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The finite dimensional case

(Peq) min J(z) s.t. G(z) = 0

J : Rn → R, G : Rn → Rm continuously differentiable
Lagrangian: L : Rn × Rm → R,

(z, λ)→ L(z, λ) := J(z) + λT G(z)

Theorem
Assume

z̄ is a local minimizer for the problem (Peq)

G′(z̄) (the Jacobian of G at z̄) has full rank m
Then there is a (unique) multiplier λ̄ ∈ Rm such that

∇zL(z̄, λ̄) = 0.
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Solution method

First-order necessary conditions are the base of a solution
method.
Define F : Rn × Rm → Rn × Rm,

(z, λ)→ F (z, λ) =

(
∇zL(z, λ)

G(z)

)
A local minimizer z̄ together with a multiplier λ̄ (under full rank
assumption on G′(z̄)) is solution of the nonlinear equation

F (z, λ) = 0

If F is continuously differentiable (i.e., J and G are twice
continuously differentiable), then nonlinear equation F (z, λ) = 0
can be solved by (damped) Newton method
F ′(z̄, λ̄) is regular if some second-order sufficient condition is
fulfilled.
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The infinite dimensional case

(Peq) min J(z) s.t. G(z) = 0

Z , V Banach spaces
J : Z → R, G : Z → V continuously differentiable
Lagrangian: L : Z × V ∗ → R,

(z, λ)→ L(z, v∗) := J(z) + 〈v∗,G(z)〉

Theorem
Assume

z̄ is a local minimizer for the problem (Peq)

The Fréchet derivative DG(z̄) ∈ L(Z ,V ) is surjective
Then there is a (unique) multiplier v̄∗ ∈ V ∗ such that

DzL(z̄, v̄∗) = 0.
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Lyusternik’s Theorem

The first-order necessary conditions above are based on the following
theorem

Theorem (Lyusternik)
Assume

G(z̄) = 0,
G′(z̄) is surjective.

Then for every h ∈ Z with G′(z̄)h = 0 there is some z(h) ∈ Z with
G(z(h)) = 0 and

‖z(h)− (z̄ + h)‖ = o(‖h‖)
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In fact, with some small modifications of the proof of Lyusternik’s
Theorem one can derive the following regularity result
(dist (z,A) := inf{‖z − a‖ : a ∈ A}, dist (z, ∅) :=∞):

Theorem
Under the assumptions of Lyusternik’s theorem there is some positive
real κ and some neighborhood N ⊂ Z × V of (z̄,0) such that

dist (z,G−1(v)) ≤ κ‖G(z)− v‖, ∀(z, v) ∈ N

i.e.
For every v ∈ V sufficiently close to 0 the equation G(z) = v has
at least one solution near z̄.
For every v ∈ V sufficiently close to 0 and for every z ′ sufficiently
close to z̄ the distance between z ′ and the solution set of
G(z) = v is proportionally bounded by the norm of the residual
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Problems with abstract inequality constraints

(Pineq) min J(z) s.t. 0 ∈ G(z)

Z , V Banach spaces, J : Z → R
G : Z ⇒ V is a multifunctuion (set-valued function, multi-valued
function), i.e. G(z) is a subset of V
Important special case:

G(z) = g(z)− C,

where g : Z → V is a mapping, C ⊂ V is a (closed convex) set.
Structure of optimality conditions:

∃v̄∗ ∈ NC(g(z̄)) : DJ(z̄) + Dg(z̄)∗v∗ = 0,

where NC(g(z̄)) := {v∗ ∈ V ∗ : 〈v∗, c − g(z̄)〉 ≤ 0,∀c ∈ C}
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Example: Obstacle problem

Problem formulation
An elastic membrane is attached to a flat wireframe.
Forces are acting in vertical direction.
A rigid body (obstacle) is placed under the membrane.
We look for the deflexion of the membrane

Mathematical model
Ω ⊂ R2: domain enclosed by the wireframe
y(x), x ∈ Ω: deflexion of the deformed membrane
Membrane is fixed at the wireframe⇒ y(x) = 0, x ∈ ∂Ω

Obstacle is given by ϕ ∈ L2(Ω)

Forces are given by f ∈ L2(Ω)

Total energy of deformed membrane: J(y) = P(y)− E(y)

Potential energy: P(y) ≈ 1
2

∫
Ω |∇y |2 dω

Energy due to external forces: E(y) =
∫

Ω fy dω
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Model of the obstacle problem

The equilibrium is given by minimizing the energy functional J(y),
when the deflection of the membrane is restricted from below by the
obstacle:

min J(y) =
1
2

∫
Ω
|∇y |2 dω −

∫
Ω

fy dω

s.t. y = 0 on ∂Ω

y ≥ ϕ a.e. in Ω

e.g. Ω = (0,1)2

f ≡ 3

Figure: Obstacle
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Figure: Membrane
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Figure: Membrane
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Formulation as (Pineq)

Z = H1
0 (Ω), J(z) = 1

2

∫
Ω |∇z|2 dω −

∫
Ω fz dω

Let i : H1
0 (Ω)→ L2(Ω) denote the canonical injection,

K = {u ∈ L2(Ω) : u ≥ ϕ a.e.}
2 equivalent possibilities for G,V

1 V = L2(Ω), g = i , C = K , i.e. G(z) = i(z)− K .
2 V = H1

0 (Ω), g = idH1
0 (Ω), C = i−1(K ), i.e. G(z) = z − i−1(K ).

First-order necessary conditions are only possible in the second
case.
In order that first-order necessary conditions are fulfilled at a
solution z̄ of Pineq some constraint qualification condition (CQ) has
to be fulfilled .
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Metric regularity

Definition
Let G : Z ⇒ V be a multifunction, 0 ∈ G(z̄). G is called metrically
regular near (z̄,0) iff there are some positive real κ and some
neighborhood N ⊂ Z × V of (z̄,0) such that

dist (z,G−1(v)) ≤ κdist (v ,G(z)), ∀(z, v) ∈ N

Metric regularity provides a CQ.
Besides its importance for optimality conditions it is a fundamental
stability concept.
Metric regularity guarantees the solvability of the constraints
under small perturbations and the continuity of solutions in
dependence of the perturbations
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Outline

1 First-order optimality conditions
Equality constraints
Inequality constraints

2 Solution methods
Semi-smooth Newton methods
Penalty methods
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Semi-Smooth Newton method

Method for solving first-order necessary conditions.
The normal cone of C is given by a variational inequality.
Sometimes this variational inequality can be reformulated as a
non-smooth equation.
Semi-smooth Newton methods are intended for solving special
non-smooth equations.
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Figure: Multiplier
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Penalty methods

First-order conditions for obstacle problem cannot be solved
directly by semi-smooth Newton methods, since multiplier
v̄∗ ∈ H−1(Ω)

Penalty methods do not rely on first-order conditions
Original problem is replaced by a sequence of unconstrained (or
equality constrained) problems.
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