

Seminar on Numerical Analysis

Chhitiz Buchasia

A General Superlinear Convergence Result

25-11-2009

< ロ > < 同 > < 回 > < 回 > < 回 >

э

Outline	Introduction	Motivation	A General Superlinear Convergence Result	Next Talk

< ロ > < 同 > < 回 > < 回 >

э

Introduction

Motivation

A General Superlinear Convergence Result

Next Talk

$$G(x) = 0 \tag{1}$$

イロト イヨト イヨト イヨト

Ξ.

where, $G: X \rightarrow Y$, X, Y Banach Spaces.

$$G(x) = 0 \tag{1}$$

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

э

where, $G: X \rightarrow Y$, X, Y Banach Spaces.

In classical Newton's method we assume that G is continuously F-differentiable.

$$G(x) = 0 \tag{1}$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

э.

where, $G: X \rightarrow Y$, X, Y Banach Spaces.

In classical Newton's method we assume that G is continuously F-differentiable.

1. Equation (1) can also be nonsmooth.

$$G(x) = 0 \tag{1}$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

э.

where, $G: X \rightarrow Y$, X, Y Banach Spaces.

In classical Newton's method we assume that G is continuously F-differentiable.

- 1. Equation (1) can also be nonsmooth.
- 2. We will look at the minimum requirements for the operator G.

Application to Obstacle Problem

Chhitiz Buchasia — A General Superlinear Convergence Result: Seminar on Numerical Analysis

Ξ.

Application to Obstacle Problem

Problem Description: Find the vertical displacement u(.) of a membrane Ω which is loaded by vertical forces f(.)(force density), fixed on the boundary $\Gamma = \delta \Omega$ and located above an obstacle described by g(.)

< ロ > < 同 > < 回 > < 回 > < 回 >

Application to Obstacle Problem

Problem Description: Find the vertical displacement u(.) of a membrane Ω which is loaded by vertical forces f(.)(force density), fixed on the boundary $\Gamma = \delta \Omega$ and located above an obstacle described by g(.)

\uparrow

Constrained Minimization Problem: Find

$$u \in U : \mathfrak{J}(u) = \inf_{v \in U} \mathfrak{J}(v),$$
 (2)

where,
$$U := \{ v \in H_0^1(\Omega) : v(x) \ge g(x) \forall x \in \Omega \}$$
 with,
 $\mathfrak{J}(v) := \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \int_{\Omega} f v dx$ and given $f \in L^2(\Omega)$,
 $g \in \{ v \in H^1(\Omega) : v(x) \le 0, \forall x \in \Gamma \}$

The minimization problem is equivalent to the Variational Inequality(VI): Find $u \in U$:

$$\int_{\Omega} \nabla^{\mathsf{T}} u \nabla (v - u) dx \geq \int_{\Omega} f(v - u) dx, \quad \forall v \in U$$
 (3)

æ

The minimization problem is equivalent to the Variational Inequality(VI): Find $u \in U$:

$$\int_{\Omega} \nabla^{\mathsf{T}} u \nabla (v - u) dx \ge \int_{\Omega} f(v - u) dx, \quad \forall v \in U$$
 (3)

This Variational Inequality is equivalent to the nonlinear fixed point equation. Find $u \in X$:

$$u = B_g(u) := P[(I - \rho \mathcal{J}^{-1} A)u + \rho \mathcal{J}^{-1} f]$$
(4)

イロト 不得下 イヨト イヨト

э

in X

Application to Optimal Control

Consider the following optimal control problem:

$$\min_{y \in H_0^1(\Omega), u \in L^2(\Omega)} \mathfrak{J}(y, u) := \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$$
(5)

< 日 > < 同 > < 回 > < 回 > < 回 > <

such that Ay = u, $\beta_l \leq u \leq \beta_r$

Here, $y \in H_0^1(\Omega)$ is the state, which is defined in Ω $\Omega \subset \mathbb{R}^n$ is open bounded domain, $u \in L^2(\Omega)$ is the control, $A: H_0^1(\Omega) \to H^{-1}(\Omega) = H_0^1(\Omega)^*$ is a linear elliptic partial differential operator

This is equivalent to the Variational Inequality. Find $u \in S$

$$(\nabla \hat{\mathfrak{J}}(u), v - u)_{L^2(\Omega)} \ge 0, \quad \forall v \in S$$
 (6)

イロト イヨト イヨト イヨト

æ

This is equivalent to the Variational Inequality. Find $u \in S$

$$(\nabla \hat{\mathfrak{J}}(u), v - u)_{L^2(\Omega)} \ge 0, \quad \forall v \in S$$
 (6)

This can be rewritten as

$$\Phi(u) = u - P_{[\beta_l,\beta_r]}(u - \theta \nabla \hat{\mathfrak{J}}(u)) = 0.$$
(7)

イロト イヨト イヨト イヨト

æ

Algorithm: Generalized Newton's Method

Consider the operator equation (1) with $G : X \rightarrow Y, X, Y$ Banach spaces. Algorithm for Generalized Newton's Method:

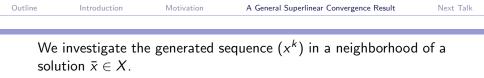
- 1. Choose $x^0 \in X$ For k = 0, 1, 2, ...
- 2. Choose an invertible operator $M_k \in L(X, Y)$.
- 3. Obtain s^k by solving

$$M_k s^k = -G(x^k)$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

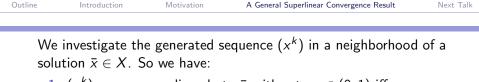
э.

and set $x^{k+1} = x^k + s^k$.



イロト 不得下 イヨト イヨト

Ξ.



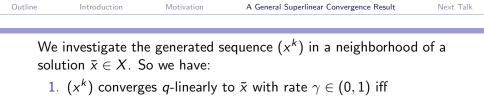
1. (x^k) converges q-linearly to \bar{x} with rate $\gamma \in (0,1)$ iff

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X \le \gamma \|d^k\|_X$$
 (8)

< 日 > < 同 > < 回 > < 回 > < 回 > <

.

 $\forall k \text{ with } \|d^k\|_X \text{ sufficiently small.}$



$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X \le \gamma \|d^k\|_X$$
 (8)

 $\forall k \text{ with } \|d^k\|_X \text{ sufficiently small.}$

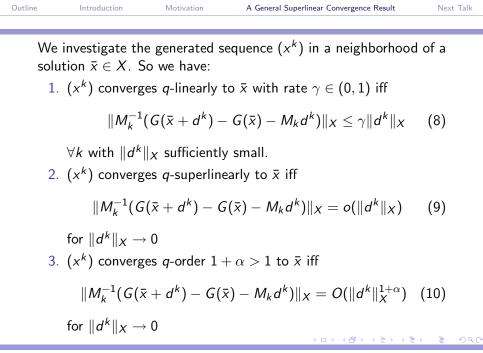
2. (x^k) converges q-superlinearly to \bar{x} iff

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X = o(\|d^k\|_X)$$
 (9)

・ロト ・ 一 マ ト ・ ヨ ト ・

э.

for $||d^k||_X \to 0$



Outline	Introduction	Motivation	A General Superlinear Convergence Result	Next Talk

・ロト ・四ト ・ヨト ・ヨト

2

The estimates (8), (9) are meant uniformly in k.

It is convenient to split the smallness assumptions on

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X$$

< ロ > < 同 > < 回 > < 回 >

э

in two parts:

The estimates (8), (9) are meant uniformly in k.

It is convenient to split the smallness assumptions on

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X$$

in two parts:

1. Regularity condition:

$$\|M_k^{-1}\|_{Y\to X} \le C, \quad \forall k \ge 0.$$
(11)

< ロ > < 同 > < 回 > < 回 > < 回 >

э

The estimates (8), (9) are meant uniformly in k.

It is convenient to split the smallness assumptions on

$$\|M_k^{-1}(G(\bar{x}+d^k)-G(\bar{x})-M_kd^k)\|_X$$

in two parts:

1. Regularity condition:

$$\|M_k^{-1}\|_{Y\to X} \le C, \quad \forall k \ge 0.$$
(11)

< ロ > < 同 > < 回 > < 回 > < 回 >

ъ

2. Approximation condition:

$$\|G(\bar{x} + d^k) - G(\bar{x}) - M_k d^k\|_Y = o(\|d^k\|_X)$$

or $\|G(\bar{x} + d^k) - G(\bar{x}) - M_k d^k\|_Y = O(\|d^k\|_X^{1+\alpha})$

Theorem 1. Consider the operator equation (1) with $G : X \to Y$, where X and Y are Banach spaces. Let (x^k) be generated by the generalized Newton method. Then:

- 1. If x^0 is sufficiently close to \bar{x} and (8) holds then $x^k \to \bar{x}$ *q*-linearly with rate γ .
- 2. If x^0 is sufficiently close to \bar{x} and (9) holds then $x^k \to \bar{x}$ *q*-superlinearly.
- 3. If x^0 is sufficiently close to \bar{x} and (10) holds then $x^k \to \bar{x}$ *q*-superlinearly with order $1 + \alpha$.

・ロト ・ 一下・ ・ ヨト・

.

Outline	Introduction	Motivation	A General Superlinear Convergence Result	Next Talk

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶

æ

Remark

Remark

1. Conditions (A) and (B) remain valid if M_k is replaced by a perturbed operator \tilde{M}_k and the perturbation is sufficiently small.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Remark

- 1. Conditions (A) and (B) remain valid if M_k is replaced by a perturbed operator \tilde{M}_k and the perturbation is sufficiently small.
- 2. The fast convergence of the generalized Newton's method is not affected if the system is solved inexactly and the accuracy of the solution is controlled suitably.

< ロト < 同ト < ヨト < ヨト

Chhitiz Buchasia — A General Superlinear Convergence Result: Seminar on Numerical Analysis

Ξ.

1. G is continuously F-differentiable.

Chhitiz Buchasia — A General Superlinear Convergence Result: Seminar on Numerical Analysis

æ

- 1. G is continuously F-differentiable.
- 2. Choose $M_k = G'(x^k)$

Chhitiz Buchasia — A General Superlinear Convergence Result: Seminar on Numerical Analysis

æ

- 1. G is continuously F-differentiable.
- 2. Choose $M_k = G'(x^k)$
- 3. The regularity condition then reads

$$\|G'(x^k)^{-1}\|_{Y\to X} \leq C, \quad \forall k \geq 0$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Let us look at the following results

1. we can prove a Superlinear approximation condition for the Classical Newton's Method.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Let us look at the following results

1. we can prove a Superlinear approximation condition for the Classical Newton's Method.

< ロ > < 同 > < 回 > < 回 > < 回 >

2. If G' is α -order Hölder continuous near \bar{x} , we can prove approximation condition of order $1 + \alpha$.



Finally we have the following

Corollary 2 Let $G: X \to Y$ be a continuously *F*-differential operator between Banach spaces and assume that $G'(\bar{x})$ is continuously invertible at the solution \bar{x} . Then Newton's method (i.e. Algorithm for Generalized Newton's Method with $M_k = G'(x^k)$ for all k) converges locally *q*-superlinearly. If, in addition, G' is α -order Hölder continuous near \bar{x} , the order of convergence is $1 + \alpha$.

< ロト < 同ト < ヨト < ヨト

ъ

Outline Intro	duction Motiv	vation A Genera	I Superlinear Convergence Result	Next Talk

イロト イヨト イヨト イヨト

2

We will discuss the following in the next talk

æ

We will discuss the following in the next talk

1. Motivation for Semismooth Newton's Method.

< ロ > < 同 > < 回 > < 回 > < 回 >

э

We will discuss the following in the next talk

- 1. Motivation for Semismooth Newton's Method.
- 2. Definition of Semismoothness.

< ロ > < 同 > < 回 > < 回 > < 回 >

э

We will discuss the following in the next talk

- 1. Motivation for Semismooth Newton's Method.
- 2. Definition of Semismoothness.
- 3. Algorithm for Semismooth Newton Method.

< ロ > < 同 > < 回 > < 回 > < 回 >

ъ

We will discuss the following in the next talk

- 1. Motivation for Semismooth Newton's Method.
- 2. Definition of Semismoothness.
- 3. Algorithm for Semismooth Newton Method.
- 4. Convergence Results.

Outline	Introduction	Motivation	A General Superlinear Convergence Result	Next Talk

THANK YOU!!!

・ロト ・四ト ・ヨト ・ヨト

2