Outline

Metric regularity

1st order optimality conditions

メロト メポト メヨト メヨト

æ

SupInf condition, 1st order optimality conditions

Arpan Ghosh

24-11-2009

Arpan Ghosh —

Outline

Metric regularity

1st order optimality conditions

Metric regularity

Introduction SupInf Condition $\text{Reg}\Psi(\tilde{x}, 0)$

1st order optimality conditions Problem Definitions Conditions Remarks

▲ロト▲園と▲目と▲目と 目 のなの

Arpan Ghosh —

Definition 1 : Let $\Psi : X \Rightarrow Y$ be a set valued map, $\bar{y} \in \Psi(\bar{x})$. The multifunction Ψ is called metrically regular near (\bar{x}, \bar{y}) if there are neighborhoods $N_{\bar{x}}$, $N_{\bar{y}}$ of \bar{x}, \bar{y} respectively, and some k > 0 such that

$$d(x, \Psi^{-1}(y)) \le k d(y, \Psi(x)) \forall (x, y) \in N_{\bar{x}} \times N_{\bar{y}}$$
(1)

The lower bound of such k will be called the constant of metric regularity of Ψ near (\bar{x}, \bar{y}) and denoted by $Reg\Psi(\bar{x}, \bar{y})$.

0		+1	۰.		
U	u	LI		U.	

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … のへで

Introduction

Definition 2. For a set $D \subset Z$, the support function $\sigma_D : Z^* \to \mathbb{R}$ is defined by

$$\sigma_D(z^*) := \sup_{z \in D} \langle z^*, z \rangle$$

Arpan Ghosh —

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Introduction

Definition 2. For a set $D \subset Z$, the support function $\sigma_D : Z^* \to \mathbb{R}$ is defined by

$$\sigma_D(z^*) := \sup_{z \in D} \langle z^*, z \rangle$$

Lemma 1 : Let *D* be a closed convex subset of a normed space *Z* and let $\hat{d}_D : Z \to \mathbb{R} \cup \{\pm \infty\}$ be given by

$$\hat{d}_D(z) := \sup_{z^* \in S_{Z^*}} \{ \langle z^*, z \rangle - \sigma_D(z^*) \}.$$

Then $\forall z \in Z$ we have

$$\hat{d}_D(z) = \begin{cases} d(z,D) & \text{if } z \notin D \\ -\max(\rho: z + \rho B_Z \subset D) & \text{if } z \in D \end{cases}$$
(2)

Arpan Ghosh —

Outline	Metric regularity 00● 000 00	1st order optimality conditions		
Introduction				
Assumptions				

► $\Gamma: X \implies Y$ of the form $\Gamma(x) = h(x) - C$ where X and Y are Banach spaces, $h: X \rightarrow Y$ is an arbitrary mapping and $C \subset Y$ is closed and convex.

Outline	Metric regularity oo● oo oo	1st order optimality conditions o o o o
Introduction		

Assumptions

- Γ : X ⇒ Y of the form Γ(x) = h(x) − C where X and Y are Banach spaces, h : X → Y is an arbitrary mapping and C ⊂ Y is closed and convex.
- Let h(x̄) ∈ C. Let h is strictly differentiable at x̄, i.e., h is Fréchet differentiable at x̄ and the derivative h'(x̄) satisfies

$$\lim_{x,x'\to \bar{x}} \frac{\|h(x)-h(x')-h'(\bar{x})(x-x')\|}{\|x-x'\|} = 0,$$

<ロト <四ト <三ト <三ト = 三

Arpan Ghosh -

Metric regularity ○○○ ○○○ ○○ 1st order optimality conditions

SupInf Condition

Theorem 1.The following are equivalently:

- 1. The multifunction Γ is metrically regular near $(\bar{x}, 0)$.
- 2. The linearization

$$\Psi(x) := h(\bar{x}) + h'(\bar{x})(x - x') - C$$

is metrically regular near $(\bar{x}, 0)$.

3. There holds $0 \in int(h(\bar{x}) + h'(\bar{x})X - C)$.

1st order optimality conditions

SupInf Condition

Theorem 1. The following are equivalently:

- 1. The multifunction Γ is metrically regular near $(\bar{x}, 0)$.
- 2. The linearization

$$\Psi(x) := h(\bar{x}) + h'(\bar{x})(x - x') - C$$

is metrically regular near $(\bar{x}, 0)$.

- 3. There holds $0 \in int(h(\bar{x}) + h'(\bar{x})X C)$.
- There is some $\tilde{\kappa} \ge 0$ such that $0 \in int(h(\bar{x}) + \tilde{\kappa}h'(\bar{x})B_X C)$

Arpan Ghosh -

1st order optimality conditions

SupInf Condition

Theorem 1. The following are equivalently:

- 1. The multifunction Γ is metrically regular near $(\bar{x}, 0)$.
- 2. The linearization

$$\Psi(x) := h(\bar{x}) + h'(\bar{x})(x - x') - C$$

is metrically regular near $(\bar{x}, 0)$.

- 3. There holds $0 \in int(h(\bar{x}) + h'(\bar{x})X C)$.
- There is some $\tilde{\kappa} \ge 0$ such that $0 \in int(h(\bar{x}) + \tilde{\kappa}h'(\bar{x})B_X C)$
- ► $\forall \kappa > 0, \ 0 \in int(h(\bar{x}) + \kappa h'(\bar{x})B_X C)$

Outline	Metric regularity	1st order optimality conditions
	000	
	00	ర్గంంం
SupInf Condition		

Definition 3. The function $\hat{d}_C : Y \times L(X, Y) \times \mathbb{R} \to \mathbb{R}$ is given by

$$\hat{d}_{\mathcal{C}}(y, \mathcal{A}, \kappa) := \sup_{y^* \in \mathcal{S}_{Y^*}} \{ \langle y^*, y \rangle - \sigma_{\mathcal{C}}(y^*) - \kappa \| \mathcal{A}^* y^* \| \}$$

Arpan Ghosh —

Outline	Metric regularity	1st order optimality conditions
	000	
	õõ	0000 0
SupInf Condition		

Definition 3. The function $\hat{d}_C : Y \times L(X, Y) \times \mathbb{R} \to \mathbb{R}$ is given by

$$\hat{d}_{\mathcal{C}}(y, A, \kappa) := \sup_{y^* \in \mathcal{S}_{Y^*}} \{ \langle y^*, y \rangle - \sigma_{\mathcal{C}}(y^*) - \kappa \| A^* y^* \| \}$$

Proposition 1. For each $A \in L(X, Y)$, $\forall y \in Y$ and $\forall \kappa \ge 0$ let $D_C(y, A, \kappa) := y + \kappa A B_X - C$. Then

$$\hat{d}_{C}(y,A,\kappa) = \begin{cases} d(0, D_{C}(y,A,\kappa)) & \text{if } 0 \notin clD_{C}(y,A,\kappa) \\ 0 & \text{if } 0 \in bdD_{C}(y,A,\kappa) \\ -sup(\rho:\rho B_{Y} \subset D_{C}(y,A,\kappa) & \text{if } 0 \in intD_{C}(y,A,\kappa) \\ \end{cases}$$
(3)

Outline	Metric regularity	1st order optimality conditions		
	000			
	000	0000		
		ő		
SupInf Condition				

SupInf Condition

Theorem 2. Γ is metrically regular near $(\bar{x}, 0)$ iff $\hat{d}_C(h(\bar{x}), h'(\bar{x}), \tilde{\kappa}) < 0$ for some $\tilde{\kappa} \ge 0$.

Arpan Ghosh —

 $\operatorname{Reg}\Psi(\tilde{x}, 0)$

Lemma 2. Let $A \in L(X, Y)$, $y \in Y$, and $\kappa \ge 0$ be such that $\hat{d}_C(y, A, \kappa) < 0$. Then

$$d(0, A^{-1}(C - y)) \leq rac{\kappa}{d(y, C) - \hat{d}_C(y, A, \kappa)} d(y, C)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Arpan Ghosh —

Lemma 3. For given $A \in L(X, Y)$, $\tilde{y} \in C$, $\tilde{x} \in X$ if the set-valued map $\Psi(x) := \tilde{y} + A(x - \tilde{x}) - C$, is metrically regular near $(\tilde{x}, 0)$, then

$$Reg\Psi(\tilde{x},0) = \lim_{\kappa \to 0_+} \frac{\kappa}{-\hat{d}_C(\tilde{y},A,\kappa)}$$
$$= \inf_{\kappa > 0} \frac{\kappa}{-\hat{d}_C(\tilde{y},A,\kappa)}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Arpan Ghosh —

Problem

We consider the following problem

(P) L-minimize f(x) subject to $g(x) \in K$,

where $f: X \to U$ and $g: X \to V$ are mappings from the Banach space X into other Banach spaces U and $V, K \subset V$ is a closed convex set and $L \subset U$ is a closed convex cone with none empty interior i.e. $intL \neq \emptyset$

h: X → U × V defined by h(x) := (f(x) - f(x̄), g(x))
 h is strictly differentiable.

h: X → U × V defined by h(x) := (f(x) - f(x̄), g(x))
 h is strictly differentiable.

•
$$C := (-L) \times K, Y := U \times V$$

Arpan Ghosh -

h: X → U × V defined by h(x) := (f(x) - f(x̄), g(x))
 h is strictly differentiable.

•
$$C := (-L) \times K, Y := U \times V$$

► The multifunction $\Gamma : X \rightrightarrows Y$, is given by $\Gamma(x) := h(x) - C$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへで

\cap		+1		•	~
U	u	u	ł		e

Conditions

If \bar{x} is a local weak minimizer of problem (P)

Arpan Ghosh —

SupInf condition, 1st order optimality conditions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Conditions

If \bar{x} is a local weak minimizer of problem (P)

 \Rightarrow Γ is not metrically regular near (\bar{x} , 0)

Arpan Ghosh — SupInf condition, 1st order optimality conditions ▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 - のへ⊙

1st order optimality conditions ○ ● ● ○ ○

Conditions

If \bar{x} is a local weak minimizer of problem (P)

 \Rightarrow Γ is not metrically regular near (\bar{x} , 0)

$$\Leftrightarrow \hat{d}_{\mathcal{C}}(h(\bar{x}), h'(\bar{x}), 1) := \\ \sup_{y^* \in S_{Y^*}} \{ \langle y^*, h(\bar{x}) \rangle - \sigma_{\mathcal{C}}(y^*) - \|h'(\bar{x})^* y^*\| \} \ge 0$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Arpan Ghosh —

1st order optimality conditions ○ ● ● ○ ○

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Conditions

If \bar{x} is a local weak minimizer of problem (P)

 \Rightarrow Γ is not metrically regular near (\bar{x} , 0)

$$\Leftrightarrow \hat{d}_{\mathcal{C}}(h(\bar{x}), h'(\bar{x}), 1) := \\ \sup_{y^* \in S_{Y^*}} \{ \langle y^*, h(\bar{x}) \rangle - \sigma_{\mathcal{C}}(y^*) - \|h'(\bar{x})^* y^*\| \} \ge 0$$

 $\Leftrightarrow \exists$ a sequence $(y_n^*) \subset S_{Y^*}$ such that

$$\lim_{n \to \infty} \{ \sigma_C(y_n^*) - \langle y_n^*, h(\bar{x}) \rangle \} = 0, \lim_{n \to \infty} \| h'(\bar{x})^* y_n^* \| = 0$$
 (4)

Arpan Ghosh —

1st order optimality conditions ○ ○ ○ ○ ○ ○ ○

Conditions

Fritz-John type optimality conditions:

$\begin{aligned} f'(\bar{x})^* u^* + g'(\bar{x})^* v^* &= 0, 0 \neq (u^*, v^*) \in L^* \times N_K(g(\bar{x})) \subset U^* \times V^* \\ (5) \end{aligned}$ where $L^* &:= \{u^* \in U^* : \langle u^*, u \rangle \geq 0 \forall u \in L\}$ is the dual cone of the cone L and $N_K(z) := \{v^* \in V^* : \langle v^*, v - z \rangle \leq 0 \forall v \in K\}$ is the normal cone to K at z.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Arpan Ghosh —

Conditions

Fritz-John type optimality conditions:

$$\begin{aligned} f'(\bar{x})^* u^* + g'(\bar{x})^* v^* &= 0, 0 \neq (u^*, v^*) \in L^* \times N_K(g(\bar{x})) \subset U^* \times V^* \\ (5) \end{aligned}$$
where $L^* := \{u^* \in U^* : \langle u^*, u \rangle \geq 0 \forall u \in L\}$ is the dual cone of the cone L and $N_K(z) := \{v^* \in V^* : \langle v^*, v - z \rangle \leq 0 \forall v \in K\}$ is the normal cone to K at z.

• Or in shorter form with $y^* := (u^*, v^*)$:

$$h'(\bar{x})^* y_n^* = 0, y^* \in N_C(h(\bar{x})), y^* \neq 0$$
 (6)

Arpan Ghosh —

Kuhn-Tucker conditions: Kuhn-Tucker conditions hold if the Fritz-John conditions (5) hold with $u^* \neq 0$.

Arpan Ghosh — SupInf condition, 1st order optimality conditions

Kuhn-Tucker conditions: Kuhn-Tucker conditions hold if the Fritz-John conditions (5) hold with $u^* \neq 0$.

Let Λ_{FJ} denote the set of multipliers y^* satisfying the Fritz-John conditions (6).

Let Λ_{KT} denote the set of multipliers y^* satisfying the Kuhn-Tucker conditions.

Outline

Metric regularity

1st order optimality conditions

ヘロト 人間 とくほ とくほ とう

2

Conditions

Proposition 2. Assume that \bar{x} is nondegenerate and let $(y_n^*) \subset S_{Y^*}$ be a sequence satisfying (4). Then \forall weak* accumulation point \bar{y}^* of $(y_n^*), \bar{y}^* \in \Lambda_{FJ} \cap B_{Y^*}$.

Arpan Ghosh —

Remarks

- In the case of scalar minimization the commonly used set of Lagrange multipliers is given by {v* ∈ V* : (1, v*) ∈ Λ_{FJ}}
- ▶ Robinson's constraint qualification holds if and only if (0,1) ∈ int(h(x̄) + h'(x̄)X - C)
- Theorem 3. Let Λ_{FJ} ≠ Ø and assume that Robinson's constrain qualification 0 ∈ int(g(x̄) + g'(x̄)X − K) is fulfilled. Then one has Λ_{FJ} = Λ_{KT}.

\cap		+1	۰.	• •	
U	u	LI		Ľ	

1st order optimality conditions

▲口▶ ▲圖▶ ▲国▶ ▲国▶

æ

Thank You!!

Arpan Ghosh —