The “missing” interpolation error estimate

Let I;, : V' — V}, denote the interpolation operator. We want to estimate ||v—Iv||L2(1)
in terms of v'. Transformation to the reference element yields
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where & = v o F, and [ is the interpolation operator on the reference element. From
what we have shown in the lecture we can conclude that
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Using the elementary formula (a +b)? < 2a*+20? and Cauchy’s inequality, we obtain
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where in the last step we used that max{1 — &, 1} = 1. Transforming back to the real
element yields
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where 1/hy comes from the transformation itself, h? comes from v'(z) = ﬁ v'(€) for

Putting everything together we arrive at the estimate
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which holds because of a closure argument (C' is dense in H' w.r.t. the H'-norm).

Summing over the elements yields the global estimate
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Compared to the estimate from the lecture,
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we have one power of h less, but also less smoothness assumptions on u.



