Generalized Penalty Methods

Stefan Takacs Seminar Infinite Dimensional Optimization

Jan, 19, 2010

supported by

Outline

- Introduction
 - General problem
 - Some properties
- @ Generalized Penalty Methods
 - Barrier function
 - Convergence result
 - Construction of generalized penalty functions
- Error estimates
 - A-priori error estimates
 - Application to examples of penalty functions
- 4 Duality
 - Lagrange Multipliers
 - Estimating Lagrange Multipliers

Outline

- Introduction
 - General problem
 - Some properties
- 2 Generalized Penalty Methods
 - Barrier function
 - Convergence result
 - Construction of generalized penalty functions
- 3 Error estimates
 - A-priori error estimates
 - Application to examples of penalty functions
- 4 Duality
 - Lagrange Multipliers
 - Estimating Lagrange Multipliers

Optimization problem

(P)
$$\min_{z \in Z} J(z)$$
 subject to
$$Ez = 0$$
 $g_i(z)(x) \leq \varphi_i(x)$ for a.e. $x \in \Omega_i, \ i = 1, \dots m$

- Z is a Hilbert space
- $E: Z \rightarrow V$ bounded and linear

$$Z_E := \{z \in Z : Ez = 0\}$$

• $g_i: Z \to L^{r_i}(\Omega_i)$ and $\varphi_i \in L^{r_i}(\Omega_i)$

$$Z_F := \{z \in Z : Ez = 0 \text{ and } g_i(z)(x) \le \varphi_i(x) \text{ for a.e. } x \in \Omega_i\}$$

Optimization problem

(P)
$$\min_{z \in Z} J(z)$$
 subject to
$$Ez = 0$$
 $g_i(z)(x) \leq \varphi_i(x)$ for a.e. $x \in \Omega_i, i = 1, \dots, m$

- Z is a Hilbert space
- $E: Z \to V$ bounded and linear

$$Z_E := \{z \in Z : Ez = 0\}$$

• $g_i: Z \to L^{r_i}(\Omega_i)$ and $\varphi_i \in L^{r_i}(\Omega_i)$

$$Z_F := \{z \in Z : Ez = 0 \text{ and } g_i(z)(x) \le \varphi_i(x) \text{ for a.e. } x \in \Omega_i\}$$

Optimization problem

(P)
$$\min_{z \in Z} J(z)$$
 subject to
$$Ez = 0$$
 $g_i(z)(x) \leq \varphi_i(x)$ for a.e. $x \in \Omega_i, \ i = 1, \dots m$

- Z is a Hilbert space
- $E: Z \rightarrow V$ bounded and linear

$$Z_E := \{z \in Z : Ez = 0\}$$

• $g_i: Z \to L^{r_i}(\Omega_i)$ and $\varphi_i \in L^{r_i}(\Omega_i)$

$$Z_F:=\{z\in Z : Ez=0 \text{ and } g_i(z)(x)\leq arphi_i(x) \text{ for a.e. } x\in \Omega_i\}$$

Model problem

$$(\mathsf{MP}) \qquad \min_{\substack{z=(y,u)}} J(z) = \frac{1}{2} \|y-y_d\|_{L^2(\Omega)}^2 + \frac{\gamma}{2} \|u-u_d\|_{L^2(\Omega)}^2$$
 subject to
$$-\Delta y(x) = u(x) \qquad \text{in } \Omega$$

$$y(x) = 0 \qquad \text{on } \partial \Omega$$

$$u(x) \leq \varphi_u(x) \qquad \text{f.a.e } x \in \Omega$$

$$y(x) \leq \varphi_y(x) \qquad \text{f.a.e } x \in \Omega$$

Model problem

$$(\mathsf{MP}) \qquad \min_{z=(y,u)} J(z) = \frac{1}{2} \|y-y_d\|_{L^2(\Omega)}^2 + \frac{\gamma}{2} \|u-u_d\|_{L^2(\Omega)}^2$$
 subject to
$$-\Delta y(x) = u(x) \qquad \text{in } \Omega$$

$$y(x) = 0 \qquad \text{on } \partial \Omega$$

$$u(x) \leq \varphi_u(x) \qquad \text{f.a.e } x \in \Omega$$

$$y(x) \leq \varphi_y(x) \qquad \text{f.a.e } x \in \Omega$$

Model problem

$$(\mathsf{MP}) \qquad \min_{z=(y,u)} J(z) = \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\gamma}{2} \|u - u_d\|_{L^2(\Omega)}^2$$
 subject to
$$-\Delta y(x) = u(x) \qquad \text{in } \Omega$$

$$y(x) = 0 \qquad \text{on } \partial \Omega$$

$$u(x) \leq \varphi_u(x) \qquad \text{f.a.e } x \in \Omega$$

$$y(x) \leq \varphi_y(x) \qquad \text{f.a.e } x \in \Omega$$

$$|\nabla y(x)|_2 \leq \varphi_{\scriptscriptstyle F}(x) \qquad \text{f.a.e } x \in \Omega$$

(P1) There is a feasible point $z_f \in Z_F$

- (P2) The cost functional J is **convex** and lower semi continuous (I.s.c.) on Z_E
- (P3) $\exists \alpha > 0$ s.t. $\forall z_1, z_2 \in Z_E$:

$$J(z_2) \ge J(z_1) + J'(z_1, z_2 - z_1) + \frac{\alpha}{2} ||z_2 - z_1||^2$$

- (P4) For every closed convex set $U \subset L^{r_i}(\Omega_i)$ the pre-image $\{z \in Z_E : g_i(z) \in U\}$ is **closed**. Further all g_i are convex in z (for a.e. $x \in \Omega_i$)
 - (MP) fulfills the properties (P2) (P4 (P1) (P4) guarantee unique solution

- (P1) There is a feasible point $z_f \in Z_F$
- (P2) The cost functional J is **convex** and lower semi continuous (I.s.c.) on Z_E
- (P3) $\exists \alpha > 0 \text{ s.t. } \forall z_1, z_2 \in Z_E$:

$$J(z_2) \ge J(z_1) + J'(z_1, z_2 - z_1) + \frac{\alpha}{2} ||z_2 - z_1||^2$$

- (P4) For every closed convex set $U \subset L^{r_i}(\Omega_i)$ the pre-image $\{z \in Z_E : g_i(z) \in U\}$ is **closed**. Further all g_i are convex in z (for a.e. $x \in \Omega_i$)
 - (MP) fulfills the properties (P2) (P4) (P1) (P4) guarantee unique solution

- (P1) There is a feasible point $z_f \in Z_F$
- (P2) The cost functional J is **convex** and lower semi continuous (I.s.c.) on Z_E
- (P3) $\exists \alpha > 0$ s.t. $\forall z_1, z_2 \in Z_E$:

$$J(z_2) \geq J(z_1) + J'(z_1, z_2 - z_1) + \frac{\alpha}{2} ||z_2 - z_1||^2$$

- (P4) For every closed convex set $U \subset L^{r_i}(\Omega_i)$ the pre-image $\{z \in Z_E : g_i(z) \in U\}$ is **closed**. Further all g_i are convex in z (for a.e. $x \in \Omega_i$)
 - (MP) fulfills the properties (P2) (P4) (P1) (P4) guarantee unique solution

- (P1) There is a feasible point $z_f \in Z_F$
- (P2) The cost functional J is **convex** and lower semi continuous (I.s.c.) on Z_E
- (P3) $\exists \alpha > 0$ s.t. $\forall z_1, z_2 \in Z_E$:

$$J(z_2) \geq J(z_1) + J'(z_1, z_2 - z_1) + \frac{\alpha}{2} ||z_2 - z_1||^2$$

- (P4) For every closed convex set $U \subset L^{r_i}(\Omega_i)$ the pre-image $\{z \in Z_E : g_i(z) \in U\}$ is **closed**. Further all g_i are convex in z (for a.e. $x \in \Omega_i$)
 - (MP) fulfills the properties (P2) (P4) (P1) (P4) guarantee unique solution

- (P1) There is a feasible point $z_f \in Z_F$
- (P2) The cost functional J is **convex** and lower semi continuous (I.s.c.) on Z_E
- (P3) $\exists \alpha > 0$ s.t. $\forall z_1, z_2 \in Z_E$:

$$J(z_2) \geq J(z_1) + J'(z_1, z_2 - z_1) + \frac{\alpha}{2} ||z_2 - z_1||^2$$

(P4) For every closed convex set $U \subset L^{r_i}(\Omega_i)$ the pre-image $\{z \in Z_E : g_i(z) \in U\}$ is **closed**. Further all g_i are convex in z (for a.e. $x \in \Omega_i$)

(P1) – (P4) guarantee unique solution

- (P1) There is a feasible point $z_f \in Z_F$
- (P2) The cost functional J is **convex** and lower semi continuous (I.s.c.) on Z_E
- (P3) $\exists \alpha > 0$ s.t. $\forall z_1, z_2 \in Z_E$:

$$J(z_2) \geq J(z_1) + J'(z_1, z_2 - z_1) + \frac{\alpha}{2} ||z_2 - z_1||^2$$

(P4) For every closed convex set $U \subset L^{r_i}(\Omega_i)$ the pre-image $\{z \in Z_E : g_i(z) \in U\}$ is **closed**. Further all g_i are convex in z (for a.e. $x \in \Omega_i$)

Outline

- Introduction
 - General problem
 - Some properties
- Q Generalized Penalty Methods
 - Barrier function
 - Convergence result
 - Construction of generalized penalty functions
- 3 Error estimates
 - A-priori error estimates
 - Application to examples of penalty functions
- 4 Duality
 - Lagrange Multipliers
 - Estimating Lagrange Multipliers

Trivial barrier function

(P) is equivalent to

$$\min_{z\in\mathcal{Z}_E}J(z)+\Psi(z):=J(z)+\sum_{i=1}^m\mathcal{I}_{(-\infty,0]}(g_i(z)(x)-\varphi_i(x))\mathrm{d}x,$$

where the indicator function $\mathcal{I}_{(-\infty,0]}$ is given by

$$\mathcal{I}_{(-\infty,0]}(t) := \left\{ egin{array}{ll} 0 & ext{if } t \leq 0 \ \infty & ext{if } t > 0. \end{array}
ight.$$

Generalized penalty function

$$(P_q) \quad \min_{z \in Z_E} J_q(z) := J(z) + \Psi_q(z) := J(z) + \sum_{i=1}^m \psi_{i,q_i}(g_i(z)(x) - \varphi_i(x)) dx$$

Consider
$$q \in Q$$
 and $q \to \overline{q}$

Idea:
$$\psi_{i,q_i} \to \mathcal{I}_{(-\infty,0]}$$
 for $q \to \overline{q}$

Generalized penalty function

$$(P_q) \quad \min_{z \in Z_E} J_q(z) := J(z) + \Psi_q(z) := J(z) + \sum_{i=1}^m \psi_{i,q_i}(g_i(z)(x) - \varphi_i(x)) dx$$

Consider
$$q \in Q$$
 and $q \to \overline{q}$
Idea: $\psi_{i,q_i} \to \mathcal{I}_{(-\infty,0]}$ for $q \to \overline{q}$

Convergence result

Theorem (Gfrerer (2.1): Convergence)

Assume (P1) – (P4) and that the **penalty function** Ψ_q fulfills for some $q \in Q \setminus \{\overline{q}\}$:

- (1) $\Psi_q:Z\to\mathbb{R}\cup\{\infty\}$ is well defined and convex and l.s.c on Z_E
- (2) $\Psi_q(z_f) < \infty$ (finite at some feasible point)
- (3) $\Psi_q(z) \ge \sum_{i=1}^m (b_{i,q} \langle \eta_i^*, z \rangle + a_{i,q})$ for all $z \in Z_E$

Then:

• (P_q) has a unique solution (called \overline{z}_q)

Theorem (Gfrerer (2.1): Convergence)

Assume (P1) - (P4) and that the **penalty function** fulfills:

- (1) (3) as before for all $q \in Q \setminus \{\overline{q}\}$ uniformly $(\eta_i^* \text{ does not depend on } q; a_{i,q}, b_{i,q} \to 0 \text{ for } q \to \overline{q})$

$$\inf_{q\in U_{\overline{q}}}\inf_{z\in U_{\widehat{z}}}\Psi_q(z)\geq R$$

• $\lim_{a \to \overline{a}} \overline{z}_a = \overline{z}$ (convergence to the exact solution of (P))

Theorem (Gfrerer (2.1): Convergence)

Assume (P1) – (P4) and that the **penalty function** fulfills:

- (1) (3) as before for all $q \in Q \setminus \{\overline{q}\}$ uniformly $(\eta_i^*$ does not depend on q; $a_{i,q}$, $b_{i,q} \to 0$ for $q \to \overline{q}$)
- (4) for every $\hat{z} \in Z_E \setminus Z_F$ (not feasible for (P)): $\forall R > 0$ there exist neighborhoods $U_{\hat{z}} \subset Z_E$ and $U_{\overline{q}} \subset Q$

$$\inf_{q \in U_{\overline{q}}} \inf_{z \in U_{\hat{z}}} \Psi_q(z) \ge R$$

(5) for every $\hat{z} \in Z_F$ (**feasible** for (P)): there is some family $(\hat{z}_q)_{q \in Q \setminus \{\overline{q}\}} \subset Z_E$ with $\lim_{q \to \overline{q}} \hat{z}_q = \hat{z}$ such that $\limsup_{q \to \overline{q}} \Psi_q(\hat{z}_q) \leq 0$

Then

• $\lim_{q \to \overline{q}} \overline{z}_q = \overline{z}$ (convergence to the exact solution of (P))

Theorem (Gfrerer (2.1): Convergence)

Assume (P1) - (P4) and that the **penalty function** fulfills:

- (1) (3) as before for all $q \in Q \setminus \{\overline{q}\}$ uniformly $(\eta_i^* \text{ does not depend on } q; a_{i,q}, b_{i,q} \to 0 \text{ for } q \to \overline{q})$
- (4) for every $\hat{z} \in Z_E \setminus Z_F$ (**not feasible** for (P)): $\forall R>0$ there exist **neighborhoods** $U_{\hat{z}}\subset Z_E$ and $U_{\overline{a}}\subset Q$

$$\inf_{q \in U_{\overline{q}}} \inf_{z \in U_{\hat{z}}} \Psi_q(z) \ge R$$

(5) for every $\hat{z} \in Z_F$ (**feasible** for (P)): there is some family $(\hat{z}_q)_{q \in Q \setminus \{\overline{q}\}} \subset Z_E$ with $\lim_{q \to \overline{q}} \hat{z}_q = \hat{z}$ such that $\limsup_{a\to \overline{a}} \Psi_a(\hat{z}_a) \leq 0$

• $\lim_{a \to \overline{a}} \overline{z}_a = \overline{z}$ (convergence to the exact solution of (P))

Theorem (Gfrerer (2.1): Convergence)

Assume (P1) - (P4) and that the **penalty function** fulfills:

- (1) (3) as before for all $q \in Q \setminus \{\overline{q}\}$ uniformly $(\eta_i^* \text{ does not depend on } q; a_{i,q}, b_{i,q} \to 0 \text{ for } q \to \overline{q})$
- (4) for every $\hat{z} \in Z_E \setminus Z_F$ (**not feasible** for (P)): $\forall R>0$ there exist **neighborhoods** $U_{\hat{z}}\subset Z_E$ and $U_{\overline{a}}\subset Q$

$$\inf_{q\in U_{\overline{q}}}\inf_{z\in U_{\widehat{z}}}\Psi_q(z)\geq R$$

(5) for every $\hat{z} \in Z_F$ (**feasible** for (P)): there is some family $(\hat{z}_q)_{q \in Q \setminus \{\overline{q}\}} \subset Z_E$ with $\lim_{q \to \overline{q}} \hat{z}_q = \hat{z}$ such that $\limsup_{a\to \overline{a}} \Psi_a(\hat{z}_a) \leq 0$

Then:

• $\lim_{q \to \overline{q}} \overline{z}_q = \overline{z}$ (convergence to the exact solution of (P))

Construction of generalized penalty functions

- ullet Know properties that should be fulfilled by Ψ_q
- ullet Goal: construct functions $\psi_{i,q}$ such that these properties are fulfilled

Quadratic penalty function:

$$\psi_{\kappa}(t) = \kappa \max\{0, t\}^2$$

Logarithmic barrier function:

$$\psi_{\kappa}(t) = \left\{ egin{array}{ll} -\kappa \ln(-t) & ext{if } t < 0 \ \infty & ext{if } t \geq 0 \end{array}
ight.$$

Combined logarithmic-quadratic penalty function:

$$\psi_{\kappa,\epsilon}(t) = \left\{ egin{array}{ll} -\kappa \ln(-t) & ext{if } t \leq -\epsilon \\ \kappa(-\ln(\epsilon) + rac{t+\epsilon}{\epsilon} + rac{(t+\epsilon)^2}{2\epsilon^2}) & ext{if } t > -\epsilon \end{array}
ight.$$
 $e \ Q := \{(\kappa,\epsilon) \in \mathbb{R}_+^\infty \ : \ \kappa \geq a\epsilon^{3/2} \ ext{and} \ \kappa^{1/2} \ln \epsilon > -\epsilon \}$

(a,b>0 const)

Quadratic penalty function:

$$\psi_{\kappa}(t) = \kappa \max\{0, t\}^2$$

Logarithmic barrier function:

$$\psi_{\kappa}(t) = \left\{ egin{array}{ll} -\kappa \ln(-t) & ext{if } t < 0 \ \infty & ext{if } t \geq 0 \end{array}
ight.$$

Combined logarithmic-quadratic penalty function:

$$\psi_{\kappa,\epsilon}(t) = \begin{cases} -\kappa \ln(-t) & \text{if } t \le -\epsilon \\ \kappa(-\ln(\epsilon) + \frac{t+\epsilon}{\epsilon} + \frac{(t+\epsilon)^2}{2\epsilon^2}) & \text{if } t > -\epsilon \end{cases}$$

$$e \ Q := \{(\kappa, \epsilon) \in \mathbb{R}_+^{\infty} : \kappa \ge a\epsilon^{3/2} \text{ and } \kappa^{1/2} \ln \epsilon > -b\epsilon \}$$

Quadratic penalty function:

$$\psi_{\kappa}(t) = \kappa \max\{0, t\}^2$$

Logarithmic barrier function:

$$\psi_{\kappa}(t) = \left\{ egin{array}{ll} -\kappa \ln(-t) & ext{if } t < 0 \ \infty & ext{if } t \geq 0 \end{array}
ight.$$

Combined logarithmic-quadratic penalty function:

$$\psi_{\kappa,\epsilon}(t) = \begin{cases} -\kappa \ln(-t) & \text{if } t \le -\epsilon \\ \kappa(-\ln(\epsilon) + \frac{t+\epsilon}{\epsilon} + \frac{(t+\epsilon)^2}{2\epsilon^2}) & \text{if } t > -\epsilon \end{cases}$$

where $Q:=\{(\kappa,\epsilon)\in\mathbb{R}_+^\infty: \kappa\geq a\epsilon^{3/2} \text{ and } \kappa^{1/2}\ln\epsilon>-b\}$ (a,b>0 const)

Basic assumptions on generalized penalty functions

(Q1) $\psi_{i,q}$ is convex, l.s.c. and increasing and

$$(-\infty,0)\subset \mathsf{dom}\psi_{i,q}$$

- (Q2) $\lim_{q \to \overline{q}} \psi_{i,q}(t) = \mathcal{I}_{(-\infty,0]}(t)$ pointwise for all $t \neq 0$
- (PQ1) One of the following conditions hold:
 - $g_i(z_f) \le \varphi_i \delta$ for $\delta > 0$ (in the **interior**)
 - $0 \in \text{dom} \psi_{i,q}$ for all $q \in Q \setminus \{\overline{q}\}$ and $\lim_{q \to \overline{q}} \psi_{i,q}(0) = 0$ (good behavior for 0)

Basic assumptions on generalized penalty functions

(Q1) $\psi_{i,q}$ is convex, l.s.c. and increasing and

$$(-\infty,0)\subset \mathsf{dom}\psi_{i,q}$$

- (Q2) $\lim_{q\to \overline{q}} \psi_{i,q}(t) = \mathcal{I}_{(-\infty,0]}(t)$ pointwise for all $t\neq 0$
- (PQ1) One of the following conditions hold:
 - $g_i(z_f) \le \varphi_i \delta$ for $\delta > 0$ (in the **interior**)
 - $0 \in \text{dom}\psi_{i,q}$ for all $q \in Q \setminus \{\overline{q}\}$ and $\lim_{q \to \overline{q}} \psi_{i,q}(0) = 0$ (good behavior for 0)

We notice that (Q1), (Q2) and (PQ1) are fulfilled if

• $\psi_{i,a}$ is convex, l.s.c. and increasing,

$$(-\infty,0]\subset \mathsf{dom}\psi_{i,a}$$

• $\lim_{q \to \overline{q}} \psi_{i,q}(t) = \mathcal{I}_{(-\infty,0]}(t)$ pointwise for all t

These conditions hold for the quadratic penalty function and the combined penalty function.

Basic assumptions on generalized penalty functions

(Q1) $\psi_{i,q}$ is convex, l.s.c. and increasing and

$$(-\infty,0)\subset \mathsf{dom}\psi_{i,q}$$

- (Q2) $\lim_{q\to \overline{q}} \psi_{i,q}(t) = \mathcal{I}_{(-\infty,0]}(t)$ pointwise for all $t\neq 0$
- (PQ1) One of the following conditions hold:
 - $g_i(z_f) \le \varphi_i \delta$ for $\delta > 0$ (in the **interior**)
 - $0 \in \text{dom} \psi_{i,q}$ for all $q \in Q \setminus \{\overline{q}\}$ and $\lim_{q \to \overline{q}} \psi_{i,q}(0) = 0$ (good behavior for 0)

We notice that (Q1), (Q2) and (PQ1) are fulfilled for the logarithmic barrier function iff there exists an interior point.

Convergence result

Corollary

Assume that (P1)–(P4), (Q1), (Q2) and (PQ1) hold. Then for each $q \in Q \setminus \{\overline{q}\}$ the problems (P_q) each have a unique solution \overline{z}_q and

$$\lim_{q\to \overline{q}} \overline{z}_q = \overline{z},$$

i.e., the solutions converge to the solution of (P).

One can show that the combination of (Q1), (Q2) and (PQ1) implies the assumptions of the main theorem.

Outline

- Introduction
 - General problem
 - Some properties
- 2 Generalized Penalty Methods
 - Barrier function
 - Convergence result
 - Construction of generalized penalty functions
- 3 Error estimates
 - A-priori error estimates
 - Application to examples of penalty functions
- 4 Duality
 - Lagrange Multipliers
 - Estimating Lagrange Multipliers

A-priori error estimates

Theorem (Gfrerer (3.3): Error estimate)

Assume (P1) - (P4), (Q1), (Q2), (PQ1) and

(Q3') For each $q \in Q \setminus \{\overline{q}\}$ there are $c_{i,q} \geq 0$ and $d_{i,q} \geq 0$ s.t.

$$\psi_{i,q}(t/2) \leq c_{i,q}\psi_{i,q}(t) + d_{i,q} \qquad \forall t \in [-1,0)$$

A-priori error estimates

Theorem (Gfrerer (3.3): Error estimate)

Then: there is a neighborhood $U_{\overline{q}} \subset Q$ and a constant L such that for all $q \in U_{\overline{q}}$ we have

$$\|\overline{z}_{q} - \overline{z}\|_{Z}^{2} \leq \frac{2}{\alpha} \left(L \operatorname{dist}(\overline{z}_{q}, Z_{F}) + \sum_{i=1}^{m} \int_{\Omega_{i}} \psi_{i,q}^{\#}(g_{i}(\overline{z}_{q})(x) - \varphi_{i}(x), -(g_{i}(\overline{z}_{q})(x) - \varphi_{i}(x))) dx \right),$$

where

$$\psi_{i,q}^{\#}(u,h) := \left\{ \begin{array}{ll} \psi_{i,q}'(u,h) & \text{if } u \in \text{int dom } \psi_{i,q} \\ \lim_{t \downarrow 0} \frac{\psi_{i,q}(u+th) - \psi_{i,q}(u)}{t} \in \mathbb{R} \cup \{-\infty\} & \text{if } u \in \text{bd dom } \psi_{i,q}, h < 0 \\ 0 & \text{otherwise} \end{array} \right.$$

Application to combined penalty function

• Combined logarithmic-quadratic penalty function:

$$\psi_{\kappa,\epsilon}(t) = \begin{cases} -\kappa \ln(-t) & \text{if } t \leq -\epsilon \\ \kappa(-\ln(\epsilon) + \frac{t+\epsilon}{\epsilon} + \frac{(t+\epsilon)^2}{2\epsilon^2}) & \text{if } 0 > t > -\epsilon \end{cases}$$

We obtain the following derivatives:

$$\psi_{\kappa,\epsilon}^{\#}(t,-t) := \left\{ \begin{array}{ll} \kappa & \text{if } t \leq -\epsilon \\ -\kappa(\frac{2t}{\epsilon} + \frac{t^2}{\epsilon^2}) \leq \kappa & \text{if } t > -\epsilon \end{array} \right.$$

$$\|\overline{z}_{(\kappa,\epsilon)} - \overline{z}\|_Z^2 \le \frac{2}{\alpha} \left(L \operatorname{dist}(\overline{z}_{(\kappa,\epsilon)}, Z_F) + \sum_{i=1}^m \kappa |\Omega_i| \right)$$

Application to combined penalty function

• Combined logarithmic-quadratic penalty function:

$$\psi_{\kappa,\epsilon}(t) = \begin{cases} -\kappa \ln(-t) & \text{if } t \leq -\epsilon \\ \kappa(-\ln(\epsilon) + \frac{t+\epsilon}{\epsilon} + \frac{(t+\epsilon)^2}{2\epsilon^2}) & \text{if } 0 > t > -\epsilon \end{cases}$$

We obtain the following derivatives:

$$\psi_{\kappa,\epsilon}^{\#}(t,-t) := \begin{cases} \kappa & \text{if } t \leq -\epsilon \\ -\kappa(\frac{2t}{\epsilon} + \frac{t^2}{\epsilon^2}) \leq \kappa & \text{if } t > -\epsilon \end{cases}$$

$$\|\overline{z}_{(\kappa,\epsilon)} - \overline{z}\|_Z^2 \le \frac{2}{\alpha} \left(L \operatorname{dist}(\overline{z}_{(\kappa,\epsilon)}, Z_F) + \sum_{i=1}^m \kappa |\Omega_i| \right)$$

Application to combined penalty function

• Combined logarithmic-quadratic penalty function:

$$\psi_{\kappa,\epsilon}(t) = \begin{cases} -\kappa \ln(-t) & \text{if } t \leq -\epsilon \\ \kappa(-\ln(\epsilon) + \frac{t+\epsilon}{\epsilon} + \frac{(t+\epsilon)^2}{2\epsilon^2}) & \text{if } 0 > t > -\epsilon \end{cases}$$

We obtain the following derivatives:

$$\psi_{\kappa,\epsilon}^{\#}(t,-t) := \begin{cases} \kappa & \text{if } t \leq -\epsilon \\ -\kappa(\frac{2t}{\epsilon} + \frac{t^2}{\epsilon^2}) \leq \kappa & \text{if } t > -\epsilon \end{cases}$$

$$\|\overline{z}_{(\kappa,\epsilon)} - \overline{z}\|_{Z}^{2} \leq \frac{2}{\alpha} \left(L \operatorname{dist}(\overline{z}_{(\kappa,\epsilon)}, Z_{F}) + \sum_{i=1}^{m} \kappa |\Omega_{i}| \right)$$

Application to logarithmic barrier function

Logarithmic barrier function:

$$\psi_{\kappa}(t) = \left\{ egin{array}{ll} -\kappa \ln(-t) & ext{if } t < 0 \ \infty & ext{if } t \geq 0 \end{array}
ight.$$

• We obtain the following derivatives:

$$\psi_\kappa^\#(t,-t) := \left\{egin{array}{ll} \kappa & ext{if } t < 0 \ 0 & ext{if } t \geq 0 \end{array}
ight.$$

$$\|\overline{z}_{(\kappa,\epsilon)} - \overline{z}\|_Z^2 \le \frac{2}{\alpha} \left(0 + \sum_{i=1}^m \kappa |\Omega_i|\right)$$

Application to logarithmic barrier function

Logarithmic barrier function:

$$\psi_{\kappa}(t) = \left\{ egin{array}{ll} -\kappa \ln(-t) & ext{if } t < 0 \ \infty & ext{if } t \geq 0 \end{array}
ight.$$

We obtain the following derivatives:

$$\psi_\kappa^\#(t,-t) := \left\{ egin{array}{ll} \kappa & ext{if } t < 0 \ 0 & ext{if } t \geq 0 \end{array}
ight.$$

$$\|\overline{z}_{(\kappa,\epsilon)} - \overline{z}\|_Z^2 \le \frac{2}{\alpha} \left(0 + \sum_{i=1}^m \kappa |\Omega_i|\right)$$

Application to logarithmic barrier function

Logarithmic barrier function:

$$\psi_{\kappa}(t) = \left\{ egin{array}{ll} -\kappa \ln(-t) & ext{if } t < 0 \ \infty & ext{if } t \geq 0 \end{array}
ight.$$

We obtain the following derivatives:

$$\psi_\kappa^\#(t,-t) := \left\{egin{array}{ll} \kappa & ext{if } t < 0 \ 0 & ext{if } t \geq 0 \end{array}
ight.$$

$$\|\overline{z}_{(\kappa,\epsilon)} - \overline{z}\|_{Z}^{2} \leq \frac{2}{\alpha} \left(0 + \sum_{i=1}^{m} \kappa |\Omega_{i}|\right)$$

Summary

- For all three cases some error estimates are possible
- The combined logarithmic-quadratic penalty function can be bounded by essential the same bounds as the logarithmic barrier functions but it works without having an interior point
- ullet For the combined logarithmic-quadratic penalty function κ and ϵ can be adjusted to ensure both contributions of the error to be small

Outline

- Introduction
 - General problem
 - Some properties
- Question of the second of t
 - Barrier function
 - Convergence result
 - Construction of generalized penalty functions
- 3 Error estimates
 - A-priori error estimates
 - Application to examples of penalty functions
- 4 Duality
 - Lagrange Multipliers
 - Estimating Lagrange Multipliers

- Sometimes Lagrange multipliers are of our interest (e.g. Stokes problem: multiplier p is the pressure)
- Methods based on the optimality system deliver the solution and the Lagrange multipliers
- For penalty methods the existence of Lagrange multipliers is not required and the multipliers are not computed during the iteration
- If we assume a constraint qualification condition ensuring the existence of multipliers, the multipliers can be approximated using the generalized penalty methods

- Sometimes Lagrange multipliers are of our interest (e.g. Stokes problem: multiplier p is the pressure)
- Methods based on the optimality system deliver the solution and the Lagrange multipliers
- For penalty methods the existence of Lagrange multipliers is not required and the multipliers are not computed during the iteration
- If we assume a constraint qualification condition ensuring the existence of multipliers, the multipliers can be approximated using the generalized penalty methods

- Sometimes Lagrange multipliers are of our interest (e.g. Stokes problem: multiplier p is the pressure)
- Methods based on the optimality system deliver the solution and the Lagrange multipliers
- For penalty methods the existence of Lagrange multipliers is not required and the multipliers are not computed during the iteration
- If we assume a constraint qualification condition ensuring the existence of multipliers, the multipliers can be approximated using the generalized penalty methods

- Sometimes Lagrange multipliers are of our interest (e.g. Stokes problem: multiplier p is the pressure)
- Methods based on the optimality system deliver the solution and the Lagrange multipliers
- For penalty methods the existence of Lagrange multipliers is not required and the multipliers are not computed during the iteration
- If we assume a constraint qualification condition ensuring the existence of multipliers, the multipliers can be approximated using the generalized penalty methods

Additional assumption

- (Q3) For each $q \in Q \setminus \{\overline{q}\}$ we assume:
 - $\psi_{i,q}$ to be differentiable on $\mathbb R$
 - $\limsup_{t\to\infty} t^{-r_i} \psi_{i,q}(t) < \infty$
 - $\lim_{q \to \overline{q}} \psi_{i,q}(0) = 0$

Notice

- (Q3) is fulfilled by the quadratic penalty method, by the combined quadratic-logarithmic penalty method but not by the logarithmic barrier method
- (Q3) implies the (PQ1) and (Q3')
- (Q3) and (Q1) imply $|\psi_{i,q}(t)| \leq C_{i,q}(1+|t|^{r_i})$ for all t. This implies $\int_{\Omega_i} \psi_{i,q}(u(x)) dx$ to be l.s.c., convex, real-valued on $L^{r_i}(\Omega_i)$ and differentiable

Additional assumption

- (Q3) For each $q \in Q \setminus \{\overline{q}\}$ we assume:
 - $\psi_{i,q}$ to be differentiable on $\mathbb R$
 - $\limsup_{t\to\infty} t^{-r_i}\psi_{i,q}(t) < \infty$
 - $\lim_{q \to \overline{q}} \psi_{i,q}(0) = 0$

Notice:

- (Q3) is fulfilled by the quadratic penalty method, by the combined quadratic-logarithmic penalty method but not by the logarithmic barrier method
- (Q3) implies the (PQ1) and (Q3')
- (Q3) and (Q1) imply $|\psi_{i,q}(t)| \leq C_{i,q}(1+|t|^{r_i})$ for all t. This implies $\int_{\Omega_i} \psi_{i,q}(u(x)) dx$ to be l.s.c., convex, real-valued on $L^{r_i}(\Omega_i)$ and differentiable

Linearize the problem

Therefore we can linearize the problem (P_q) .

We know that $0 \le J_q'(\overline{z}_q, z - \overline{z}_q)$ holds.

So we can derive that \overline{z}_q is the unique solution of

$$\min_{z\in Z_E}J(z)+\langle y_q^*,\,G_i(z)\rangle,$$

where

- $\langle y_q^*, y \rangle := \sum_{i=1}^m \langle I_{i,q}^*, y_i \rangle$
- $G(z) := (g_1(z), \ldots, g_n(z))$
- $l_{i,q}^* \in L^{r_i}(\Omega_i)^*$ such that

$$\langle l_{i,q}^*, y_i \rangle := \int_{\Omega_i} \psi'_{i,q}(g_i(\overline{z}_q)(x) - \varphi_i(x), y_i(x)) dx$$

Property of the limit of the multipliers

Theorem (Gfrerer (4.2): Property of limit point)

Assume:

- (P1) (P4), (Q1) (Q3)
- ullet \hat{Z} to be a Banach space continuously embedded in Z
- \hat{Y} to be a Banach space continuously embedded in $Y := \prod_{i=1}^m L^{r_i}(\Omega_i)$ s.t. $G(\hat{Z}) \subset \hat{Y}$.
- $(q^n) \subset Q \setminus \{\overline{q}\}$ with $q^n \to \overline{q}$
- $\langle y_{q^n}^*, y \rangle := \sum_{j=0}^m \langle I_{j,q^n}^*, y_j \rangle$
- $y_{q^n}^* \rightarrow_{w^*} y^* \in \hat{Y}^*$ (convergence)

Then

Property of the limit of the multipliers

Theorem (Gfrerer (4.2): Property of limit point)

Assume:

• ...

Then:

- y^* belongs to the normal cone of C at $G(\overline{z})$ (i.e., $\langle y^*, c - G(\overline{z}) \rangle \leq 0 \ \forall c \in C$) where $C := \{c = (c_1, \dots, c_n) \in \hat{Y} : c_j \leq \varphi_j \text{ a.e.i. } \Omega_j \ \forall j\}$ $G(z) := (g_1(z), \dots, g_n(z))$
- \overline{z} is the unique solution of

$$\min_{z \in \hat{Z}_E} J(z) + \langle y^*, G(z) \rangle$$

That means: y* is a multiplier.

Convergence of the multipliers

Theorem (Gfrerer (4.3): Convergence)

Assume:

(Q4)
$$0_Y \in \operatorname{int}(G(\hat{Z}_E) - C)$$

Then

• $\limsup_{q \to \overline{q}} ||y_q^*||_{\hat{Y}^*} < \infty$

This implies the existence of a weak-*-convergent subsequence.

Notice that condition (Q4) is a constraint qualification condition

Convergence of the multipliers

Theorem (Gfrerer (4.3): Convergence)

Assume:

(Q4)
$$0_Y \in \operatorname{int}(G(\hat{Z}_E) - C)$$

Then:

• $\limsup_{q \to \overline{q}} ||y_q^*||_{\hat{Y}^*} < \infty$

This implies the existence of a weak-*-convergent subsequence.

Notice that condition (Q4) is a constraint qualification condition

Convergence of the multipliers (cont.)

Theorem (Gfrerer (4.4): Convergence)

Assume:

• the constraints can be partitioned

$$C=C_1 imes C_2\subset \hat{Y}_1 imes \hat{Y}_2=\hat{Y}$$
 $G=(G_1,G_2)$ where $G_i:\hat{Z}\to \hat{Y}_i$ $(i=1,2)$ such that

- $c_1 \in \operatorname{int} G_1(\hat{Z}_E)$ for some $c_1 \in C_1$ (or more generally, $0 \in \operatorname{int}_{\hat{Y}_1}(G_1(\hat{Z}_E) C_1)$) and
- $G_1(\tilde{z}) \in C_1$, $G_2(\tilde{z}) \in \operatorname{int}_{\hat{Y}_2} C_2$ for some $\tilde{z} \in \hat{Z}_E$

Then: condition (Q4) is fulfilled.

- ullet $\Omega\subset\mathbb{R}^d$ with $C^{1,1}$ boundary
- Assume $\overline{u} \in L^r(\Omega)$ with $r > \max\{d, 2\}$ (can be ensured using box constraints)
- Choose $\hat{Z}:=W^{2,r}(\Omega)\cap W^{1,r}_0(\Omega)\times L^r(\Omega)$
- Choose $\hat{Y} := L^r(\Omega) \times C(\mathsf{cl}\Omega) \times C(\mathsf{cl}\Omega)$ (since y and ∇y are continuous on $\mathsf{cl}\Omega$ for $y \in W^{2,r}(\Omega)$
- $G(y, u) := (u, y, |\nabla y|_2)$
- $C := C_u \times C_y \times C_g = \{u \in L^r(\Omega) : u \le \varphi_u\} \times \{y \in C(\mathsf{cl}\Omega) : y \le \varphi_y\} \times \{g \in C(\mathsf{cl}\Omega) : g \le \varphi_g\}$
- (Q4) is fulfilled if there exists some feasible $(y, u) \in \hat{Z}$ with $y \in \text{int } C_y$, $|\nabla y|_2 \in \text{int } C_g$
 - (i.e., 20 > 0 sacii ciiac y 2 yy 0 ana | v y | 2 2 yg 0)

- ullet $\Omega\subset\mathbb{R}^d$ with $C^{1,1}$ boundary
- Assume $\overline{u} \in L^r(\Omega)$ with $r > \max\{d, 2\}$ (can be ensured using box constraints)
- Choose $\hat{Z}:=W^{2,r}(\Omega)\cap W^{1,r}_0(\Omega)\times L^r(\Omega)$
- Choose $\hat{Y} := L^r(\Omega) \times C(\operatorname{cl}\Omega) \times C(\operatorname{cl}\Omega)$ (since y and ∇y are continuous on $\operatorname{cl}\Omega$ for $y \in W^{2,r}(\Omega)$)
- $G(y, u) := (u, y, |\nabla y|_2)$
- $C := C_u \times C_y \times C_g = \{u \in L^r(\Omega) : u \le \varphi_u\} \times \{y \in C(\operatorname{cl}\Omega) : y \le \varphi_y\} \times \{g \in C(\operatorname{cl}\Omega) : g \le \varphi_g\}$
- (Q4) is fulfilled if there exists some feasible $(y, u) \in \hat{Z}$ with $y \in \text{int } C_y$, $|\nabla y|_2 \in \text{int } C_g$
 - (i.e., $\exists \delta > 0$ such that $y \leq \varphi_y \delta$ and $|\nabla y|_2 \leq \varphi_g \delta$)

- ullet $\Omega\subset\mathbb{R}^d$ with $\mathit{C}^{1,1}$ boundary
- Assume $\overline{u} \in L^r(\Omega)$ with $r > \max\{d, 2\}$ (can be ensured using box constraints)
- Choose $\hat{Z}:=W^{2,r}(\Omega)\cap W^{1,r}_0(\Omega) imes L^r(\Omega)$
- Choose $\hat{Y}:=L^r(\Omega)\times C(\operatorname{cl}\Omega)\times C(\operatorname{cl}\Omega)$ (since y and ∇y are continuous on $\operatorname{cl}\Omega$ for $y\in W^{2,r}(\Omega)$)
- $G(y, u) := (u, y, |\nabla y|_2)$
- $C := C_u \times C_y \times C_g = \{u \in L^r(\Omega) : u \le \varphi_u\} \times \{y \in C(c|\Omega) : y \le \varphi_y\} \times \{g \in C(c|\Omega) : g \le \varphi_g\}$
- (Q4) is fulfilled if there exists some feasible $(y, u) \in \hat{Z}$ with $y \in \text{int } C_y$, $|\nabla y|_2 \in \text{int } C_g$
 - (i.e., $\exists \delta > 0$ such that $y \leq \varphi_y \delta$ and $|\nabla y|_2 \leq \varphi_g \delta$)

- ullet $\Omega\subset\mathbb{R}^d$ with $C^{1,1}$ boundary
- Assume $\overline{u} \in L^r(\Omega)$ with $r > \max\{d, 2\}$ (can be ensured using box constraints)
- Choose $\hat{Z}:=W^{2,r}(\Omega)\cap W^{1,r}_0(\Omega)\times L^r(\Omega)$
- Choose $\hat{Y} := L^r(\Omega) \times C(\operatorname{cl}\Omega) \times C(\operatorname{cl}\Omega)$ (since y and ∇y are continuous on $\operatorname{cl}\Omega$ for $y \in W^{2,r}(\Omega)$)
- $G(y, u) := (u, y, |\nabla y|_2)$
- $C := C_u \times C_y \times C_g = \{u \in L^r(\Omega) : u \le \varphi_u\} \times \{y \in C(c|\Omega) : y \le \varphi_y\} \times \{g \in C(c|\Omega) : g \le \varphi_g\}$
- (Q4) is fulfilled if there exists some feasible $(y, u) \in \hat{Z}$ with $y \in \text{int} C_y$, $|\nabla y|_2 \in \text{int} C_g$ (i.e., $\exists \delta > 0$ such that $y \leq \varphi_v - \delta$ and $|\nabla y|_2 \leq \varphi_g - \delta$)

Thanks for your attention!

Literature

 H. Gfrerer: Generalized Penalty Methods for a Class of Convex Optimization Problems with Pointwise Inequality Constraints