1. Implicit Euler method

$$u_{j+1} = u_j + \tau_j \phi(t_j, u_j, \tau_j)$$

with $\phi(t, u, \tau) := f(t + \tau, \gamma(t, u, \tau))$ where

$$\gamma(t, u, \tau) = u + \tau f(t + \tau, \gamma(t, u, \tau))$$
(1)

Tayler series expansion of the local error at $\tau = 0$:

$$d_{\tau}(t+\tau) = u(t+\tau) - \left[u(t) + \tau \phi(t, u(t), \tau)\right]$$

= $u(t) + \tau u'(t) + \frac{\tau^2}{2} u''(t) + \mathcal{O}(\tau^3) - \left[u(t) + \tau \left(\phi(t, u(t), 0) + \tau \phi_{\tau}(t, u(t), 0) + \mathcal{O}(\tau^2)\right)\right]$

We need the partial derivative

$$\phi_{\tau}(t, u(t), 0) = f_t(t, \gamma(t, u(t), 0)) \cdot 1 + f_u(t, \gamma(t, u(t), 0)) \gamma_{\tau}(t, u(t), 0)$$

Value given via implicit equation:

$$\gamma(t, u, 0) = u$$

For the derivative, first differentiate (1) w.r.t. τ :

 $\gamma_{\tau}(t, u, \tau) = f(t+\tau, \gamma(t, u, \tau)) + \tau \left[f_t \left(t+\tau, \gamma(t, u, \tau) \right) \cdot 1 + f_u \left(t, \gamma(t, u, \tau) \right) \gamma_{\tau}(t, u, \tau) \right]$ for $\tau = 0$ this implies

$$\gamma_{\tau}(t, u, 0) = f(t, \gamma(t, u, 0)) = f(t, u)$$

Hence,

$$\begin{aligned} \phi(t, u(t), 0) &= f(t, \gamma(t, u(t), 0)) &= f(t, u(t)) = u'(t) \\ \phi_{\tau}(t, u(t), 0) &= f_t(t, \gamma(t, u(t), 0)) + f_u(t, \gamma(t, u(t), 0)) \gamma_{\tau}(t, u(t), 0) \\ &= f_t(t, u(t)) + f_u(t, u(t)) f(t, u(t)) = u''(t) \end{aligned}$$

and so

$$d_{\tau}(t+\tau) = u(t) + \tau u'(t) + \frac{\tau^2}{2} u''(t) + \mathcal{O}(\tau^3) - \left[u(t) + \tau \left(u'(t) + \tau u''(t) + \mathcal{O}(\tau^2)\right)\right] = -\frac{\tau^2}{2} u''(t) + \mathcal{O}(\tau^3)$$

Leading error term of the consistency error $\psi_{\tau}(u)(t)$ is $-(\tau/2) u''(t)$. A detailled analysis shows consistency order 1.

2. θ -method

$$\psi_{\tau}(u)(t) = \left(\frac{1}{2} - \theta\right) \tau u''(t) + \mathcal{O}(\tau^2)$$

For $\theta \neq 1/2$: Consistency order 1 For $\theta = 1/2$ (implicit trapezoidal rule): Consistency order 2

3. Implicit midpoint rule

$$\psi_{\tau}(u)(z) = \mathcal{O}(\tau^2)$$

Consistency order 2 (1-stage method!)

In general:

An *s*-stage implicit Runge-Kutta method has maximal consistency order 2*s*. Such methods are called Runge-Kutta methods of *Gauss type*, they are based on Gaussian quadrature rules.

Example: The implicit midpoint rule is of Gauss type.