Why is Jacobi so bad?

Consider our 1D model problem

$$-u''(x) = f(x) \quad \forall x \in (0, 1), \qquad u(0) = g_0, \qquad u'(1) = g_1$$

Obviously, the entire solution depends on g_0 ("feature" of elliptic PDEs). In particular, $u_h(1) = u_{n_h}$ depends on g_0 .

"Homogenization:" $u_h^{(k)} \in g_0 \varphi_0 + V_0$ Set $\underline{u}_h^{(0)} = \vec{o}$, i. e., $u_h^{(0)} = g_0 \varphi_0$

Jacobi-preconditioned Richardson method:

Summary:

We need $k = n_h$ steps until the influence of g_0 is present in $u_h^{(k)}(1)$. The information transfer is rather slow!

Idea:

Choose preconditioner C_h such that the information can propagate faster. $\rightarrow \qquad multi-level$ and multi-grid methods.