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Recall:

I We can reformulate optimization problems as (possibly
nonsmooth) operator equation

G (x) = 0, (1)

where G : X → Y , X ,Y Banach Spaces.

I Equation (1) can be solved using some generalized Newton
methods:

1. Choose x0 ∈ X
For k = 0, 1, 2, ...

2. Choose an invertible operator Mk ∈ L(X ,Y ).
3. Obtain sk by solving

Mks
k = −G (xk)

and set xk+1 = xk + sk .
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Convergence results
I Let (xk) be the sequence generated by the generalized

Newton method where x0 is sufficiently close to the solution
x̄ ∈ X . Then we have:

1. (xk) converges q-linearly to x̄ with rate γ ∈ (0, 1) iff

‖M−1
k (G (x̄ + dk)− G (x̄)−Mkd

k)‖X ≤ γ‖dk‖X (2)

∀k with ‖dk‖X sufficiently small.
2. (xk) converges q-superlinearly to x̄ iff

‖M−1
k (G (x̄ + dk)− G (x̄)−Mkd

k)‖X = o(‖dk‖X ) (3)

for ‖dk‖X → 0
3. (xk) converges q-order 1 + α > 1 to x̄ iff

‖M−1
k (G (x̄ + dk)− G (x̄)−Mkd

k)‖X = O(‖dk‖1+α
X ) (4)

for ‖dk‖X → 0
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Convergence results
The estimates (2), (3) are meant uniformly in k .

It is convenient to split the smallness assumptions on

‖M−1
k (G (x̄ + dk)− G (x̄)−Mkd

k)‖X
in two parts:

1. Regularity condition:

‖M−1
k ‖Y→X ≤ C , ∀k ≥ 0. (5)

2. Approximation condition:

‖G (x̄+dk)−G (x̄)−Mkd
k‖Y = o(‖dk‖X ) for ‖d‖X → 0 (6)

or

‖G (x̄ + dk)− G (x̄)−Mkd
k‖Y = O(‖dk‖1+α

X ) for ‖d‖X → 0
(7)
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Convergence results

Theorem 1. Consider the operator equation (1) with G : X → Y ,
where X and Y are Banach spaces. Let (xk) be generated by the
generalized Newton method. Then:

1. If x0 is sufficiently close to x̄ and (2) holds then xk → x̄
q-linearly with rate γ.

2. If x0 is sufficiently close to x̄ and (3) (or (5) and (6)) holds
then xk → x̄ q-superlinearly.

3. If x0 is sufficiently close to x̄ and (4) (or (5) and (7)) holds
then xk → x̄ q-superlinearly with order 1 + α.
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Question: How to choose Mk ∈ L(X ,Y ) in the algorithm?

I If G is continously F-differentiable and G ′ is continously
invertible at the solution x̄ :

Choose Mk = G ′(xk) for all k (→Classical Newton’s Method)

I If G is nonsmooth:

Find a suitable substitute for G ′(→ Semismooth Newton’s
Method)
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Generalized Differential and Semismoothness

Considering set-valued generalized differentials ∂G : X ⇒ L(X ,Y ),
we will choose Mk point-based in each step, i.e.

Mk ∈ ∂G (xk).

Since we want Mk to satisfy the superlinear approximation
condition (6), we have to require

sup
M∈∂G(x̄+d)

‖G (x̄ + d)− G (x̄)−Md‖Y = o(‖d‖X ) for ‖d‖X → 0.

This leads us to the definition of semismoothness:
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Definition 1. (Semismoothness) Let X , Y be Banach spaces,
G : X → Y a continuous operator and let be given the set-valued
mapping ∂G : X ⇒ L(X ,Y ) with nonempty images. Then

1. G is called ∂G -semismooth at x ∈ X if

sup
M∈∂G(x+d)

‖G (x+d)−G (x)−Md‖Y = o(‖d‖X ) for ‖d‖X → 0.

(8)

2. G is called ∂G -semismooth of order α > 0 at x ∈ X if

sup
M∈∂G(x+d)

‖G (x+d)−G (x)−Md‖Y = O(‖d‖1+α
X ) for ‖d‖X → 0.

(9)
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Lemma 1 Let G : X → Y be continuously F-differentiable near
x ∈ X and {G ′} the set-valued operator {G ′} : X ⇒ L(X ,Y )
mapping x to the one element set {G ′(x)}.

I Then G is {G ′}-semismooth at x .

I Furthermore, if G ′ is α-order Hoelder continuous near x , then
G is {G ′}-semismooth at x of order α.

Proof: Blackboard
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Theorem 2 Let X , Y , Z , Xi , Yi be Banach spaces.

1. If the operators Gi : X → Yi are ∂Gi -semismooth at x then
(G1,G2) is (∂G1, ∂G2)-semismooth at x .

2. If Gi : X → Y , i = 1, 2, are ∂Gi -semismooth at x then
G1 + G2 is (∂G1 + ∂G2)-semismooth at x .

3. Let G1 : Y → Z and G2 : X → Y be ∂Gi -semismooth at
G2(x) and x , respectively. Assume that ∂G1 is bounded near
y = G2(x) and that G2 is Lipschitz continuous near x . Then
G = G1 ◦ G2 is ∂G -semismooth with

∂G (x) = {M1M2 : M1 ∈ ∂G1(G2(x)),M2 ∈ ∂G2(x)}.

Proof: Blackboard
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Semismooth Newton methods
In addition to the superlinear approximation condition (6) (or (7)),
the operator Mk of the generalized Newton method should also
satisfy the regularity condition (5). Therefore we require the
following:

∃C > 0∃δ > 0 : ‖M−1‖Y→X ≤ C ∀M ∈ ∂G (x) ∀x ∈ X , ‖x−x̄‖X < δ.
(10)

Algorithm 1 (Semismooth Newton’s method)

1. Choose x0 ∈ X (sufficiently close to the solution x̄).
For k = 0, 1, 2, . . . :

2. Choose Mk ∈ ∂G (xk).
3. Obtain sk by solving

Mks
k = −G (xk),

and set xk+1 = xk + sk .

Peter Gangl — Semismooth Newton methods: Seminar on Numerical Analysis



Outline Last talk Generalized Differential and Semismoothness Semismooth Newton Methods Examples

Semismooth Newton methods
In addition to the superlinear approximation condition (6) (or (7)),
the operator Mk of the generalized Newton method should also
satisfy the regularity condition (5). Therefore we require the
following:

∃C > 0∃δ > 0 : ‖M−1‖Y→X ≤ C ∀M ∈ ∂G (x) ∀x ∈ X , ‖x−x̄‖X < δ.
(10)

Algorithm 1 (Semismooth Newton’s method)

1. Choose x0 ∈ X (sufficiently close to the solution x̄).
For k = 0, 1, 2, . . . :

2. Choose Mk ∈ ∂G (xk).
3. Obtain sk by solving

Mks
k = −G (xk),

and set xk+1 = xk + sk .

Peter Gangl — Semismooth Newton methods: Seminar on Numerical Analysis



Outline Last talk Generalized Differential and Semismoothness Semismooth Newton Methods Examples

Corollary 1 Let G : X → Y be continuous and ∂G -semismooth at
a solution x̄ of (1). Furthermore, assume that the regularity
condition (10) holds. Then there exists δ > 0 such that for all
x0 ∈ X , ‖x0 − x̄‖X < δ, the semismooth Newton method
(Algorithm 1) converges q-superlinearly to x̄ .

If G is ∂G -semismooth of order α > 0 at x̄ , then the convergence
is of order 1 + α.
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Finite Dimensional Example
For locally Lipschitz-continuous functions G : Rn → Rm, the
standard choice for ∂G is Clarke’s generalized Jacobian

∂clG : Rn ⇒ Rm×n

∂clG (x) = conv{M ∈ Rm×n : ∃(xk)→ x ,G differentiable at xk :

G ′(xk)→ M}. (11)

Example 1 Consider ψ : R→ R, ψ(x) = P[a,b](x), a < b, then
Clarke’s generalized derivative is

∂clψ(x) =


{0} x < a or x > b,

{1} a < x < b,

conv{0, 1} = [0, 1] x = a or x = b.
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Example in Function Spaces (1)

Let Ω ⊂ Rn be measurable, f : L2(Ω)→ R twice continuously
F-differentiable, a, b ∈ L∞(Ω) with b(x) > a(x) ∀x ∈ Ω.
We consider the problem

min
u∈L2(Ω)

f (u), a ≤ u ≤ b a.e. on Ω

We can transform the bounds to constant bounds using u 7→ u−a
b−a ,

so that we consider the problem

min
u∈L2(Ω)

f (u), βl ≤ u ≤ βr a.e. on Ω (12)

Note: Many PDE-constrained optimal control problems lead to
this setting (see last talk).
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Example in Function Spaces (2)

If we set S = {u ∈ L2(Ω) : βl ≤ u ≤ βr}, problem (12) is
equivalent to the variational inequality

u ∈ S , (∇f (u), v − u)L2(Ω) ≥ 0 ∀v ∈ S . (13)

Using the L2-projection PS given by

PS(v)(x) = P[βl ,βr ](v(x)), x ∈ Ω,

we can reformulate (13) as the nonsmooth operator equation

Φ(u) := u − PS(u − θ∇f (u)) = 0, (14)

where θ > 0 is arbitrary, but fixed.
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Example in Function Spaces (3)

Aim: Define a generalized differential ∂Φ for Φ in such a way that
Φ is ∂Φ-semismooth.

By the sum rule we developed in Theorem 2, this reduces to the
question how a suitable differential for the superposition
P[βl ,βr ](v(·)) can be defined.

Therefore we can use a result proved by M. Ulbrich, for the
formulation of which we need a definition of generalized
differentials of superposition operators of the form ψ(G (·)), where
G is a continuously F-differentiable operator.
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Example in Function Spaces (4)
Definition 2 Let ψ : Rm → R be Lipschitz continuous and
(∂clψ)-semismooth. Furthermore, let 1 ≤ q ≤ p ≤ ∞ be given,
consider

ΨG : U → Lq(Ω), ΨG (u)(x) = ψ(G (u)(x)),

where G : U → Lp(Ω)m is continuously F-differentiable and U is a
Banach space. We define the differential

∂ΨG : U ⇒ L(U, Lq(Ω)),

∂ΨG (u) = {M : Mv = gT (G ′(u)v), g ∈ L∞(Ω)m, (15)

g(x) ∈ ∂clψ(G (u)(x)) ∀̇x ∈ Ω}.

Note: This is just the differential that we would obtain by the
construction in part (3) of Theorem 2.
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Example in Function Spaces (5)
Now we can state the following semismoothness result:

Theorem 3 Let Ω ⊂ Rn be measurable with 0 < |Ω| <∞.
Furthermore, let ψ : Rm → R be Lipschitz continuous and
∂clψ-semismooth. Let U be a Banach space, 1 ≤ q < p ≤ ∞, and
assume that the operator G : U → Lq(Ω)m is continuously
F-differentiable and that G maps U locally Lipschitz continuously
to Lp(Ω)m. Then, the operator

ΨG : U → Lq(Ω), ΨG (u)(x) = ψ(G (u)(x)),

is ∂ΨG -semismooth, where ∂ΨG is defined in (15).

Proof M. Ulbrich: ”Nonsmooth Newton-like methods for
variational inequalities and constrained optimization problems in
function spaces” (2001)
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Example in Function Spaces (6)

In order to be able to apply this result to the second summand of
our problem

ΨG : U = L2(Ω) → L2(Ω),

ΨG (u)(x) = ψ(G (u)(x)) = P[βl ,βr ]((u − θ∇f (u))(x)),

we have to make some assumptions on the structure of ∇f (which
are fulfilled by many optimal control problems):

There exist α > 0 and p > 2 sucht that

I ∇f (u) = αu + H(u),

I H : L2(Ω)→ L2(Ω) continuously F-differentiable,

I H : L2(Ω)→ Lp(Ω) locally Lipschitz continuous.
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Example in Function Spaces (7)
Under these assumptions and by setting θ = 1

α , ΨG reduces to

ΨG (u)(x) = ψ(G (u)(x)) = P[βl ,βr ](−
1

α
H(u)(x)),

so setting q = 2,ψ = P[βl ,βr ] and G = − 1
αH, we can

apply Theorem 3 and obtain that the operator ΨG is
∂ΨG -semismooth with ∂ΨG defined in (15).

Therefore, by Theorem 2, the operator Φ = I −ΨG in our problem
(14) is semismooth w.r.t ∂Φ = I − ∂ΨG defined by

∂Φ : L2(Ω) ⇒ L(L2(Ω), L2(Ω)),

∂Φ(u) = {M : M = I +
g

α
· H ′(u), g ∈ L∞(Ω), (16)

g(x) ∈ ∂clP[βl ,βr ](−(1/α)H(u)(x))∀̇x ∈ Ω}
and (under some additional regularity condition) we can apply the
semismooth Newton method (Algorithm 1).
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Application to Optimal Control (1)
Now we can apply the theory we just developed to the following
elliptic optimal control problem:

min
y∈H1

0 (Ω),u∈L2(Ω)
J(y , u)

def
=

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

s.t. Ay = r + Bu, βl ≤ u ≤ βr .

with

I y ∈ H1
0 (Ω) the state

I u ∈ L2(Ω) the control
I A : H1

0 (Ω)→ H−1(Ω) = H1
0 (Ω)∗ a (for simplicity) linear

elliptic partial differential operator (e.g. A = −4)
I r ∈ H−1(Ω) given
I B : Lp

′
(Ω)→ H−1(Ω) the continuous and linear control

operator with p′ ∈ [1, 2)
I the constant bounds βl < βr
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Application to Optimal Control (2)

By eliminating the state y via the state equation
y = y(u) = A−1(r + Bu), we obtain a reduced problem, which is
of the form (12):

min
u∈L2(Ω)

Ĵ(u)
def
= J(y(u), u)

def
=

1

2
‖y(u)− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

s.t. βl ≤ u ≤ βr .

For the F-derivative ∇Ĵ we obtain

∇Ĵ(u) = αu + y ′(u)∗(y(u)− yd) (17)

= αu + B∗(A−1)∗(A−1(r + Bu)− yd)
def
= αu + H(u).
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Application to Optimal Control (3)

Since B ∈ L(Lp
′
(Ω),H−1(Ω)), we have B∗ ∈ L(H1

0 (Ω), Lp(Ω))
with p = p′/(p − 1) > 2. Hence the affine linear operator H(u)
defined in (17) is a continuous affine linear mapping
L2(Ω)→ Lp(Ω) and we can apply Theorem 3 to rewrite the
optimality conditions as a semismooth operator equation

Φ(u)
def
= u − P[βl ,βr ](−(1/α)H(u)) = 0.
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Application to Optimal Control (4)
Considering the generalized differential ∂Φ we developed in (16),
the Newton system in Algorithm 1 now reads(

I +
1

α
gk · H ′(uk)

)
sk = −Φ(uk), (18)

and g · H ′(u) stands for v 7→ g · (H ′(u)v) and gk ∈ L∞(Ω) is
chosen such that

gk(x) =


= 0 −(1/α)H(uk)(x) /∈ [βl , βr ],

= 1 −(1/α)H(uk)(x) ∈ (βl , βr ),

= [0, 1] −(1/α)H(uk)(x) ∈ {βl , βr}.

The operator on the left side has the form

Mk
def
= I +

1

α
gk · H ′(uk) = I +

1

α
gk · B∗(a−1)∗A−1B.
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Application to Optimal Control (5)

For solving (18), it can be advantageous to note that sk solves
(18) if and only if sk = dk

u and (dk
y , d

k
u , d

k
µ)T solves I 0 A∗

0 I − 1
αg

k · B∗
A −B 0

 dk
y

dk
u

dk
µ

 =

 0
−Φ(uk)

0


to which multigrid methods can be applied.
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