The "missing" interpolation error estimate

Let $I_h: V \to V_h$ denote the interpolation operator. We want to estimate $||v-I_hv||_{L^2(T_k)}$ in terms of v'. Transformation to the reference element yields

$$\int_{T_k} |v(x) - (I_h v)(x)|^2 dx = h_k \int_{\widehat{T}} |\hat{v}(\xi) - \hat{I}\hat{v}(\xi)|^2 d\xi,$$

where $\hat{v} = v \circ F_k$ and \hat{I} is the interpolation operator on the reference element. From what we have shown in the lecture we can conclude that

$$\hat{v}(\xi) - \hat{I}\hat{v}(\xi) = \int_0^{\xi} \hat{v}'(z) dz - \xi \int_0^1 \hat{v}'(z) dz$$
$$= (1 - \xi) \int_0^{\xi} \hat{v}'(z) dz - \xi \int_{\xi}^1 \hat{v}'(z) dz$$

Using the elementary formula $(a+b)^2 \le 2a^2 + 2b^2$ and Cauchy's inequality, we obtain

$$\int_{\widehat{T}} |\widehat{v}(\xi) - \widehat{I}\widehat{v}(\xi)|^{2} d\xi \leq \int_{0}^{1} \left\{ 2 (1 - \xi)^{2} \left(\int_{0}^{\xi} \widehat{v}'(z) dz \right)^{2} + 2 \xi \left(\int_{\xi}^{1} \widehat{v}'(z) dz \right)^{2} \right\} d\xi
\leq \int_{0}^{1} 2 (1 - \xi)^{2} \xi \|\widehat{v}'\|_{L^{2}(0,\xi)}^{2} + 2 \xi (1 - \xi) \|\widehat{v}'\|_{L^{2}(\xi,1)}^{2} d\xi
\leq \underbrace{\int_{0}^{1} 2 (1 - \xi) \xi d\xi}_{=1/3} \|\widehat{v}'\|_{L^{2}(0,1)}^{2},$$

where in the last step we used that $\max\{1-\xi, 1\} = 1$. Transforming back to the real element yields

$$\int_{\widehat{T}} |\hat{v}(\xi) - \hat{I}\hat{v}(\xi)|^2 d\xi \leq \frac{1}{3} \int_{\widehat{T}} |\hat{v}'(\xi)|^2 d\xi = \frac{1}{3} \frac{h_k^2}{h_k} \int_{T_k} |v'(x)|^2 dx,$$

where $1/h_k$ comes from the transformation itself, h_k^2 comes from $v'(x) = \frac{1}{h_k} \hat{v}'(\xi)$ for $x = F_k(\xi)$.

Putting everything together we arrive at the estimate

$$||v - I_h v||_{L^2(T_k)}^2 \le \frac{1}{3} \underbrace{h_k^2}_{\leq h^2} ||v'||_{L^2(T_k)}^2 \quad \forall v \in H^1(T_k).$$

which holds because of a closure argument (C^1 is dense in H^1 w.r.t. the H^1 -norm). Summing over the elements yields the global estimate

$$||v - I_h v||_{L^2(0,1)} \le \frac{h}{\sqrt{3}} ||v'||_{L^2(0,1)} \quad \forall v \in H^1(0,1).$$

Compared to the estimate from the lecture,

$$||v - I_h v||_{L^2(0,1)} \le h^2 ||v''||_{L^2(0,1)} \quad \forall v \in H^2(0,1),$$

we have one power of h less, but also less smoothness assumptions on u.