・ロト ・雪ト ・ヨト ・ヨト

а.

Seminar on Numerical Analysis

Peter Gangl

Semismooth Newton methods

12-01-2010

Peter Gangl - Semismooth Newton methods: Seminar on Numerical Analysis

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ξ.

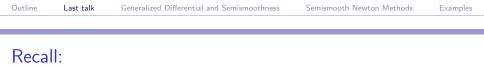
Last talk

Generalized Differential and Semismoothness

Semismooth Newton Methods

Examples

Peter Gangl - Semismooth Newton methods: Seminar on Numerical Analysis



 We can reformulate optimization problems as (possibly nonsmooth) operator equation

$$G(x) = 0, \tag{1}$$

・ロト ・雪ト ・ヨト ・ヨト

э

where $G: X \rightarrow Y$, X, Y Banach Spaces.

 We can reformulate optimization problems as (possibly nonsmooth) operator equation

$$G(x) = 0, \tag{1}$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

э.

where $G: X \rightarrow Y$, X, Y Banach Spaces.

- Equation (1) can be solved using some generalized Newton methods:
 - 1. Choose $x^0 \in X$ For k = 0, 1, 2, ...
 - 2. Choose an invertible operator $M_k \in \mathcal{L}(X, Y)$.
 - 3. Obtain s^k by solving

$$M_k s^k = -G(x^k)$$

and set $x^{k+1} = x^k + s^k$.

 Let (x^k) be the sequence generated by the generalized Newton method where x⁰ is sufficiently close to the solution x̄ ∈ X. Then we have:

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

- Let (x^k) be the sequence generated by the generalized Newton method where x⁰ is sufficiently close to the solution x̄ ∈ X. Then we have:
 - 1. (x^k) converges q-linearly to \bar{x} with rate $\gamma \in (0,1)$ iff

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X \le \gamma \|d^k\|_X$$
 (2)

< 日 > < 同 > < 回 > < 回 > < 回 > <

э.

 $\forall k \text{ with } \|d^k\|_X \text{ sufficiently small.}$

- Let (x^k) be the sequence generated by the generalized Newton method where x⁰ is sufficiently close to the solution x̄ ∈ X. Then we have:
 - 1. (x^k) converges q-linearly to \bar{x} with rate $\gamma \in (0,1)$ iff

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X \le \gamma \|d^k\|_X$$
 (2)

 $\forall k \text{ with } \|d^k\|_X \text{ sufficiently small.}$

2. (x^k) converges q-superlinearly to \bar{x} iff

$$\|M_k^{-1}(G(\bar{x}+d^k) - G(\bar{x}) - M_k d^k)\|_X = o(\|d^k\|_X)$$
(3) for $\|d^k\|_X \to 0$

- 4 同 ト - 4 目 ト

- Let (x^k) be the sequence generated by the generalized Newton method where x⁰ is sufficiently close to the solution x̄ ∈ X. Then we have:
 - 1. (x^k) converges q-linearly to \bar{x} with rate $\gamma \in (0,1)$ iff

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X \le \gamma \|d^k\|_X$$
 (2)

 $\forall k \text{ with } \|d^k\|_X \text{ sufficiently small.}$

2. (x^k) converges q-superlinearly to \bar{x} iff

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X = o(\|d^k\|_X)$$
 (3)

for
$$||d^k||_X \to 0$$

3. (x^k) converges *q*-order $1 + \alpha > 1$ to \bar{x} iff

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X = O(\|d^k\|_X^{1+\alpha})$$
(4)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

for $||d^k||_X \to 0$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

æ

Convergence results

The estimates (2), (3) are meant uniformly in k.

Peter Gangl - Semismooth Newton methods: Seminar on Numerical Analysis

The estimates (2), (3) are meant uniformly in k.

It is convenient to split the smallness assumptions on

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

in two parts:

The estimates (2), (3) are meant uniformly in k.

It is convenient to split the smallness assumptions on

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X$$

in two parts:

1. Regularity condition:

$$\|M_k^{-1}\|_{Y\to X} \le C, \quad \forall k \ge 0.$$
(5)

< ロ > < 同 > < 回 > < 回 > < 回 >

э

The estimates (2), (3) are meant uniformly in k.

It is convenient to split the smallness assumptions on

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X$$

in two parts:

1. Regularity condition:

$$\|M_k^{-1}\|_{Y\to X} \le C, \quad \forall k \ge 0.$$
(5)

2. Approximation condition:

$$\|G(\bar{x}+d^k)-G(\bar{x})-M_kd^k\|_Y = o(\|d^k\|_X) \text{ for } \|d\|_X \to 0$$
 (6) or

$$\|G(\bar{x}+d^k)-G(\bar{x})-M_kd^k\|_Y = O(\|d^k\|_X^{1+\alpha}) \text{ for } \|d\|_X \to 0$$

$$(7)$$

Theorem 1. Consider the operator equation (1) with $G : X \to Y$, where X and Y are Banach spaces. Let (x^k) be generated by the generalized Newton method. Then:

< 日 > < 同 > < 回 > < 回 > < 回 > <

э.

Theorem 1. Consider the operator equation (1) with $G : X \to Y$, where X and Y are Banach spaces. Let (x^k) be generated by the generalized Newton method. Then:

1. If x^0 is sufficiently close to \bar{x} and (2) holds then $x^k \to \bar{x}$ *q*-linearly with rate γ .

- 4 伊 ト 4 日 ト 4 日 ト

.

Theorem 1. Consider the operator equation (1) with $G : X \to Y$, where X and Y are Banach spaces. Let (x^k) be generated by the generalized Newton method. Then:

- 1. If x^0 is sufficiently close to \bar{x} and (2) holds then $x^k \to \bar{x}$ *q*-linearly with rate γ .
- 2. If x^0 is sufficiently close to \bar{x} and (3) (or (5) and (6)) holds then $x^k \to \bar{x}$ q-superlinearly.

3

Theorem 1. Consider the operator equation (1) with $G : X \to Y$, where X and Y are Banach spaces. Let (x^k) be generated by the generalized Newton method. Then:

- 1. If x^0 is sufficiently close to \bar{x} and (2) holds then $x^k \to \bar{x}$ *q*-linearly with rate γ .
- 2. If x^0 is sufficiently close to \bar{x} and (3) (or (5) and (6)) holds then $x^k \to \bar{x}$ q-superlinearly.
- 3. If x^0 is sufficiently close to \bar{x} and (4) (or (5) and (7)) holds then $x^k \to \bar{x}$ q-superlinearly with order $1 + \alpha$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

▲口 > ▲圖 > ▲ 国 > ▲ 国 > .

2

Question: How to choose $M_k \in \mathcal{L}(X, Y)$ in the algorithm?

Peter Gangl — Semismooth Newton methods: Seminar on Numerical Analysis

Outline Last talk Generalized Differential and Semismoothness Semismooth Newton Methods Examples

Question: How to choose $M_k \in \mathcal{L}(X, Y)$ in the algorithm?

► If G is continously F-differentiable and G' is continously invertible at the solution x̄:

Choose $M_k = G'(x^k)$ for all k (\rightarrow Classical Newton's Method)

< 日 > < 同 > < 回 > < 回 > < 回 > <

3

Outline Last talk Generalized Differential and Semismoothness Semismooth Newton Methods Examples

Question: How to choose $M_k \in \mathcal{L}(X, Y)$ in the algorithm?

► If G is continously F-differentiable and G' is continously invertible at the solution x̄:

Choose $M_k = G'(x^k)$ for all k (\rightarrow Classical Newton's Method)

If G is nonsmooth:

Find a suitable substitute for $G'(\rightarrow$ Semismooth Newton's Method)

< 日 > < 同 > < 回 > < 回 > < 回 > <

э.

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

Generalized Differential and Semismoothness

Considering set-valued generalized differentials $\partial G : X \rightrightarrows \mathcal{L}(X, Y)$, we will choose M_k point-based in each step, i.e.

 $M_k \in \partial G(x^k).$

Peter Gangl — Semismooth Newton methods: Seminar on Numerical Analysis

《曰》《聞》《臣》《臣》

I nar

Generalized Differential and Semismoothness

Considering set-valued generalized differentials $\partial G : X \rightrightarrows \mathcal{L}(X, Y)$, we will choose M_k point-based in each step, i.e.

 $M_k \in \partial G(x^k).$

Since we want M_k to satisfy the superlinear approximation condition (6), we have to require

 $\sup_{M\in\partial G(\bar{x}+d)} \|G(\bar{x}+d)-G(\bar{x})-Md\|_Y = o(\|d\|_X) \text{ for } \|d\|_X \to 0.$

This leads us to the definition of semismoothness:

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

Definition 1. (Semismoothness) Let X, Y be Banach spaces, $G: X \to Y$ a continuous operator and let be given the set-valued mapping $\partial G: X \rightrightarrows \mathcal{L}(X, Y)$ with nonempty images. Then

Peter Gangl — Semismooth Newton methods: Seminar on Numerical Analysis

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

Definition 1. (Semismoothness) Let X, Y be Banach spaces, $G: X \to Y$ a continuous operator and let be given the set-valued mapping $\partial G: X \rightrightarrows \mathcal{L}(X, Y)$ with nonempty images. Then

1. G is called ∂G -semismooth at $x \in X$ if

$$\sup_{M \in \partial G(x+d)} \|G(x+d) - G(x) - Md\|_{Y} = o(\|d\|_{X}) \text{ for } \|d\|_{X} \to 0.$$
(8)

< ロ > < 同 > < 回 > < 回 > < 回 > :

э.

Definition 1. (Semismoothness) Let X, Y be Banach spaces, $G: X \to Y$ a continuous operator and let be given the set-valued mapping $\partial G: X \rightrightarrows \mathcal{L}(X, Y)$ with nonempty images. Then

1. G is called ∂G -semismooth at $x \in X$ if

$$\sup_{M \in \partial G(x+d)} \|G(x+d) - G(x) - Md\|_{Y} = o(\|d\|_{X}) \text{ for } \|d\|_{X} \to 0.$$
(8)

2. G is called ∂G -semismooth of order $\alpha > 0$ at $x \in X$ if

$$\sup_{M \in \partial G(x+d)} \|G(x+d) - G(x) - Md\|_{Y} = O(\|d\|_{X}^{1+\alpha}) \text{ for } \|d\|_{X} \to 0.$$
(9)

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

э

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

• Then G is $\{G'\}$ -semismooth at x.

- Then G is $\{G'\}$ -semismooth at x.
- Furthermore, if G' is α-order Hoelder continuous near x, then G is {G'}-semismooth at x of order α.

< 日 > < 同 > < 回 > < 回 > < 回 > <

э.

- Then G is $\{G'\}$ -semismooth at x.
- Furthermore, if G' is α-order Hoelder continuous near x, then G is {G'}-semismooth at x of order α.

< 日 > < 同 > < 回 > < 回 > < 回 > <

э.

Proof: Blackboard

《曰》 《聞》 《臣》 《臣》

2

Theorem 2 Let X, Y, Z, X_i, Y_i be Banach spaces.

Peter Gangl - Semismooth Newton methods: Seminar on Numerical Analysis

Outline	Last talk	Generalized Differential and Semismoothness	Semismooth Newton Methods	Examples				
_								
Theorem 2 Let X, Y, Z, X_i , Y_i be Banach spaces.								
1. If the operators $G_i: X \to Y_i$ are ∂G_i -semismooth at x then								
) is $(\partial G_1, \partial G_2)$ -semismooth						

イロト イヨト イヨト イヨト

æ

Outline	Last taik	Generalized Differential and Semismootnness	Semismooth Newton Wethods	Examples			
Theorem 2 Let X, Y, Z, X_i , Y_i be Banach spaces.							
Theorem 2 Let Λ , T , Z , Λ_1 , T_1 be Danach spaces.							
1. If the operators $G_i:X o Y_i$ are ∂G_i -semismooth at x then							
	1. If the c	operators $\mathit{G}_i:X o Y_i$ are $\partial \mathit{G}_i$	\hat{b}_i -semismooth at x then				

Somicmooth Neuton Methods

- 「同 ト - (三 ト - (三 ト -)

Evamples

Constalized Differential and Semismoethness

2. If $G_i : X \to Y$, i = 1, 2, are ∂G_i -semismooth at x then $G_1 + G_2$ is $(\partial G_1 + \partial G_2)$ -semismooth at x.

Lact talk

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem 2 Let X, Y, Z, X_i , Y_i be Banach spaces.

- 1. If the operators $G_i : X \to Y_i$ are ∂G_i -semismooth at x then (G_1, G_2) is $(\partial G_1, \partial G_2)$ -semismooth at x.
- 2. If $G_i : X \to Y$, i = 1, 2, are ∂G_i -semismooth at x then $G_1 + G_2$ is $(\partial G_1 + \partial G_2)$ -semismooth at x.
- 3. Let $G_1 : Y \to Z$ and $G_2 : X \to Y$ be ∂G_i -semismooth at $G_2(x)$ and x, respectively. Assume that ∂G_1 is bounded near $y = G_2(x)$ and that G_2 is Lipschitz continuous near x. Then $G = G_1 \circ G_2$ is ∂G -semismooth with

$$\partial G(x) = \{M_1M_2 : M_1 \in \partial G_1(G_2(x)), M_2 \in \partial G_2(x)\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem 2 Let X, Y, Z, X_i , Y_i be Banach spaces.

- 1. If the operators $G_i : X \to Y_i$ are ∂G_i -semismooth at x then (G_1, G_2) is $(\partial G_1, \partial G_2)$ -semismooth at x.
- 2. If $G_i : X \to Y$, i = 1, 2, are ∂G_i -semismooth at x then $G_1 + G_2$ is $(\partial G_1 + \partial G_2)$ -semismooth at x.
- 3. Let $G_1 : Y \to Z$ and $G_2 : X \to Y$ be ∂G_i -semismooth at $G_2(x)$ and x, respectively. Assume that ∂G_1 is bounded near $y = G_2(x)$ and that G_2 is Lipschitz continuous near x. Then $G = G_1 \circ G_2$ is ∂G -semismooth with

$$\partial G(x) = \{M_1M_2 : M_1 \in \partial G_1(G_2(x)), M_2 \in \partial G_2(x)\}.$$

Proof: Blackboard

Semismooth Newton methods

In addition to the superlinear approximation condition (6) (or (7)), the operator M_k of the generalized Newton method should also satisfy the regularity condition (5). Therefore we require the following:

 $\exists C > 0 \exists \delta > 0 : \|M^{-1}\|_{Y \to X} \le C \quad \forall M \in \partial G(x) \quad \forall x \in X, \|x - \bar{x}\|_X < \delta.$ (10)

・ロト ・ 一 ト ・ ヨト ・ 日 ト

3

Semismooth Newton methods

In addition to the superlinear approximation condition (6) (or (7)), the operator M_k of the generalized Newton method should also satisfy the regularity condition (5). Therefore we require the following:

$$\exists C > 0 \exists \delta > 0 : \|M^{-1}\|_{Y \to X} \le C \quad \forall M \in \partial G(x) \quad \forall x \in X, \|x - \bar{x}\|_X < \delta.$$
(10)

Algorithm 1 (Semismooth Newton's method)

- 1. Choose $x^0 \in X$ (sufficiently close to the solution \bar{x}). For k = 0, 1, 2, ...:
- 2. Choose $M_k \in \partial G(x^k)$.
- 3. Obtain s^k by solving

$$M_k s^k = -G(x^k),$$

< ロ > < 同 > < 回 > < 回 > < 回 >

and set $x^{k+1} = x^k + s^k$.

Corollary 1 Let $G: X \to Y$ be continuous and ∂G -semismooth at a solution \bar{x} of (1). Furthermore, assume that the regularity condition (10) holds. Then there exists $\delta > 0$ such that for all $x^0 \in X$, $||x^0 - \bar{x}||_X < \delta$, the semismooth Newton method (Algorithm 1) converges *q*-superlinearly to \bar{x} .

If G is ∂G -semismooth of order $\alpha > 0$ at \bar{x} , then the convergence is of order $1 + \alpha$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

Finite Dimensional Example

For locally Lipschitz-continuous functions $G : \mathbf{R}^n \to \mathbf{R}^m$, the standard choice for ∂G is Clarke's generalized Jacobian

$$\begin{array}{lll} \partial^{cl}G: \mathbf{R}^{n} & \rightrightarrows & \mathbf{R}^{m \times n} \\ \partial^{cl}G(x) & = & \operatorname{conv}\{M \in \mathbf{R}^{m \times n} : \exists (x^{k}) \to x, G \text{ differentiable at } x^{k} : \\ & G'(x^{k}) \to M\}. \end{array}$$
(11)

< ロ > < 同 > < 回 > < 回 > < 回 >

э

Finite Dimensional Example

For locally Lipschitz-continuous functions $G : \mathbf{R}^n \to \mathbf{R}^m$, the standard choice for ∂G is Clarke's generalized Jacobian

$$\begin{array}{lll} \partial^{cl}G: \mathbf{R}^{n} & \rightrightarrows & \mathbf{R}^{m \times n} \\ \partial^{cl}G(x) & = & \operatorname{conv}\{M \in \mathbf{R}^{m \times n} : \exists (x^{k}) \to x, G \text{ differentiable at } x^{k} : \\ & G'(x^{k}) \to M\}. \end{array}$$
(11)

Example 1 Consider $\psi : \mathbf{R} \to \mathbf{R}$, $\psi(x) = P_{[a,b]}(x)$, a < b, then Clarke's generalized derivative is

$$\partial^{cl}\psi(x) = \begin{cases} \{0\} & x < a \text{ or } x > b, \\ \{1\} & a < x < b, \\ \operatorname{conv}\{0, 1\} = [0, 1] & x = a \text{ or } x = b. \end{cases}$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

ъ

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example in Function Spaces (1)

Let $\Omega \subset \mathbf{R}^n$ be measurable, $f : L^2(\Omega) \to \mathbf{R}$ twice continuously F-differentiable, $a, b \in L^{\infty}(\Omega)$ with $b(x) > a(x) \ \forall x \in \Omega$. We consider the problem

$$\min_{u\in L^2(\Omega)} f(u), \hspace{0.3cm} a\leq u\leq b \hspace{0.3cm} ext{ a.e. on } \Omega$$

э.

Example in Function Spaces (1)

ι

Let $\Omega \subset \mathbf{R}^n$ be measurable, $f : L^2(\Omega) \to \mathbf{R}$ twice continuously F-differentiable, $a, b \in L^{\infty}(\Omega)$ with $b(x) > a(x) \ \forall x \in \Omega$. We consider the problem

$$\min_{u\in L^2(\Omega)} f(u), \quad a\leq u\leq b \quad ext{ a.e. on } \Omega$$

We can transform the bounds to constant bounds using $u \mapsto \frac{u-a}{b-a}$, so that we consider the problem

$$\min_{u \in L^2(\Omega)} f(u), \quad \beta_l \le u \le \beta_r \quad \text{a.e. on } \Omega \tag{12}$$

Example in Function Spaces (1)

ι

Let $\Omega \subset \mathbf{R}^n$ be measurable, $f : L^2(\Omega) \to \mathbf{R}$ twice continuously F-differentiable, $a, b \in L^{\infty}(\Omega)$ with $b(x) > a(x) \ \forall x \in \Omega$. We consider the problem

$$\min_{u\in L^2(\Omega)} f(u), \quad a \leq u \leq b \quad ext{ a.e. on } \Omega$$

We can transform the bounds to constant bounds using $u \mapsto \frac{u-a}{b-a}$, so that we consider the problem

$$\min_{u \in L^2(\Omega)} f(u), \quad \beta_l \le u \le \beta_r \quad \text{a.e. on } \Omega \tag{12}$$

Note: Many PDE-constrained optimal control problems lead to this setting (see last talk).

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Example in Function Spaces (2)

If we set $S = \{u \in L^2(\Omega) : \beta_l \le u \le \beta_r\}$, problem (12) is equivalent to the variational inequality

$$u \in S$$
, $(\nabla f(u), v - u)_{L^2(\Omega)} \ge 0 \quad \forall v \in S.$ (13)

Peter Gangl — Semismooth Newton methods: Seminar on Numerical Analysis

Example in Function Spaces (2)

If we set $S = \{u \in L^2(\Omega) : \beta_l \le u \le \beta_r\}$, problem (12) is equivalent to the variational inequality

$$u \in S, \quad (\nabla f(u), v - u)_{L^2(\Omega)} \ge 0 \quad \forall v \in S.$$
 (13)

Using the L^2 -projection P_S given by

$$P_{\mathcal{S}}(v)(x) = P_{[\beta_l,\beta_r]}(v(x)), \ x \in \Omega,$$

we can reformulate (13) as the nonsmooth operator equation

$$\Phi(u) := u - P_{\mathcal{S}}(u - \theta \nabla f(u)) = 0, \qquad (14)$$

where $\theta > 0$ is arbitrary, but fixed.

・ロト ・四ト ・ヨト ・ヨト

а.

Example in Function Spaces (3)

Aim: Define a generalized differential $\partial\Phi$ for Φ in such a way that Φ is $\partial\Phi\text{-semismooth}.$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ъ

Example in Function Spaces (3)

Aim: Define a generalized differential $\partial \Phi$ for Φ in such a way that Φ is $\partial \Phi$ -semismooth.

By the sum rule we developed in *Theorem 2*, this reduces to the question how a suitable differential for the superposition $P_{[\beta_l,\beta_r]}(v(\cdot))$ can be defined.

・ロト ・ 一下・ ・ ヨト・

Example in Function Spaces (3)

Aim: Define a generalized differential $\partial \Phi$ for Φ in such a way that Φ is $\partial \Phi$ -semismooth.

By the sum rule we developed in *Theorem 2*, this reduces to the question how a suitable differential for the superposition $P_{[\beta_l,\beta_r]}(v(\cdot))$ can be defined.

Therefore we can use a result proved by M. Ulbrich, for the formulation of which we need a definition of generalized differentials of superposition operators of the form $\psi(G(\cdot))$, where G is a continuously F-differentiable operator.

・ロト ・ 一下・ ・ ヨト・

э.

Example in Function Spaces (4)

Definition 2 Let $\psi : \mathbf{R}^m \to \mathbf{R}$ be Lipschitz continuous and $(\partial^{cl}\psi)$ -semismooth. Furthermore, let $1 \le q \le p \le \infty$ be given, consider

$$\Psi_G: U \to L^q(\Omega), \ \Psi_G(u)(x) = \psi(G(u)(x)),$$

where $G: U \to L^p(\Omega)^m$ is continuously F-differentiable and U is a Banach space. We define the differential

$$\begin{array}{lll} \partial \Psi_{G}: U & \Rightarrow & \mathcal{L}(U, L^{q}(\Omega)), \\ \partial \Psi_{G}(u) & = & \{M: Mv = g^{T}(G'(u)v), g \in L^{\infty}(\Omega)^{m}, & (15) \\ & g(x) \in \partial^{cl}\psi(G(u)(x)) \ \, \dot{\forall} x \in \Omega\}. \end{array}$$

Example in Function Spaces (4)

Definition 2 Let $\psi : \mathbf{R}^m \to \mathbf{R}$ be Lipschitz continuous and $(\partial^{cl}\psi)$ -semismooth. Furthermore, let $1 \le q \le p \le \infty$ be given, consider

$$\Psi_G: U \to L^q(\Omega), \ \Psi_G(u)(x) = \psi(G(u)(x)),$$

where $G: U \to L^p(\Omega)^m$ is continuously F-differentiable and U is a Banach space. We define the differential

$$\begin{array}{rcl} \partial \Psi_{G}: U & \rightrightarrows & \mathcal{L}(U, L^{q}(\Omega)), \\ \partial \Psi_{G}(u) & = & \{M: Mv = g^{T}(G'(u)v), g \in L^{\infty}(\Omega)^{m}, & (15) \\ & g(x) \in \partial^{cl}\psi(G(u)(x)) & \forall x \in \Omega\}. \end{array}$$

Note: This is just the differential that we would obtain by the construction in part (3) of *Theorem 2*.

Last talk

・ロト ・四ト ・ヨト ・ヨト

а.

Example in Function Spaces (5)

Now we can state the following semismoothness result:

Peter Gangl — Semismooth Newton methods: Seminar on Numerical Analysis

Example in Function Spaces (5)

Now we can state the following semismoothness result:

Theorem 3 Let $\Omega \subset \mathbb{R}^n$ be measurable with $0 < |\Omega| < \infty$. Furthermore, let $\psi : \mathbb{R}^m \to \mathbb{R}$ be Lipschitz continuous and $\partial^{cl}\psi$ -semismooth. Let U be a Banach space, $1 \le q , and assume that the operator <math>G : U \to L^q(\Omega)^m$ is continuously F-differentiable and that G maps U locally Lipschitz continuously to $L^p(\Omega)^m$. Then, the operator

$$\Psi_G: U \to L^q(\Omega), \ \Psi_G(u)(x) = \psi(G(u)(x)),$$

is $\partial \Psi_G$ -semismooth, where $\partial \Psi_G$ is defined in (15).

Example in Function Spaces (5)

Now we can state the following semismoothness result:

Theorem 3 Let $\Omega \subset \mathbb{R}^n$ be measurable with $0 < |\Omega| < \infty$. Furthermore, let $\psi : \mathbb{R}^m \to \mathbb{R}$ be Lipschitz continuous and $\partial^{cl}\psi$ -semismooth. Let U be a Banach space, $1 \le q , and assume that the operator <math>G : U \to L^q(\Omega)^m$ is continuously F-differentiable and that G maps U locally Lipschitz continuously to $L^p(\Omega)^m$. Then, the operator

$$\Psi_G: U \to L^q(\Omega), \ \Psi_G(u)(x) = \psi(G(u)(x)),$$

is $\partial \Psi_G$ -semismooth, where $\partial \Psi_G$ is defined in (15).

Proof M. Ulbrich: "Nonsmooth Newton-like methods for variational inequalities and constrained optimization problems in function spaces" (2001)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Example in Function Spaces (6)

In order to be able to apply this result to the second summand of our problem

$$\begin{split} \Psi_G &: U = L^2(\Omega) \quad \to \quad L^2(\Omega), \\ \Psi_G(u)(x) &= \quad \psi(G(u)(x)) = P_{[\beta_l,\beta_r]}((u - \theta \nabla f(u))(x)), \end{split}$$

we have to make some assumptions on the structure of ∇f (which are fulfilled by many optimal control problems):

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Example in Function Spaces (6)

In order to be able to apply this result to the second summand of our problem

$$\begin{split} \Psi_G : U &= L^2(\Omega) \quad \to \quad L^2(\Omega), \\ \Psi_G(u)(x) &= \quad \psi(G(u)(x)) = P_{[\beta_I,\beta_r]}((u - \theta \nabla f(u))(x)), \end{split}$$

we have to make some assumptions on the structure of ∇f (which are fulfilled by many optimal control problems):

There exist $\alpha > 0$ and p > 2 sucht that

$$\blacktriangleright \nabla f(u) = \alpha u + H(u),$$

- $H: L^2(\Omega) \to L^2(\Omega)$ continuously F-differentiable,
- $H: L^2(\Omega) \to L^p(\Omega)$ locally Lipschitz continuous.

・ロト ・ 一下・ ・ ヨト・

Example in Function Spaces (7)

Under these assumptions and by setting $\theta = \frac{1}{\alpha}$, Ψ_G reduces to

$$\Psi_G(u)(x) = \psi(G(u)(x)) = P_{[\beta_l,\beta_r]}(-\frac{1}{\alpha}H(u)(x)),$$

so setting $q = 2, \psi = P_{[\beta_l,\beta_r]}$ and $G = -\frac{1}{\alpha}H$, we can apply *Theorem 3* and obtain that the operator Ψ_G is $\partial \Psi_G$ -semismooth with $\partial \Psi_G$ defined in (15).

Example in Function Spaces (7)

Under these assumptions and by setting $\theta = \frac{1}{\alpha}$, Ψ_G reduces to

$$\Psi_G(u)(x) = \psi(G(u)(x)) = P_{[\beta_l,\beta_r]}(-\frac{1}{\alpha}H(u)(x)),$$

so setting $q = 2, \psi = P_{[\beta_I,\beta_r]}$ and $G = -\frac{1}{\alpha}H$, we can apply *Theorem 3* and obtain that the operator Ψ_G is $\partial \Psi_G$ -semismooth with $\partial \Psi_G$ defined in (15). Therefore, by *Theorem 2*, the operator $\Phi = I - \Psi_G$ in our problem (14) is semismooth w.r.t $\partial \Phi = I - \partial \Psi_G$ defined by

$$\partial \Phi : L^{2}(\Omega) \implies \mathcal{L}(L^{2}(\Omega), L^{2}(\Omega)),$$

$$\partial \Phi(u) = \{M : M = I + \frac{g}{\alpha} \cdot H'(u), g \in L^{\infty}(\Omega), \quad (16)$$

$$g(x) \in \partial^{cl} P_{[\beta_{l},\beta_{r}]}(-(1/\alpha)H(u)(x)) \dot{\forall} x \in \Omega\}$$

and (under some additional regularity condition) we can apply the semismooth Newton method (*Algorithm 1*).

э

< ロ > < 同 > < 回 > < 回 > < 回 >

Application to Optimal Control (1)

Now we can apply the theory we just developed to the following elliptic optimal control problem:

$$\min_{\substack{y \in H_0^1(\Omega), u \in L^2(\Omega)}} J(y, u) \stackrel{\text{def}}{=} \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$$

s.t. $Ay = r + Bu, \ \beta_l \le u \le \beta_r.$

with

Peter Gangl — Semismooth Newton methods: Seminar on Numerical Analysis

э

Application to Optimal Control (1)

Now we can apply the theory we just developed to the following elliptic optimal control problem:

$$\min_{\substack{y \in H_0^1(\Omega), u \in L^2(\Omega)}} J(y, u) \stackrel{\text{def}}{=} \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$$

s.t. Ay = r + Bu, $\beta_l \leq u \leq \beta_r$.

with

•
$$y \in H^1_0(\Omega)$$
 the *state*

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Application to Optimal Control (1)

Now we can apply the theory we just developed to the following elliptic optimal control problem:

$$\min_{\substack{y \in H_0^1(\Omega), u \in L^2(\Omega)}} J(y, u) \stackrel{\text{def}}{=} \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$$

s.t. Ay = r + Bu, $\beta_l \leq u \leq \beta_r$.

with

y ∈ H¹₀(Ω) the state
 u ∈ L²(Ω) the control

Application to Optimal Control (1)

Now we can apply the theory we just developed to the following elliptic optimal control problem:

$$\min_{\substack{y \in H_0^1(\Omega), u \in L^2(\Omega)}} J(y, u) \stackrel{\text{def}}{=} \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$$

s.t. Ay = r + Bu, $\beta_l \leq u \leq \beta_r$.

with

- $y \in H_0^1(\Omega)$ the *state*
- $u \in L^2(\Omega)$ the control
- A: H¹₀(Ω) → H⁻¹(Ω) = H¹₀(Ω)* a (for simplicity) linear elliptic partial differential operator (e.g. A = −Δ)

Application to Optimal Control (1)

Now we can apply the theory we just developed to the following elliptic optimal control problem:

$$\min_{\substack{y \in H_0^1(\Omega), u \in L^2(\Omega)}} J(y, u) \stackrel{\text{def}}{=} \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$$

s.t. Ay = r + Bu, $\beta_l \leq u \leq \beta_r$.

with

- $y \in H_0^1(\Omega)$ the *state*
- $u \in L^2(\Omega)$ the control
- A: H₀¹(Ω) → H⁻¹(Ω) = H₀¹(Ω)* a (for simplicity) linear elliptic partial differential operator (e.g. A = -Δ)
 r ∈ H⁻¹(Ω) given

Application to Optimal Control (1)

Now we can apply the theory we just developed to the following elliptic optimal control problem:

$$\min_{\substack{y \in H_0^1(\Omega), u \in L^2(\Omega)}} J(y, u) \stackrel{\text{def}}{=} \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$$

s.t. Ay = r + Bu, $\beta_l \leq u \leq \beta_r$.

with

- $y \in H_0^1(\Omega)$ the *state*
- $u \in L^2(\Omega)$ the control
- A: H¹₀(Ω) → H⁻¹(Ω) = H¹₀(Ω)* a (for simplicity) linear elliptic partial differential operator (e.g. A = −Δ)
- ► $r \in H^{-1}(\Omega)$ given
- B : L^{p'}(Ω) → H⁻¹(Ω) the continuous and linear control operator with p' ∈ [1, 2)

・ロト ・聞ト ・ヨト ・ヨト

Application to Optimal Control (1)

Now we can apply the theory we just developed to the following elliptic optimal control problem:

$$\min_{\boldsymbol{y}\in H_0^1(\Omega), \boldsymbol{u}\in L^2(\Omega)} J(\boldsymbol{y}, \boldsymbol{u}) \stackrel{\text{def}}{=} \frac{1}{2} \|\boldsymbol{y}-\boldsymbol{y}_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|\boldsymbol{u}\|_{L^2(\Omega)}^2$$

s.t. Ay = r + Bu, $\beta_l \leq \boldsymbol{u} \leq \beta_r$.

with

- $y \in H_0^1(\Omega)$ the *state*
- $u \in L^2(\Omega)$ the control
- $A: H_0^1(\Omega) \to H^{-1}(\Omega) = H_0^1(\Omega)^*$ a (for simplicity) linear elliptic partial differential operator (e.g. $A = -\triangle$)
- $r \in H^{-1}(\Omega)$ given
- B: L^{p'}(Ω) → H⁻¹(Ω) the continuous and linear control operator with p' ∈ [1, 2)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• the constant bounds $\beta_I < \beta_r$

Examples

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

Application to Optimal Control (2)

By eliminating the state y via the state equation $y = y(u) = A^{-1}(r + Bu)$, we obtain a reduced problem, which is of the form (12):

$$\min_{u \in L^2(\Omega)} \quad \hat{J}(u) \stackrel{\text{def}}{=} J(y(u), u) \quad \stackrel{\text{def}}{=} \frac{1}{2} \|y(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$$

s.t. $\beta_l \leq u \leq \beta_r.$

Application to Optimal Control (2)

By eliminating the state y via the state equation $y = y(u) = A^{-1}(r + Bu)$, we obtain a reduced problem, which is of the form (12):

$$\min_{u \in L^2(\Omega)} \quad \hat{J}(u) \stackrel{\text{def}}{=} J(y(u), u) \quad \stackrel{\text{def}}{=} \frac{1}{2} \|y(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$$

s.t. $\beta_l \leq u \leq \beta_r.$

For the F-derivative $\nabla \hat{J}$ we obtain

$$\nabla \hat{J}(u) = \alpha u + y'(u)^* (y(u) - y_d)$$
(17)
= $\alpha u + B^* (A^{-1})^* (A^{-1}(r + Bu) - y_d) \stackrel{\text{def}}{=} \alpha u + H(u).$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Application to Optimal Control (3)

Since $B \in \mathcal{L}(L^{p'}(\Omega), H^{-1}(\Omega))$, we have $B^* \in \mathcal{L}(H^1_0(\Omega), L^p(\Omega))$ with p = p'/(p-1) > 2. Hence the affine linear operator H(u)defined in (17) is a continuous affine linear mapping $L^2(\Omega) \to L^p(\Omega)$ and we can apply *Theorem 3* to rewrite the optimality conditions as a semismooth operator equation

$$\Phi(u) \stackrel{\text{def}}{=} u - P_{[\beta_l,\beta_r]}(-(1/\alpha)H(u)) = 0.$$

ъ

Application to Optimal Control (4)

Considering the generalized differential $\partial \Phi$ we developed in (16), the Newton system in *Algorithm 1* now reads

$$\left(I + \frac{1}{\alpha}g^k \cdot H'(u^k)\right)s^k = -\Phi(u^k), \tag{18}$$

and $g \cdot H'(u)$ stands for $v \mapsto g \cdot (H'(u)v)$ and $g^k \in L^{\infty}(\Omega)$ is chosen such that

$$g^{k}(x) = \begin{cases} = 0 & -(1/\alpha)H(u^{k})(x) \notin [\beta_{l}, \beta_{r}], \\ = 1 & -(1/\alpha)H(u^{k})(x) \in (\beta_{l}, \beta_{r}), \\ = [0, 1] & -(1/\alpha)H(u^{k})(x) \in \{\beta_{l}, \beta_{r}\}. \end{cases}$$

The operator on the left side has the form

$$M_k \stackrel{\text{def}}{=} I + \frac{1}{\alpha} g^k \cdot H'(u^k) = I + \frac{1}{\alpha} g^k \cdot B^*(a^{-1})^* A^{-1} B.$$

ъ

Application to Optimal Control (5)

For solving (18), it can be advantageous to note that s^k solves (18) if and only if $s^k = d_u^k$ and $(d_y^k, d_u^k, d_\mu^k)^T$ solves

$$\begin{pmatrix} I & 0 & A^* \\ 0 & I & -\frac{1}{\alpha}g^k \cdot B^* \\ A & -B & 0 \end{pmatrix} \begin{pmatrix} d_y^k \\ d_u^k \\ d_\mu^k \end{pmatrix} = \begin{pmatrix} 0 \\ -\Phi(u^k) \\ 0 \end{pmatrix}$$

to which multigrid methods can be applied.

References

- 1. M.Hinze, R.Pinnau, M.Ulbrich, S.Ulbrich. Optimization with PDE Constraints, Springer, New York (2009)
- M. Ulbrich. Nonsmooth Newton-like Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces (Habilitation; 2001) Available at:

< ロ > < 同 > < 回 > < 回 > < 回 >

http://www-m1.ma.tum.de/foswiki/pub/Lehrstuhl /PublikationenUlbrich/Habil.pdf