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Optimization problem

(P) ;nelg J(2)

subject to

@ Z is a Hilbert space
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General problem
Some properties

Optimization problem

p :
(P) min J(z)
subject to

Ez=0

@ Z is a Hilbert space
e E:Z — V bounded and linear
Zg:={z€Z : Ez=10}
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Introduction
General problem
Some properties

Optimization problem

p :
(P) min J(z)
subject to

Ez=0

gi(z)(x) < pi(x) forae. xeQ;, i=1,...m

@ Z is a Hilbert space

@ E:Z — V bounded and linear
Ze={z€Z : Ez=0}

e gi:Z— Li(Q;) and ¢; € L(Q;)

Zrp:={z€ Z : Ez=0 and g;(z)(x) < pi(x) for a.e. x € Q;}
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Model problem

. 1 0%
(MP) min Jz) = Sy~ vdlliz) + Sllu— uqll72 ()

subject to
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Introduction
General problem
Some properties

Model problem

. 1 0%
(MP) A0 Jz) = Sy~ vdlliz) + Sllu— uqll72 ()
subject to
— Ay(x) = u(x) in Q

y(x)=0 on 0Q2
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Some properties

Model problem

(MP) Z:fT(liyfju) Jz) = %lly — yallf2(0) + %HU — ugll32(0
subject to
— Ay(x) = u(x) in Q
y(x)=0 on 99
u(x) < pu(x) faexeQ
y(x) < py(x) faexeQ
IVy(x)]2 < @g(x) faexeQ
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(P1) There is a feasible point zr € Z¢
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Some properties

Assumptions on the Problem

(P1) There is a feasible point zr € Z¢

(P2) The cost functional J is convex and lower semi continuous
(I.s.c.) on Zg
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Introduction
General problem
Some properties

Assumptions on the Problem

(P1) There is a feasible point zr € Z¢

(P2) The cost functional J is convex and lower semi continuous
(I.s.c.) on Zg

(P3) Ja>0s.t. V21,20 € Zg:

«
J(Zz) > J(Zl) + J/(Z1,22 — 21) + 5”22 — 21||2
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Introduction
General problem
Some properties

Assumptions on the Problem

(P1) There is a feasible point zr € Z¢

(P2) The cost functional J is convex and lower semi continuous
(I.s.c.) on Zg

(P3) Ja>0s.t. V21,20 € Zg:
a
J(Zz) > J(Zl) + Jl(21,22 — 21) + 5”22 — 21||2
(P4) For every closed convex set U C L"(£;) the pre-image

{z € Zg : gi(z) € U} is closed. Further all g; are convex in
z (for a.e. x € Q;)
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General problem
Some properties

Assumptions on the Problem

(P1) There is a feasible point zr € Z¢

(P2) The cost functional J is convex and lower semi continuous
(I.s.c.) on Zg

(P3) Ja>0s.t. V21,20 € Zg:
a
J(Zz) > J(Zl) + Jl(21,22 — 21) + 5”22 — 21||2
(P4) For every closed convex set U C L"(£;) the pre-image

{z € Zg : gi(z) € U} is closed. Further all g; are convex in
z (for a.e. x € Q;)

(MP) fulfills the properties (P2) — (P4)
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Introduction
General problem
Some properties

Assumptions on the Problem

(P1) There is a feasible point zr € Z¢

(P2) The cost functional J is convex and lower semi continuous
(I.s.c.) on Zg

(P3) Ja>0s.t. V21,20 € Zg:
a
J(Zz) > J(Zl) + Jl(21,22 — 21) + 5”22 — 21||2
(P4) For every closed convex set U C L"(£;) the pre-image
{z € Zg : gi(z) € U} is closed. Further all g; are convex in

z (for a.e. x € Q;)

(MP) fulfills the properties (P2) — (P4)
(P1) — (P4) guarantee unique solution
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Generalized Penalty Methods

Trivial barrier function

(P) is equivalent to

min J(z) + V(z) ZI( 00,01(8i(2)(x) — @i(x))dx

zeZg
where the indicator function Z_ o is given by

0 ft<oO
Looi(t) = { o if t>0.
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Generalized Penalty Methods

Generalized penalty function

(Pq)  min Jo(2) := J(2)+Wq(2) := J(2)+)_ i q;(8i(2)(x)—i(x))dx

zeZ
E i=1

Considerge Q@ and g — @
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Generalized Penalty Methods

Generalized penalty function

(Pq)  min Jo(2) := J(2)+Wq(2) := J(2)+)_ i q;(8i(2)(x)—i(x))dx

zeZ
E i=1

Considerge Q@ and g — @
Idea: Yig — I(—oo,O] forg—74q
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Generalized Penalty Methods

Convergence result

Theorem (Gfrerer (2.1): Convergence)
Assume (P1) — (P4) and that the penalty function V fulfills for
some q € Q\{q}:

(1) Wq:Z — RU{oo} is well defined and convex and |.s.c on Zg
(2) Wq4(zr) < oo (finite at some feasible point)

(3) Vq(z) = 31 (big(n}, 2) + aiyq) forall z € Zg

Then:

@ (Pq) has a unique solution (called Z4)
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Generalized Penalty Methods

Convergence result (cont.)

Theorem (Gfrerer (2.1): Convergence)
Assume (P1) — (P4) and that the penalty function fulfills:
(1) = (3) as before for all g € Q\{q} uniformly

(n} does not depend on q; aj,q, biq — 0 forq — q)
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Generalized Penalty Methods

Convergence result (cont.)

Theorem (Gfrerer (2.1): Convergence)
Assume (P1) — (P4) and that the penalty function fulfills:
(1) = (3) as before for all g € Q\{q} uniformly

(n} does not depend on q; aj,q, biq — 0 forq — q)

(4) for every z € Zg\ZF (not feasible for (P)):
VR > 0 there exist neighborhoods U; C Zg and U C Q

inf inf W >R
qlenUaZIEnUQ q(Z) -
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Generalized Penalty Methods

Convergence result (cont.)

Theorem (Gfrerer (2.1): Convergence)
Assume (P1) — (P4) and that the penalty function fulfills:
(1) = (3) as before for all g € Q\{q} uniformly
(n} does not depend on q; aj,q, biq — 0 forq — q)
(4) for every z € Zg\ZF (not feasible for (P)):
VR > 0 there exist neighborhoods U; C Zg and U C Q
inf inf W >R
qlenUaZIEnUQ q(Z) -
(5) for every z € Zr (feasible for (P)):

there is some family (24)qecq\(qy C Ze with limg 52, = 2
such that limsup,_zWg(24) <0
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Generalized Penalty Methods

Convergence result (cont.)

Theorem (Gfrerer (2.1): Convergence)
Assume (P1) — (P4) and that the penalty function fulfills:
(1) = (3) as before for all g € Q\{q} uniformly

(n} does not depend on q; aj,q, biq — 0 forq — q)

(4) for every z € Zg\ZF (not feasible for (P)):
VR > 0 there exist neighborhoods U; C Zg and U C Q

o el =
(5) for every z € Zf (feasible for (P)):
there is some family (24)qecq\(qy C Ze with limg 52, = 2
such that limsup,_zWg(24) <0
Then:
o limy_.gZ4 = Z (convergence to the exact solution of (P))
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Generalized Penalty Methods

Construction of generalized penalty functions

e Know properties that should be fulfilled by W,

@ Goal: construct functions 1); 4 such that these properties are
fulfilled
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Generalized Penalty Methods

Some examples for generalized penalty functions

e Quadratic penalty function:

Ve(t) = kmax{0, t}?
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Generalized Penalty Methods

Some examples for generalized penalty functions

e Quadratic penalty function:

Ve(t) = kmax{0, t}?

@ Logarithmic barrier function:

[ —kIn(—=t) ift<O
w”(t){oo ift>0
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Generalized Penalty Methods

Some examples for generalized penalty functions

e Quadratic penalty function:

Ve(t) = kmax{0, t}?

@ Logarithmic barrier function:

[ —kIn(—=t) ift<O
w”(t){oo ift>0
e Combined logarithmic-quadratic penalty function:
—kIn(—t) if t < —e
w,elt) = € .
Yne(t) { ﬂ(—ln(e)—i-%—i—(t;z)z) if t > —e

where @ := {(k,€) € RY : k> ae¥? and k'/2Ine > —b}
(a, b > 0 const)
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Some examples for generalized penalty functions
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Generalized Penalty Methods

Basic assumptions on generalized penalty functions

(Q1) i q is convex, l.s.c. and increasing and
(—00,0) C domy; 4
(Q2) limg—q i q(t) = Z(—oo0)(t) pointwise for all t # 0
(PQ1) One of the following conditions hold:
o gi(zr) < ¢j— 6 for § > 0 (in the interior)

o 0 € domyy; 4 for all g € Q\{q} and limy_g ¥; 4(0) = 0 (good
behavior for 0)
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Generalized Penalty Methods

Basic assumptions on generalized penalty functions

(Q1) jq is convex, ls.c. and increasing and
(—OO7 0) C dOmIb,',q
(Q2) limg—q i q(t) = Z(—oo0)(t) pointwise for all t # 0
(PQ1) One of the following conditions hold:
o gi(zr) < @i — 6 for § > 0 (in the interior)
o 0 € domy; 4 for all g € Q\{q} and limg_g; 4(0) =0 (good
behavior for 0)
We notice that (Q1), (Q2) and (PQ1) are fulfilled if
@ 1) q is convex, l.s.c. and increasing,
(—OO, 0] C dOm@/J,'7q
o limg_gviq(t) = Z(—o,0)(t) pointwise for all ¢t
These conditions hold for the quadratic penalty function and the
combined penalty function.
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Generalized Penalty Methods

Basic assumptions on generalized penalty functions

(Q1) jq is convex, ls.c. and increasing and
(—OO, 0) C domwhq
(Q2) limg—g i q(t) = Z(—o0)(t) pointwise for all t # 0
(PQ1) One of the following conditions hold:
o gi(zr) < @i — 6 for § > 0 (in the interior)

e 0 € domyj 4 for all g € Q\{q} and limg_5 i 4(0) = 0 (good
behavior for 0)

We notice that (Q1), (Q2) and (PQ1) are fulfilled for the
logarithmic barrier function iff there exists an interior point.
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Generalized Penalty Methods

Convergence result

Corollary

Assume that (P1)-(P4), (Q1), (Q2) and (PQ1) hold. Then for
each g € Q\{q} the problems (P,) each have a unique solution z,
and

lim z5 = Z,
q—4

i.e., the solutions converge to the solution of (P).

One can show that the combination of (Q1), (Q2) and (PQ1)
implies the assumptions of the main theorem.
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Error estimates Application to examples of penalty functions

A-priori error estimates

Theorem (Gfrerer (3.3): Error estimate)

Assume (P1) — (P4), (Q1), (Q2), (PQ1) and
(Q3") For each g € Q\{q} there are ¢ciq > 0 and d; 4 > 0 s.t.

wi,q(t/2) < C,'7q1ﬂ,'7q(t) + d,'7q Vt € [—1,0)
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e A-priori error estimates
Error estimates Application to examples of penalty functions

A-priori error estimates

Theorem (Gfrerer (3.3): Error estimate)

Then: there is a neighborhood U C Q and a constant L such that
for all g € Ug we have

IZ4-211% < % <L dist(zq, ZF) + Z/Q of o (81(Zq)(x) — @i(x), —(8i(Zq)(x) — ¢i(x)) dX) ;
i—1 7%

where
w;yq(u, h) if u € int dom 1; g
W h) = § limg o “2a T Vial) ¢ g o0} ifu e bd dom g, h < 0
0 otherwise

Stefan Takacs, JKU Linz Generalized Penalty Methods



A-priori error estimates
Error estimates Application to examples of penalty functions

Application to combined penalty function

o Combined logarithmic-quadratic penalty function:

() = —kIn(—t) if t <—e
B R(—|n(6)+%+%) if0>1t>—¢
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A-priori error estimates
Error estimates Application to examples of penalty functions

Application to combined penalty function

o Combined logarithmic-quadratic penalty function:

o (£) = { —kIn(—t) if t <—e

ﬁ(—ln(e)—k%—i-(tztg)z) if0>1t>—¢

@ We obtain the following derivatives:

iftr<—
v (t,—t) :={ " nise

—/{(£+E§)<m if t > —¢
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A-priori error estimates
Error estimates Application to examples of penalty functions

Application to combined penalty function

o Combined logarithmic-quadratic penalty function:
—kIn(—t) if t <—e
t) =
Yne(t) { k(= Ine) + 2= + %) if o> £ > —
@ We obtain the following derivatives:

T . ) if t < —e
e ={ "

Zpy<k ft>—e

€

@ Plugging into the last theorem shows:

2

m
— -2 - (= )
|Z(ec) — ZII% < - (L dist(Z(.0), ZF) + ;m \Q,\)
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Application to logarithmic barrier function

o Logarithmic barrier function:

—klIn(—t) ft<0
o) ift >0
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Application to logarithmic barrier function

o Logarithmic barrier function:

[ —klIn(—t) ift<O
7/%(75)—{00 ift>0
@ We obtain the following derivatives:
4, . or ifE<O
Rl D) '_{ 0 ift>0
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A-priori error estimates
Error estimates Application to examples of penalty functions

Application to logarithmic barrier function

o Logarithmic barrier function:

[ —klIn(—t) ift<O
7/%(75)—{00 ift>0

@ We obtain the following derivatives:

4, . or ifE<O
¢n(ta t)_{o IftZO

@ Plugging into the last theorem shows:

oo — 22 < 2 (0 ; Q;
1200 = 2l1Z < ~ +Y k5 Qi]

i=1
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A-priori error estimates
Error estimates Application to examples of penalty functions

Summary

@ For all three cases some error estimates are possible

@ The combined logarithmic-quadratic penalty function can be
bounded by essential the same bounds as the logarithmic
barrier functions but it works without having an interior point

@ For the combined logarithmic-quadratic penalty function x and
€ can be adjusted to ensure both contributions of the error to
be small
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Lagrange Multiplies

@ Sometimes Lagrange multipliers are of our interest
(e.g. Stokes problem: multiplier p is the pressure)
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Lagrange Multiplies

@ Sometimes Lagrange multipliers are of our interest
(e.g. Stokes problem: multiplier p is the pressure)

@ Methods based on the optimality system deliver the solution
and the Lagrange multipliers
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Lagrange Multiplies

@ Sometimes Lagrange multipliers are of our interest
(e.g. Stokes problem: multiplier p is the pressure)

@ Methods based on the optimality system deliver the solution
and the Lagrange multipliers

@ For penalty methods the existence of Lagrange multipliers is
not required and the multipliers are not computed during the
iteration
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Lagrange Multiplies

Sometimes Lagrange multipliers are of our interest

(e.g. Stokes problem: multiplier p is the pressure)

@ Methods based on the optimality system deliver the solution
and the Lagrange multipliers

@ For penalty methods the existence of Lagrange multipliers is
not required and the multipliers are not computed during the
iteration

o If we assume a constraint qualification condition ensuring

the existence of multipliers, the multipliers can be

approximated using the generalized penalty methods
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Estimating Lagrange Multipliers
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Additional assumption

(Q3) For each g € Q\{q} we assume:

o 1) 4 to be differentiable on R
o limsup,_, . t7"1); 4(t) < o0
] ||mq_)5 w;7q(0) =0
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Lagrange Multipliers
Estimating Lagrange Multipliers
Duality

Additional assumption

(Q3) For each g € Q\{q} we assume:
o 1) 4 to be differentiable on R
o limsup,_, . t7"1); 4(t) < o0
] ||mq_)5 w;7q(0) =0
Notice:

e (Q3) is fulfilled by the quadratic penalty method, by the
combined quadratic-logarithmic penalty method but not by
the logarithmic barrier method

e (Q3) implies the (PQ1) and (Q3")

e (Q3) and (Q1) imply [1); q(t)| < Ciq(1+ [t]7) for all t.
This implies [, 1 4(u(x))dx to be Ls.c., convex, real-valued
on L(Q;) and differentiable
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Estimating Lagrange Multipliers
Duality

Linearize the problem

Therefore we can linearize the problem (Py).
We know that 0 < J;(Z4,z — Z4) holds.
So we can derive that Z, is the unique solution of

min J(z) + (yg, Gi(2)),

zeZg
where
o (yg,y) =2 (g yi)
° G(Z) = (gl(z g ,g,,(z))
o I, € L(;)" such that

o) = [ haleiza) 00 = i), ()
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Estimating Lagrange Multipliers

Duality

Property of the limit of the multipliers

Theorem (Gfrerer (4.2): Property of limit point)
Assume:
o (P1)-(P4) (Q1) - (Q3)
o Z to be a Banach space continuously embedded in Z
o Y to be a Banach space coAntinuqusly embedded in
Y = Hm Li(Q) st. G(Z)C Y.
° (¢") C Q\{q} withq" —7q
® (ygn,y) =22 ol gn i)

® Yon —w+ y© € v (convergence)
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let Lagrange Multipliers

estimate Estimating Lagrange Multipliers
Duality

Property of the limit of the multipliers

Theorem (Gfrerer (4.2): Property of limit point)
Assume:

° ...
Then:
@ y* belongs to the normal cone of C at G(Z)
(ie, (y*,c—G(Z)) <0Vce C)

where C :={c=(c1,...,cn) €Y : ¢ < pj a.ed. Q; Vj}
G(2) = (81(2);- - &n(2))

@ Z is the unique solution of

min J(z) + (y*, G(2))

zeZg

That means: y* is a multiplier.
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Lagrange Multipliers
Estimating Lagrange Multipliers
Duality

Convergence of the multipliers

Theorem (Gfrerer (4.3): Convergence)
Assume:

o (P1)-(P4), (Q1) - (Q3)
(Q4) 0y €int(G(Zg) — C)

Notice that condition (Q4) is a constraint qualification condition
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Lagrange Multipliers
Estimating Lagrange Multipliers

Duality

Convergence of the multipliers

Theorem (Gfrerer (4.3): Convergence)
Assume:
o (P1)-(P4), (Q1) - (Q3)
(Q4) Oy €int(G(Zg) — C)
Then:

M *
° ||msupqﬂa|\yq||9* < 00
This implies the existence of a weak-*-convergent subsequence.

Notice that condition (Q4) is a constraint qualification condition
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Lagrange Multipliers
Estimating Lagrange Multipliers

Duality

Convergence of the multipliers (cont.)

Theorem (Gfrerer (4.4): Convergence)
Assume:

@ the constraints can be partltloned
C= C1><C2CY1><Y2 YA
G = (Gi1, G) where G; : 7Y (i =1,2) such that
e (¢ € intGl(Z_:) for some ¢; € (4 .
(or more generally, 0 € inty, (G1(Ze) — C1)) and
o Gi(2) € Gi, Go(2) € inty, C, for some 2 € Zg

Then: condition (Q4) is fulfilled.
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Estimating Lagrange Multipliers
Duality

Application to model problem

o Q c RY with CY! boundary
@ Assume T € L"(Q) with r > max{d,2}

(can be ensured using box constraints)
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Lagrange Multipliers
Estimating Lagrange Multipliers
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Application to model problem

Q c RY with CY! boundary
Assume T € L"(Q2) with r > max{d,2}

(can be ensured using box constraints)

Choose Z := W2 (Q) N W, (Q) x L"(RQ)
Choose Y := L"(Q) x C(cl) x C(cI)
(since y and Vy are continuous on cl for y € W2 (Q))

G(ya U) = (U,)/, ‘V}/b)
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Lagrange Multipliers
Estimating Lagrange Multipliers
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Application to model problem

o Q c RY with CY! boundary
@ Assume T € L"(Q) with r > max{d,2}

(can be ensured using box constraints)

Choose Z := W2 (Q) N W, (Q) x L"(RQ)

Choose Y := L"(Q) x C(cl) x C(cI)

(since y and Vy are continuous on cl for y € W2 (Q))
G(y,u) = (u,y,[Vyl2)
C=CxCxC={uel(Q) : ulp,}x
{yeC(cd) : y<o¢,} x{gecC(c) : g <y}
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Lagrange Multipliers
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Application to model problem

o Q c RY with CY! boundary
@ Assume T € L"(Q) with r > max{d,2}
(can be ensured using box constraints)
o Choose Z := W2"(Q) N W, () x L"(Q)
e Choose Y := L"(Q) x C(cl) x C(cIQ)
(since y and Vy are continuous on cl for y € W2 (Q))
° G(y,u) = (u,y,[Vyl)
0 C=CxCxC={uel(Q): ulp}x
{y e C(dQ) : y <¢y} x{ge€C(cl)) : g< g}
o (Q4) is fulfilled if there exists some feasible (y,u) € Z with
y €intCy, |[Vyl2 €intCy
(i.e., 36 > 0 such that y < ¢y — 6 and |Vy|2 < @g — §)
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Thanks for your attention!
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