=1 /9

Y1 = Pu

P2 = Py

P3 = Pg
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Introduction Formulation of the (sub-)problem

Some properties

Basic assumptions

(P1) There is a feasible point z¢

(P2) The cost functional J is convex and lower semi continuous
(I.s.c.) on Zg

(P3) J3a>0s.t. Vz1,20 € Zg:
(6%
J(Zz) > J(Zl) + J/(Zl,ZQ — 21) + EHZQ — 21H2

(P4) For every closed convex set U C L"1(Q;) the pre-image
{z € Zg : gi(z) € U} is closed. Further all g; are convex in
z (for a.e. x € Q;)

(Q1) jq is convex, l.s.c. and increasing and
(—OO, 0) - domwhq
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Introduction

Formulation of the (sub-)problem
Some properties

@ We have to solve a general non-linear optimization problem
with equality constraints

e (Within the model problem) J itself is smooth
o Idea: Use a Newton like method

@ But: YV, is not sufficiently smooth
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Introduction Formulation of the (sub-)problem

Some properties

Additional assumptions on the problem

(P5a) Jis twice continuously differentiable on Zg
D?J(z) is bounded within bounded subsets of Zg
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Introduction Formulation of the (sub-)problem

Some properties

Additional assumptions on the problem

(P5a) Jis twice continuously differentiable on Zg
D?J(z) is bounded within bounded subsets of Zg

(P5b) g has the representation gj(z)(x) = n;((A;i z)(x)), where
A; € L(Z,L%(Q;)%) is a continuous linear operator; d; > 1
ni : R% — R is a convex function

Note that (P5b) does not imply that g; is twice continuously
differentiable, even if 7; is smooth.
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Introduction Formulation of the (sub-)problem

Some properties

Additional assumptions on the problem

(PQ2a) m;: R% x R — R, m(s, t) := i 4:(mi(s) — t) is twice
continuously differentiable w.r.t. sforallt e R
3L > 0 const. s.t.

D&mi(s. )2 < L

’Dszsﬂ','(57 t) - Dszsﬂ.i(ga t)’2 < L‘S _5‘2
for all (s,5,t) € R% x R% x R where

D7 (s, t)]2 == sup{(D5mi(s, )h, k) : |hl2 =1, k|l =1}
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Introduction Formulation of the (sub-)problem

Some properties

Additional assumptions on the problem

(PQ2a) m;: R% x R — R, m(s, t) := i 4:(mi(s) — t) is twice
continuously differentiable w.r.t. sforallt e R
3L > 0 const. s.t.

|D27i(s, t)|a < L
|D27i(s, t) — D2mi(5,t)|2 < L|s — 3>
for all (s,5,t) € R% x R% x R where
D7 (s, t)]2 == sup{(D5mi(s, )h, k) : |hl2 =1, k|l =1}
(PQ2b) W; 4 is continuous on Z
Note that in this setting W; 4(z) = [o,. i((Ai 2)(x), pi(x))dx
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Introduction Formulation of the (sub-)problem

Some properties

Discussion for the model problem

The conditions (P5) and (PQ2) are

@ not fulfilled for combined logarithmic-quadratic penalty
function for original setting and model problem

@ Replace constraint 3 by:

B(2) = 1+ VB <\ 1+03 =&

Then: The conditions are fulfilled for combined penalty
function with

mi(s,t) =trg(s —t)  Aly,u)=u
ma(s, t) =vaq(s —t)  Ay,u)=y

m((s1,52),t) = ¥34(\/1+ |(s1,9)]5—t)  As(y,u) =Vy
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,Intm’duc"o" Formulation of the (sub-)problem

Some properties

Differentiability

Lemma (Gfrerer (5.1) - Differentiability)

Assume: (P4), (P5b), (PQ2)
Then: V; , is twice Gateaux-differentiable and V; , € C11(2)
where

(OViae)h) = [ (DemilAiz(o). i), Ah()) e

(D2W; ()b k) — / (D2mi(Aiz(x), i () Aih(x), Aik(x))dx

i

and some continuity result on the second derivative holds:
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Vlntm’ductmn Formulation of the (sub-)problem

Some properties

Differentiability

Lemma (Gfrerer (5.1) - Differentiability)

Assume: (P4), (P5b), (PQ2)
Then: V; , is twice Gateaux-differentiable and V; , € C11(Z) and

some continuity result on the second derivative holds:
forallz € Z:

lim  sup / [(DZmi(Aiz (x), (x)) — DEmi(Aiz(x), ¢(x))))h(x), k(x))|dx = 0
# 7% heB,keK /A
for every bounded subset B C L?(Q;)% and every K with either:
e K is bounded in L?"(Q,-)d" with t; > 2 or
o K ={R(x)k(x) : k(x) belongs to KK C L?(Q;)% compact and
R € R C L>=(Q;)%*9% bounded}.
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Formulation of the algorithm

Newton’s method with line search .
Convergence analysis

QOutline

© Newton's method with line search
@ Formulation of the algorithm
@ Convergence analysis
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Formulation of the algorithm

Newton’s method with line search .
Convergence analysis

Newton's method with line search

If we have a twice differentiable convex function, it is reasonable to
apply Newtons' method:

@ Choose 0 <y <1,2°€ Zg; Set n:=0
@ Compute h" € Zg such that it minimizes

(D27 )+ (DJy(2"), B
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Formulation of the algorithm

Newton’s method with line search .
Convergence analysis

Newton's method with line search

If we have a twice differentiable convex function, it is reasonable to
apply Newtons' method:

@ Choose 0 <y <1,2°€ Zg; Set n:=0
@ Compute h" € Zg such that it minimizes

(D27 )+ (DJy(2"), B

© Line search: Choose 0, € {1,3,7,...} s.t.
Jg(2" + 0nh") < Jg(2°) + yon(DJg(2"), h)

O Set z"tl:= 2"+ 5,h": Set n:=n+1 and goto 2 if stop. crit.
is not fulfilled
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Formulation of the algorithm

Newton’s method with line search .
Convergence analysis

Some remarks

@ In (MP) the PDE is part of the constraints of the quadratic
subproblems.

@ The quadratic subproblems

. 1 2 n n
foin §<D Jg(2")h, h) + (DJg(2"), h)

can be solved e.g. using the optimality system:
Find a stationary point (h,p) € Z x V of

1
§<D2Jq(z")h, h) + (DJy(2"), h) + (Eh, p)
Leads to KKT-system:

D2J,(z")h + E*p = —DJy(z")
Eh = 0
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Formulation of the algorithm

Newton’s method with line search 0
Convergence analysis

Convergence of Newton's method

Theorem (Gfrerer (5.3); Convergence)

Assume (P1) — (P5), (Q1) and (PQ2) and let z" be generated by
Newton's method with line search.
Then: lim,_. 2" = Z,.

If W, (and therefore J,) is twice continuously differentiable on Zg,
then the algorithm converges g-superlinear.
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Formulation of the algorithm
Convergence analysis

Newton’s method with line search

Continuous Differentiability

Corollary (Gfrerer (5.2) - Continuous Differentiability)

Assume: (P4), (P5b), (PQ2)
and moreover either

o A; is compact from Zg into L2(Q;)% or
o A; € L(Zg, LT (Q)%) with r; > 2.

Then: V, 4 is twice continuously differentiable on Zg
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Formulation of the algorithm

Newton’s method with line search 0
Convergence analysis

Model problem

o H} is compactly embedded in L2 = Ay(y, u) = y is compact
=Corr. 5.2 Y2, is twice continuously differentiable

o —A: H}(Q) — H71(Q) is homeomorphism =
Vo (=A)"t e L(HY(Q), L2(Q)?). Since L? is compactly
embedded in H71(Q) = Vo (—A)~! is compact on L2 =
As(y,u) = Vy is compact on Zg
= Corr. 5.2 V3,4 is twice continuously differentiable

@ But: for A;(y, u) = u the assumptions of Corr. 5.2 are not
fulfilled.
One can show: Wy , is nowhere twice Fréchet differentiable

So we cannot show g-superlinear convergence.
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

QOutline

© Newton's method with smoothed Newton step
@ Assumptions and formulation of the algorithm
@ Convergence analysis
@ Application to model problem
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Smoothed Newton step

@ In this section we modify Newton's algorithm such that the
method converges g-superlinear also in the case that W is not
twice continuously differentiable
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Additional assumptions

Recall: (P5b) tells us: gi(z) = ni(Aiz)
(P6a) We can split the constraints (3m’):
o for m+1,...,m ("good" constraints):
we have V; ; € C*(Zg)
Remark (Corr. 5.3) sufficient:
o A€ L(Z,L3(Q:)%) is compact or
o A€ L(Z,L%(Q)%) where ; > 2
o fori=1,...,m' (the others):
A; = viB + C; with )
B e £(Z,12(Q)9) is common lin. operator
G e L(Z, Lz(fl)a) are compact lin. operators
7 €R
Notice: all (these) A; live in the same spaces (e.g. all d; = d)
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Assumptions and formulation of the algorithm
Convergence analysis

Newton’s method with smoothed Newton step Application to model problem

Additional assumptions

Recall: (P5b) tells us: gi(z) = ni(Aiz)
(P6a) We can split the constraints (3m’):

o for m+1,...,m ("good" constraints):

we have V; ; € C?(Zg)
Remark (Corr. 5.3) sufficient:

o A€ L(Z,L3(Q:)%) is compact or
o A€ L(Z,L%(Q)%) where ; > 2
o fori=1,...,m' (the others):
A; = viB + C; with )
B e £(Z,12(Q)9) is common lin. operator
G e L(Z, Lz(fl)a) are compact lin. operators
7 €R
Notice: all (these) A; live in the same spaces (e.g. all d; = d)
(P6b) The mapping H : Z — V x [2(Q)?, H(z) := (Ez,Bz) is
surjective.
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Newton's method with smoothed Newton step

© Choose 0 < v < 1, 20 € Zg; Set n:=0
@ Compute (7 € Z such that it minimizes

Ger(Q) = S (D2 g(2")G, ) + (D). )
= (D260 + (DI,

3 (302106, 0) + (OViale7).0)
subject to E¢ = OI:r11d B(=0

Derive a multiplier (v}, %) € V* x (L2(€2)9)* such that
DGy (1) + E*vi + B'v* =0
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Newton's method with smoothed Newton step

© Choose 0 < v < 1, 20 € Zg; Set n:=0
Q@ Compute 1 €7
© Compute ¢ € U (=~ (Ker B)*) such that it minimizes

TQ) = (Ev.Q)
F2ADPIN(GHO, ) + (DI, )

+Z/(w, (27 + 1) + 1B, wil(x)) +
(Dsri A" + ), i), CiC )b
LD DN TN ICRRSRRYS
HDVig(e"), 10)



Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Newton's method with smoothed Newton step

© Choose 0 < v < 1, 20 € Zg; Set n:=0
Q@ Compute 1 €7
© Compute L el
Q@ Compute (3 € Z such that it minimizes

1(DzJ(Z")(Cl + QFC), G+ Q+C¢) + (DI(2"), 1 + +()
+Z ( 2"+C 4 )¢, Q) + (DWig(2"+C + C2)74>>
+ 2 (;<D2 a(2") (G + GHQ), G+ GO

i=m'+1

HDWjg(2"), G + C2+¢))
subject to E((2 + () =0
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Newton's method with smoothed Newton step

@ Choose 0 <y <1,2°€ Zg; Set n:=0
Q@ Compute (; € Z
© Compute L el
Q Compute 3 7

@ Set 2"l := 2"+ + (o + (3; Set n:=n+ 1 and goto 2 if
stop. crit. is not fulfilled
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Convergence rate

Lemma (Gfrerer (5.4); convergence rate)

Assume (P1) — (P6), (Q1) and (PQ2).
Then:

Gz + Il z+ Gl z+ 127l 2 gay +llvs —villve = O(l2" =Zqll z¢)
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Assumptions and formulation of the algorithm

le Convergence analysis

Newton’s method with smoothed Newton step Application to model problem

Convergence rate

Theorem (Gfrerer (5.5); convergence rate)
Assume (P1) - (P6), (Q1) and (PQ2) and moreover

o that there is some bounded set K C L2(S~2)a which is either
o bounded in L?(f))a with ¥ > 2 or
o the elements have the form k(x) = R(x)k(y), where k belongs

to a compact subset K C L?(Q)? and R or from a bounded
subset R C L°°(§N2)axa
such that for the smoothed Newton steps we have
dist(B(s, ||BG|IK) = o([|12" — Z4l|z) for all 2" € Zg in some
neighborhood of zg.
Then: there exists a increasing function w : Ry — Ry with
lim¢—o, w(t) = 0 such that
12" = Zgllz < w(l|z" — Zgll2)l|2" — Z4ll 2
(g-superlinear convergence)




Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Model problem

We can apply Newton’'s method with smoothed Newton step to

(MP)
@ Recall: V5, and W3 4 are twice continuously differentiable on
ZE =>m=1

o VU o(y,u) = u is not twice continuously differentiable
But a decomposition as in (P6) is possible:
B(y,u) = Ai(y,u) =u, 11 :=1, G(y,u) :=0and
U= {0} x L2(Q) (= (KerB)™t)
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Model problem: the algorithm

O Let z" = (y", u") be some iterate

Stefan Takacs, JKU Linz Generalized Penalty Methods Solving the resulting subprobl



Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Model problem: the algorithm

O Let z" = (y", u") be some iterate
@ Find (1 := ((1,y, C1,4) such that it minimizes something
subject to

E(¢y,¢y) =0, ie., =A(, = (, in Q with {, =0 on 0Q

B((y,¢y) =0, ie., (,=00n Q.
Obviously this PDE has one unique solution: ¢, = 0.
The multiplier v;* € H} () is given by the variational problem

/Q((Vvl*,Vv)+(y"—yd)v+Ds7r2(y",<py)v+(Ds7r3(Vy",<ﬁg),Vv>) =0Vve H(}(Q)
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Model problem: the algorithm

O Let z" = (y", u") be some iterate

@ The multiplier vi € H}(RQ) is given by ...

© Find (o := (G, (2.u), Where (o, = 0 and (o € L2(Q), where
for each x € Q the value (3 4(x) minimizes (¢ € R)

S0 B0 — ug())C 500+ (8”() + C)
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Model problem: the algorithm

O Let z” = (y",u") be some iterate
@ The multiplier v; € H}(R) is given by ...
© Find (3 1= (Q2,y, (2,0)
Q Find (3 := ((3,y, (3,4) such that it minimizes
Jo O " —ya)y + %Cyz
A = )G+ )+ (Gt )
b D" + G pu)u + 5 DA + G )G

1
+ Dsma(y", ¢y )y + §Ds2s7r2(yna90y)<y2

. 1 n oA
+ (Dsﬂ'3(Vy",<pg>+§<Dszs7r3(Vy , Pg) Vi, Cy))
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

RENENS
The multiplier v; € H3(Q) in step 3 fulfills

0 = /Q«Vv;,w (0" = ya + Cay + Dema(y", 2y)

+DLm2(y", 0y )(3,y )V + (Dsms(Vy", @)
+DZ4m3(Vy", 2)VGs,y, Vv)) Vv € H3(Q)
0 = 6(”” —uqg + CZ,u + CB,U) + Dsﬂ'l(un + CZ,U7 SDU)

+Dszs7r1(un + <2,Ll7 Sou)C3,u - V3>'<

Deduce (using construction of (3) for all x € Q
(B + DEma(u"(x) + C2,u(x), 0u(x)))C3,u(x) = v3 (x) — vi' (%)

By convexity of m1(s, t) w.r.t. s have
D2y (u"(x) + C.u(x), pu(x)) > 0 and since H}(Q) is compactly
embedded in L?(2), together with Lemma 5.4, the assumptions of
the convergence theorem are fulfilled.

= algorithm converges for (MP) superlinearly.
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Remarks and Conclusions

@ To ensure global convergence:

E.g.: Apply alternating: smoothed Newton step and Newton
step with line search

Accept smoothed Newton step only if decrease in objective is
achieved

@ Numerical results show good results (if the approximation
close enough to the exact solution)
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Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem

Thanks for your attention!

Stefan Takacs, JKU Linz Generalized Penalty Methods Solving the resulting subprobl



Assumptions and formulation of the algorithm
Convergence analysis
Newton’s method with smoothed Newton step Application to model problem
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