# Generalized Penalty Methods Solving the resulting subproblems

#### Stefan Takacs Seminar Infinite Dimensional Optimization

Jan, 26, 2010



supported by



Stefan Takacs, JKU Linz

Generalized Penalty Methods Solving the resulting subproble

# Outline

#### Introduction

- Formulation of the (sub-)problem
- Some properties

#### 2 Newton's method with line search

- Formulation of the algorithm
- Convergence analysis

#### ③ Newton's method with smoothed Newton step

- Assumptions and formulation of the algorithm
- Convergence analysis
- Application to model problem

< 同 > < 三 > < 三 >

Formulation of the (sub-)problem Some properties

# Outline

#### 1 Introduction

- Formulation of the (sub-)problem
- Some properties

#### Newton's method with line search

- Formulation of the algorithm
- Convergence analysis

#### 3 Newton's method with smoothed Newton step

- Assumptions and formulation of the algorithm
- Convergence analysis
- Application to model problem

#### Introduction

Newton's method with line search Newton's method with smoothed Newton step Formulation of the (sub-)problem Some properties

# Optimization problem

In this talk we want to solve problems like

 $(P_q) \qquad \min_{z \in Z} J_q(z)$ subject to Ez = 0where  $J_q(z) := J(z) + \Psi_q(z)$  $:= J(z) + \sum_{i=1}^m \int_{\Omega_i} \psi_{i,q_i}(g_i(z)(x) - \varphi_i(x)) dx$  $\Psi_{i,q_i}(z) :=$ 

- Z is a Hilbert space
- $E: Z \rightarrow V$  bounded and linear

$$Z_{E} := \{z \in Z \ : \ Ez = 0\}$$

- $g_i: Z \to L^{r_i}(\Omega_i)$  and  $\varphi_i \in L^{r_i}(\Omega_i)$
- $\psi_{i,q}:\mathbb{R}
  ightarrow(-\infty,\infty]$  is a penalty function
- Assume q to be fixed

Formulation of the (sub-)problem Some properties

# Model problem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Formulation of the (sub-)problem Some properties

### Basic assumptions

- (P1) There is a feasible point  $z_f$
- (P2) The cost functional J is convex and lower semi continuous (I.s.c.) on Z<sub>E</sub>
- (P3)  $\exists \alpha > 0 \text{ s.t. } \forall z_1, z_2 \in Z_E$ :

$$J(z_2) \ge J(z_1) + J'(z_1, z_2 - z_1) + \frac{lpha}{2} \|z_2 - z_1\|^2$$

(P4) For every closed convex set  $U \subset L^{r_i}(\Omega_i)$  the pre-image  $\{z \in Z_E : g_i(z) \in U\}$  is closed. Further all  $g_i$  are convex in z (for a.e.  $x \in \Omega_i$ )

(Q1)  $\psi_{i,q}$  is convex, l.s.c. and increasing and

$$(-\infty,0)\subset \mathrm{dom}\psi_{i,q}$$

(ロ) (部) (E) (E) (E)

Formulation of the (sub-)problem Some properties

## ldea

- We have to solve a general non-linear optimization problem with equality constraints
- (Within the model problem) J itself is smooth
- Idea: Use a Newton like method
- But:  $\Psi_q$  is not sufficiently smooth

Formulation of the (sub-)problem Some properties

# Additional assumptions on the problem

#### (P5a) J is twice continuously differentiable on $Z_E$ $D^2 J(z)$ is bounded within bounded subsets of $Z_E$

(P5b)  $g_i$  has the representation  $g_i(z)(x) = \eta_i((A_i \ z)(x))$ , where  $A_i \in \mathcal{L}(Z, L^2(\Omega_i)^{d_i})$  is a continuous linear operator;  $d_i \ge 1$  $\eta_i : \mathbb{R}^{d_i} \to \mathbb{R}$  is a convex function

Note that (P5b) does not imply that  $g_i$  is twice continuously differentiable, even if  $\eta_i$  is smooth.

イロト 不得下 イヨト イヨト

Formulation of the (sub-)problem Some properties

# Additional assumptions on the problem

- (P5a) J is twice continuously differentiable on  $Z_E$  $D^2 J(z)$  is bounded within bounded subsets of  $Z_E$
- (P5b)  $g_i$  has the representation  $g_i(z)(x) = \eta_i((A_i \ z)(x))$ , where  $A_i \in \mathcal{L}(Z, L^2(\Omega_i)^{d_i})$  is a continuous linear operator;  $d_i \ge 1$  $\eta_i : \mathbb{R}^{d_i} \to \mathbb{R}$  is a convex function

Note that (P5b) does not imply that  $g_i$  is twice continuously differentiable, even if  $\eta_i$  is smooth.

Formulation of the (sub-)problem Some properties

#### Additional assumptions on the problem

(PQ2a) 
$$\pi_i : \mathbb{R}^{d_i} \times \mathbb{R} \to \mathbb{R}, \ \pi_i(s, t) := \psi_{i,q_i}(\eta_i(s) - t)$$
 is twice  
continuously differentiable w.r.t. *s* for all  $t \in \mathbb{R}$   
 $\exists \ L > 0$  const. s.t.

 $|D_{ss}^2\pi_i(s,t)|_2 \leq L$ 

$$|D^2_{ss}\pi_i(s,t) - D^2_{ss}\pi_i(\overline{s},t)|_2 \leq L|s-\overline{s}|_2$$

for all  $(s,\overline{s},t)\in\mathbb{R}^{d_i} imes\mathbb{R}^{d_i} imes\mathbb{R}$  where

 $|D_{ss}^2\pi(s,t)|_2 := \sup\{\langle D_{22}^2\pi_i(s,t)h,k 
angle \ : \ |h|_2 = 1, |k|_2 = 1\}$ 

(PQ2b)  $\Psi_{i,q}$  is continuous on Z

Note that in this setting  $\Psi_{i,q}(z) = \int_{\Omega_i} \pi_i((A_i z)(x), \varphi_i(x)) dx$ 

・ 同 ト ・ ヨ ト ・ ヨ ト …

Formulation of the (sub-)problem Some properties

#### Additional assumptions on the problem

(PQ2a) 
$$\pi_i : \mathbb{R}^{d_i} \times \mathbb{R} \to \mathbb{R}, \ \pi_i(s, t) := \psi_{i,q_i}(\eta_i(s) - t)$$
 is twice  
continuously differentiable w.r.t. *s* for all  $t \in \mathbb{R}$   
 $\exists \ L > 0 \text{ const. s.t.}$ 

 $|D_{ss}^2\pi_i(s,t)|_2 \leq L$ 

$$|D^2_{ss}\pi_i(s,t)-D^2_{ss}\pi_i(\overline{s},t)|_2\leq L|s-\overline{s}|_2$$

for all  $(s,\overline{s},t)\in\mathbb{R}^{d_i} imes\mathbb{R}^{d_i} imes\mathbb{R}$  where

 $|D_{ss}^2\pi(s,t)|_2 := \sup\{\langle D_{22}^2\pi_i(s,t)h,k \rangle : |h|_2 = 1, |k|_2 = 1\}$ 

(PQ2b)  $\Psi_{i,q}$  is continuous on Z

Note that in this setting  $\Psi_{i,q}(z) = \int_{\Omega_i} \pi_i((A_i \ z)(x), \varphi_i(x)) dx$ 

• • = • • = •

Formulation of the (sub-)problem Some properties

#### Discussion for the model problem

The conditions (P5) and (PQ2) are

- not fulfilled for combined logarithmic-quadratic penalty function for original setting and model problem
- **Replace** constraint 3 by:

$$\hat{g}_3(z) := \sqrt{1+|
abla y|_2^2} \leq \sqrt{1+arphi_g^2} =: \hat{arphi}_g$$

**Then:** The conditions are fulfilled for combined penalty function with

$$\begin{aligned} \pi_1(s,t) &= \psi_{1,q}(s-t) & A_1(y,u) = u \\ \pi_2(s,t) &= \psi_{2,q}(s-t) & A_2(y,u) = y \\ \pi_3((s_1,s_2),t) &= \psi_{3,q}(\sqrt{1+|(s_1,s_2)|_2^2}-t) & A_3(y,u) = \nabla y \end{aligned}$$

・ロン ・四と ・ヨン ・ヨン

Formulation of the (sub-)problem Some properties

# Differentiability

#### Lemma (Gfrerer (5.1) - Differentiability)

Assume: (P4), (P5b), (PQ2) Then:  $\Psi_{i,q}$  is twice Gâteaux-differentiable and  $\Psi_{i,q} \in C^{1,1}(Z)$ where

$$\langle D\Psi_{i,q}(z),h\rangle = \int_{\Omega_i} \langle D_s \pi_i(A_i z(x),\varphi_i(x)),A_i h(x)\rangle dx \langle D^2 \Psi_{i,q}(z)h,k\rangle = \int_{\Omega_i} \langle D_{ss}^2 \pi_i(A_i z(x),\varphi_i(x))A_i h(x),A_i k(x)\rangle dx$$

and some continuity result on the second derivative holds: for all  $z \in Z$ :

 $\lim_{z' \to z} \sup_{h \in \mathcal{B}, \tilde{k} \in \tilde{\mathcal{K}}} \int_{\Omega_{i}} |\langle D_{ss}^{2} \pi_{i}(A_{i}z'(x), \varphi(x)) - D_{ss}^{2} \pi_{i}(A_{i}z(x), \varphi(x))) \rangle h(x), \tilde{k}(x) \rangle | \mathrm{d}x = 0$ 

Formulation of the (sub-)problem Some properties

# Differentiability

#### Lemma (Gfrerer (5.1) - Differentiability)

Assume: (P4), (P5b), (PQ2) **Then:**  $\Psi_{i,q}$  is twice Gâteaux-differentiable and  $\Psi_{i,q} \in C^{1,1}(Z)$  and some continuity result on the second derivative holds: for all  $z \in Z$ :

$$\lim_{z' \to z} \sup_{h \in \mathcal{B}, \tilde{k} \in \tilde{\mathcal{K}}} \int_{\Omega_{i}} |\langle D_{ss}^{2} \pi_{i}(A_{i}z'(x), \varphi(x)) - D_{ss}^{2} \pi_{i}(A_{i}z(x), \varphi(x))) h(x), \tilde{k}(x) \rangle| dx = 0$$

for every bounded subset  $\mathcal{B} \subset L^2(\Omega_i)^{d_i}$  and every  $\tilde{\mathcal{K}}$  with **either**:

- $\tilde{\mathcal{K}}$  is bounded in  $L^{\hat{r}_i}(\Omega_i)^{d_i}$  with  $\hat{r}_i > 2$  or
- $\tilde{\mathcal{K}} = \{R(x)k(x) : k(x) \text{ belongs to } \mathcal{K} \subset L^2(\Omega_i)^{d_i} \text{ compact and } R \in \mathcal{R} \subset L^{\infty}(\Omega_i)^{d_i \times d_i} \text{ bounded}\}.$

(D) (A) (A) (A)

Formulation of the algorithm Convergence analysis

# Outline

#### Introduction

- Formulation of the (sub-)problem
- Some properties

#### 2 Newton's method with line search

- Formulation of the algorithm
- Convergence analysis

#### 3 Newton's method with smoothed Newton step

- Assumptions and formulation of the algorithm
- Convergence analysis
- Application to model problem

### Newton's method with line search

If we have a twice differentiable convex function, it is reasonable to apply Newtons' method:

- Choose  $0 < \gamma < 1$ ,  $z^0 \in Z_E$ ; Set n := 0
- **2** Compute  $h^n \in Z_E$  such that it minimizes

$$\frac{1}{2}\langle D^2 J_q(z^n)h,h\rangle + \langle DJ_q(z^n),h\rangle$$

3 Line search: Choose  $\sigma_n \in \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$  s.t.

 $J_q(z^n + \sigma_n h^n) \leq J_q(z^n) + \gamma \sigma_n \langle DJ_q(z^n), h^n \rangle$ 

Set z<sup>n+1</sup> := z<sup>n</sup> + σ<sub>n</sub>h<sup>n</sup>; Set n := n + 1 and goto 2 if stop. crit. is not fulfilled

### Newton's method with line search

If we have a twice differentiable convex function, it is reasonable to apply Newtons' method:

- Choose  $0 < \gamma < 1$ ,  $z^0 \in Z_E$ ; Set n := 0
- 2 Compute  $h^n \in Z_E$  such that it minimizes

$$\frac{1}{2}\langle D^2 J_q(z^n)h,h\rangle + \langle DJ_q(z^n),h\rangle$$

Solution Line search: Choose  $\sigma_n \in \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$  s.t.

$$J_q(z^n + \sigma_n h^n) \leq J_q(z^n) + \gamma \sigma_n \langle DJ_q(z^n), h^n \rangle$$

 Set z<sup>n+1</sup> := z<sup>n</sup> + σ<sub>n</sub>h<sup>n</sup>; Set n := n + 1 and goto 2 if stop. crit. is not fulfilled

# Some remarks

- In (MP) the PDE is part of the constraints of the quadratic subproblems.
- The quadratic subproblems

$$\min_{h\in Z_E} \frac{1}{2} \langle D^2 J_q(z^n)h,h\rangle + \langle DJ_q(z^n),h\rangle$$

can be solved e.g. using the optimality system: Find a stationary point  $(h,p)\in Z imes V$  of

$$\frac{1}{2}\langle D^2 J_q(z^n)h,h\rangle + \langle DJ_q(z^n),h\rangle + \langle Eh,p\rangle$$

Leads to KKT-system:

$$D^2 J_q(z^n)h + E^*p = -D J_q(z^n)$$
  
Eh = 0

Formulation of the algorithm Convergence analysis

## Convergence of Newton's method

#### Theorem (Gfrerer (5.3); Convergence)

Assume (P1) – (P5), (Q1) and (PQ2) and let  $z^n$  be generated by Newton's method with line search. Then:  $\lim_{n\to\infty} z^n = \overline{z}_q$ .

If  $\Psi_q$  (and therefore  $J_q$ ) is twice continuously differentiable on  $Z_E$ , then the algorithm converges q-superlinear.

Formulation of the algorithm Convergence analysis

## Continuous Differentiability

#### Corollary (Gfrerer (5.2) - Continuous Differentiability)

**Assume:** (P4), (P5b), (PQ2) and moreover **either** 

- $A_i$  is compact from  $Z_E$  into  $L^2(\Omega_i)^{d_i}$  or
- $A_i \in \mathcal{L}(Z_E, L^{\hat{r}_i}(\Omega_i)^{d_i})$  with  $r_i > 2$ .

**Then:**  $\Psi_{i,q}$  is twice **continuously** differentiable on  $Z_E$ 

Formulation of the algorithm Convergence analysis

# Model problem

- H<sub>0</sub><sup>1</sup> is compactly embedded in L<sup>2</sup> ⇒ A<sub>2</sub>(y, u) = y is compact ⇒<sub>Corr. 5.2</sub> Ψ<sub>2,q</sub> is twice continuously differentiable
  -Δ: H<sub>0</sub><sup>1</sup>(Ω) → H<sup>-1</sup>(Ω) is homeomorphism ⇒ ∇ ∘ (-Δ)<sup>-1</sup> ∈ L(H<sup>-1</sup>(Ω), L<sup>2</sup>(Ω)<sup>d</sup>). Since L<sup>2</sup> is compactly embedded in H<sup>-1</sup>(Ω) ⇒ ∇ ∘ (-Δ)<sup>-1</sup> is compact on L<sup>2</sup> ⇒ A<sub>3</sub>(y, u) = ∇y is compact on Z<sub>E</sub> ⇒<sub>Corr. 5.2</sub> Ψ<sub>3,q</sub> is twice continuously differentiable
  But: for A<sub>1</sub>(y, u) = u the assumptions of Corr. 5.2 are not
- But: for  $A_1(y, u) = u$  the assumptions of Corr. 5.2 are not fulfilled.

One can show:  $\Psi_{1,q}$  is nowhere twice Fréchet differentiable

So we cannot show q-superlinear convergence.

# Outline

#### Introduction

- Formulation of the (sub-)problem
- Some properties
- 2 Newton's method with line search
  - Formulation of the algorithm
  - Convergence analysis

#### ③ Newton's method with smoothed Newton step

- Assumptions and formulation of the algorithm
- Convergence analysis
- Application to model problem

Assumptions and formulation of the algorithm Convergence analysis Application to model problem

#### Smoothed Newton step

• In this section we modify Newton's algorithm such that the method converges q-superlinear also in the case that  $\Psi_q$  is not twice continuously differentiable

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

## Additional assumptions

Recall: (P5b) tells us: 
$$g_i(z) = \eta_i(A_i z)$$
  
(P6a) We can split the constraints  $(\exists m')$ :  
• for  $m' + 1, ..., m$  ("good" constraints):  
we have  $\Psi_{i,q} \in C^2(Z_E)$   
**Remark (Corr. 5.3) sufficient:**  
•  $A_i \in \mathcal{L}(Z, L^2(\Omega_i)^{d_i})$  is compact or  
•  $A_i \in \mathcal{L}(Z, L^{\tilde{\tau}_i}(\Omega_i)^{d_i})$  where  $\tilde{r}_i > 2$   
• for  $i = 1, ..., m'$  (the others):  
 $A_i = \gamma_i B + C_i$  with  
 $B \in \mathcal{L}(Z, L^2(\tilde{\Omega})^{\tilde{d}})$  is **common** lin. operator  
 $C_i \in \mathcal{L}(Z, L^2(\tilde{\Omega})^{\tilde{d}})$  are **compact** lin. operators  
 $\gamma_i \in \mathbb{R}$   
Notice: all (these)  $A_i$  live in the same spaces (e.g. all  $d_i = \tilde{d}$ )  
(P6b) The mapping  $\mathcal{H} : Z \to V \times L^2(\tilde{\Omega})^{\tilde{d}}, \mathcal{H}(z) := (Ez, Bz)$  is

イロン イヨン イヨン イヨン

臣

# Additional assumptions

Recall: (P5b) tells us: 
$$g_i(z) = \eta_i(A_i z)$$
  
(P6a) We can split the constraints  $(\exists m')$ :  
• for  $m' + 1, ..., m$  ("good" constraints):  
we have  $\Psi_{i,q} \in C^2(Z_E)$   
**Remark (Corr. 5.3) sufficient:**  
•  $A_i \in \mathcal{L}(Z, L^2(\Omega_i)^{d_i})$  is compact or  
•  $A_i \in \mathcal{L}(Z, L^{\tilde{\tau}_i}(\Omega_i)^{d_i})$  where  $\tilde{\tau}_i > 2$   
• for  $i = 1, ..., m'$  (the others):  
 $A_i = \gamma_i B + C_i$  with  
 $B \in \mathcal{L}(Z, L^2(\tilde{\Omega})^{\tilde{d}})$  is **common** lin. operator  
 $C_i \in \mathcal{L}(Z, L^2(\tilde{\Omega})^{\tilde{d}})$  are **compact** lin. operators  
 $\gamma_i \in \mathbb{R}$   
Notice: all (these)  $A_i$  live in the same spaces (e.g. all  $d_i = \tilde{d}$ )  
(P6b) The mapping  $\mathcal{H} : Z \to V \times L^2(\tilde{\Omega})^{\tilde{d}}, \mathcal{H}(z) := (Ez, Bz)$  is

surjective.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Assumptions and formulation of the algorithm Convergence analysis Application to model problem

#### Newton's method with smoothed Newton step

$$\begin{aligned} G_{z^n}(\zeta) &:= \frac{1}{2} \langle D^2 J_q(z^n)\zeta, \zeta \rangle + \langle DJ_q(z^n), \zeta \rangle \\ &= \frac{1}{2} \langle D^2 J(z^n)\zeta, \zeta \rangle + \langle DJ(z^n), \zeta \rangle \\ &+ \sum_{i=1}^m \left( \frac{1}{2} \langle D^2 \Psi_{i,q}(z^n)\zeta, \zeta \rangle + \langle D\Psi_{i,q}(z^n), \zeta \rangle \right) \end{aligned}$$

subject to  $E\zeta = 0$  and  $B\zeta = 0$ Derive a multiplier  $(v_1^*, \nu^*) \in V^* \times (L^2(\tilde{\Omega})^{\tilde{d}})^*$  such that  $DG_{z^n}(\zeta_1) + E^*v_1^* + B^*\nu^* = 0$ 

- 3 Compute  $\zeta_2 \in \mathcal{U}$
- Compute  $\zeta_3 \in Z$

Stefan Takacs, JKU Linz

Set n = 18 + 10 and both by if = 2999 Generalized Penalty Methods Solving the resulting subproble

#### Newton's method with smoothed Newton step

• Choose 
$$0 < \gamma < 1$$
,  $z^0 \in Z_E$ ; Set  $n := 0$ 

- **2** Compute  $\zeta_1 \in Z$
- $\bullet \quad \text{Compute } \zeta_2 \in \mathcal{U} \ (\approx ({\sf Ker} \ B)^{\perp}) \ {\sf such that it minimizes}$

$$T_{n}(\zeta) := \langle E^{*}v_{1}^{*}, \zeta \rangle \\ + \frac{1}{2} \langle D^{2}J(z^{n})(\zeta_{1}+\zeta), \zeta_{1}+\zeta \rangle + \langle DJ(z^{n}), \zeta_{1}+\zeta \rangle \\ + \sum_{i=1}^{m'} \int_{\tilde{\Omega}} (\pi_{i}((A_{i}(z^{n}+\zeta_{1})+\gamma_{i}B\zeta)(x), \varphi_{i}(x)) + \langle D_{s}\pi_{i}(A_{i}(z^{n}+\zeta_{1})), \varphi_{i}(x)), C_{i}\zeta(x)\rangle) dx \\ + \sum_{i=m'+1}^{m} (\frac{1}{2} \langle D^{2}\Psi_{i,q}(z^{n})(\zeta_{1}+\zeta), \zeta_{1}+\zeta \rangle \\ + \langle D\Psi_{i,q}(z^{n}), \zeta_{1}+\zeta \rangle)$$

#### Newton's method with smoothed Newton step

**1** Choose 
$$0 < \gamma < 1$$
,  $z^0 \in Z_E$ ; Set  $n := 0$ 

- **2** Compute  $\zeta_1 \in Z$
- **③** Compute  $\zeta_2 \in \mathcal{U}$
- Compute  $\zeta_3 \in Z$  such that it minimizes

$$\frac{1}{2} \langle D^2 J(z^n)(\zeta_1 + \zeta_2 + \zeta), \zeta_1 + \zeta_2 + \zeta \rangle + \langle DJ(z^n), \zeta_1 + \zeta_2 + \zeta \rangle$$

$$+ \sum_{i=1}^{m'} \left( \frac{1}{2} \langle D^2 \Psi_{i,q}(z^n + \zeta_1 + \zeta_2)\zeta, \zeta \rangle + \langle D\Psi_{i,q}(z^n + \zeta_1 + \zeta_2), \zeta \rangle \right)$$

$$+ \sum_{i=m'+1}^{m} \left( \frac{1}{2} \langle D^2 \Psi_{i,q}(z^n)(\zeta_1 + \zeta_2 + \zeta), \zeta_1 + \zeta_2 + \zeta \rangle + \langle D\Psi_{i,q}(z^n), \zeta_1 + \zeta_2 + \zeta \rangle \right)$$
subject to  $E(\zeta_2 + \zeta) = 0$ 

**3** Set  $z^{n+1} := z^n + \zeta_1 + \zeta_2 + \zeta_3$ ; Set  $n := n_1 + 1_2$  and goto  $z_2$ , if  $z_3$ 

#### Newton's method with smoothed Newton step

- Choose  $0 < \gamma < 1$ ,  $z^0 \in Z_E$ ; Set n := 0
- 2 Compute  $\zeta_1 \in Z$
- 3 Compute  $\zeta_2 \in \mathcal{U}$
- Compute  $\zeta_3 \in Z$
- Set  $z^{n+1} := z^n + \zeta_1 + \zeta_2 + \zeta_3$ ; Set n := n + 1 and goto 2 if stop. crit. is not fulfilled

Assumptions and formulation of the algorithm Convergence analysis Application to model problem

#### Convergence rate

#### Lemma (Gfrerer (5.4); convergence rate)

$$\|\zeta_1\|_{Z} + \|\zeta_2\|_{Z} + \|\zeta_3\|_{Z} + \|\nu^*\|_{L^2(\tilde{\Omega}^{\tilde{d}})} + \|v_3^* - v_1^*\|_{V^*} = \mathcal{O}(\|z^n - \overline{z}_q\|_{Z_E})$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

# Convergence rate

#### Theorem (Gfrerer (5.5); convergence rate)

Assume (P1) - (P6), (Q1) and (PQ2) and moreover

- that there is some bounded set  $ilde{\mathcal{K}} \subset L^2( ilde{\Omega})^{ ilde{d}}$  which is either
  - bounded in  $L^{\hat{r}}(\tilde{\Omega})^{\tilde{d}}$  with  $\hat{r} > 2$  or
  - the elements have the form  $\tilde{k}(x) = R(x)k(y)$ , where k belongs to a compact subset  $\mathcal{K} \subset L^2(\tilde{\Omega})^{\tilde{d}}$  and R or from a bounded subset  $\mathcal{R} \subset L^{\infty}(\tilde{\Omega})^{\hat{d} \times \hat{d}}$

such that for the smoothed Newton steps we have dist $(B\zeta_3, \|B\zeta_3\|\tilde{\mathcal{K}}) = o(\|z^n - \overline{z}_q\|_Z)$  for all  $z^n \in Z_E$  in some neighborhood of  $\overline{z}_q$ .

**Then**: there exists a increasing function  $\omega : \mathbb{R}_+ \to \mathbb{R}_+$  with  $\lim_{t\to 0_+} \omega(t) = 0$  such that  $\|z^{n+1} - \overline{z}_q\|_Z \le \omega(\|z^n - \overline{z}_q\|_Z)\|z^n - \overline{z}_q\|_Z$  (q-superlinear convergence)

# Model problem

We can apply Newton's method with smoothed Newton step to (MP)

- Recall:  $\Psi_{2,q}$  and  $\Psi_{3,q}$  are twice continuously differentiable on  $Z_E \Rightarrow m'=1$
- $\Psi_{1,q}(y, u) = u$  is not twice continuously differentiable **But** a decomposition as in (P6) is possible:  $B(y, u) := A_1(y, u) = u, \ \gamma_1 := 1, \ C_1(y, u) := 0 \text{ and}$  $\mathcal{U} := \{0\} \times L^2(\Omega) \ (\approx (\operatorname{Ker} B)^{\perp})$

Assumptions and formulation of the algorithm Application to model problem

# Model problem: the algorithm

- **1** Let  $z^n = (y^n, u^n)$  be some iterate
- 2 Find  $\zeta_1 := (\zeta_{1,v}, \zeta_{1,u})$  such that it minimizes something

$$E(\zeta_y,\zeta_y)=$$
 0, i.e.,  $-\Delta\zeta_y=\zeta_u$  in  $\Omega$  with  $\zeta_y=$  0 on  $\partial\Omega$ 

$$-v_1^*(x)\zeta + \beta((u^n(x) - u_d(x))\zeta + \frac{1}{2}\zeta^2) + \pi_1(u^n(x) + \zeta, \varphi_u)$$

In Find  $\zeta_3 := (\zeta_{3,\nu}, \zeta_{3,\mu})$  such that it minimizes  $\langle \sigma \rangle \langle z \rangle \langle z \rangle$ 

Stefan Takacs, JKU Linz Generalized Penalty Methods Solving the resulting subproble

### Model problem: the algorithm

• Let 
$$z^n = (y^n, u^n)$$
 be some iterate

Find ζ<sub>1</sub> := (ζ<sub>1,y</sub>, ζ<sub>1,u</sub>) such that it minimizes something subject to

$$E(\zeta_y,\zeta_y)=$$
0, i.e.,  $-\Delta\zeta_y=\zeta_u$  in  $\Omega$  with  $\zeta_y=$ 0 on  $\partial\Omega$ 

$$\begin{split} B(\zeta_y,\zeta_y) &= 0, \text{ i.e., } \zeta_u = 0 \text{ on } \Omega. \\ \text{Obviously this PDE has one unique solution: } \zeta_y \equiv 0. \\ \text{The multiplier } v_1^* \in H_0^1(\Omega) \text{ is given by the variational problem} \\ \int_{\Omega} (\langle \nabla v_1^*, \nabla v \rangle + (y^n - y_d)v + D_s \pi_2(y^n, \varphi_y)v + \langle D_s \pi_3(\nabla y^n, \hat{\varphi}_g), \nabla v \rangle) = 0 \quad \forall v \in H_0^1(\Omega) \end{split}$$

Sind ζ<sub>2</sub> := (ζ<sub>2,y</sub>, ζ<sub>2,u</sub>), where ζ<sub>2,y</sub> = 0 and ζ<sub>2,u</sub> ∈ L<sup>2</sup>(Ω), where for each x ∈ Ω the value ζ<sub>2,u</sub>(x) minimizes (ζ ∈ ℝ)

$$-v_1^*(x)\zeta + \beta((u^n(x) - u_d(x))\zeta + \frac{1}{2}\zeta^2) + \pi_1(u^n(x) + \zeta, \varphi_u)$$

• Find  $\zeta_3 := (\zeta_{3,y}, \zeta_{3,u})$  such that it minimizes  $\langle B \rangle \langle E \rangle \langle E \rangle \langle E \rangle$ Stefan Takacs, JKU Linz Generalized Penalty Methods Solving the resulting subproble

## Model problem: the algorithm

Stefan Takacs, JKU Linz Generalized Penalty Methods Solving the resulting subproble

## Model problem: the algorithm

• Let 
$$z^n = (y^n, u^n)$$
 be some iterate

$${f O}$$
 The multiplier  $v_1^*\in H^1_0(\Omega)$  is given by …

• Find 
$$\zeta_2 := (\zeta_{2,y}, \zeta_{2,u})$$

$${f O}$$
 Find  $\zeta_3:=(\zeta_{3,y},\zeta_{3,u})$  such that it minimizes

$$\begin{split} &\int_{\Omega} \left( (y^{n} - y_{d})\zeta_{y} + \frac{1}{2}\zeta_{y}^{2} \\ &+ \beta((u^{n} - u_{d})(\zeta_{u} + \zeta_{2,u}) + \frac{1}{2}(\zeta_{u} + \zeta_{2,u})^{2}) \\ &+ D_{s}\pi_{1}(u^{n} + \zeta_{2,u},\varphi_{u})\zeta_{u} + \frac{1}{2}D_{ss}^{2}\pi_{1}(u^{n} + \zeta_{2,u},\varphi_{u})\zeta_{u}^{2} \\ &+ D_{s}\pi_{2}(y^{n},\varphi_{y})\zeta_{y} + \frac{1}{2}D_{ss}^{2}\pi_{2}(y^{n},\varphi_{y})\zeta_{y}^{2} \\ &+ \langle D_{s}\pi_{3}(\nabla y^{n},\hat{\varphi}_{g}) + \frac{1}{2}\langle D_{ss}^{2}\pi_{3}(\nabla y^{n},\hat{\varphi}_{g})\nabla\zeta_{y},\zeta_{y}\rangle \rangle \end{split}$$

イロン イヨン イヨン イヨン

æ

# Remarks

The multiplier  $v_3^* \in H^1_0(\Omega)$  in step 3 fulfills

$$0 = \int_{\Omega} (\langle \nabla v_3^*, \nabla v \rangle + (y^n - y_d + \zeta_{3,y} + D_s \pi_2(y^n, \varphi_y) \\ + D_{ss}^2 \pi_2(y^n, \varphi_y) \zeta_{3,y}) v + \langle D_s \pi_3(\nabla y^n, \hat{\varphi}_g) \\ + D_{ss}^2 \pi_3(\nabla y^n, \hat{\varphi}_g) \nabla \zeta_{3,y}, \nabla v \rangle) \quad \forall v \in H_0^1(\Omega) \\ 0 = \beta(u^n - u_d + \zeta_{2,u} + \zeta_{3,u}) + D_s \pi_1(u^n + \zeta_{2,u}, \varphi_u) \\ + D_{ss}^2 \pi_1(u^n + \zeta_{2,u}, \varphi_u) \zeta_{3,u} - v_3^*$$

Deduce (using construction of  $\zeta_2$ ) for all  $x \in \Omega$ 

$$(\beta + D_{ss}^2 \pi_1(u^n(x) + \zeta_{2,u}(x), \varphi_u(x)))\zeta_{3,u}(x) = v_3^*(x) - v_1^*(x)$$

By convexity of  $\pi_1(s, t)$  w.r.t. s have  $D_{ss}^2 \pi_1(u^n(x) + \zeta_{2,u}(x), \varphi_u(x)) \ge 0$  and since  $H_0^1(\Omega)$  is compactly embedded in  $L^2(\Omega)$ , together with Lemma 5.4, the assumptions of the convergence theorem are fulfilled.

 $\Rightarrow$  algorithm converges for (MP) superlinearly.

Assumptions and formulation of the algorithm Convergence analysis Application to model problem

# Remarks and Conclusions

- To ensure global convergence: E.g.: Apply alternating: smoothed Newton step and Newton step with line search Accept smoothed Newton step only if decrease in objective is achieved
- Numerical results show good results (if the approximation close enough to the exact solution)

・ロト ・回ト ・ヨト ・ヨト

| Introduction                              | Assumptions and formulation of the algorithm |
|-------------------------------------------|----------------------------------------------|
| Newton's method with line search          | Convergence analysis                         |
| Newton's method with smoothed Newton step | Application to model problem                 |

#### Thanks for your attention!

・ロ・ ・聞・ ・ヨ・ ・ヨ・

æ

#### Literature

• H. Gfrerer: Generalized Penalty Methods for a Class of Convex Optimization Problems with Pointwise Inequality Constraints