1. Implicit Euler method

$$
u_{j+1}=u_{j}+\tau_{j} \phi\left(t_{j}, u_{j}, \tau_{j}\right)
$$

with $\phi(t, u, \tau):=f(t+\tau, \gamma(t, u, \tau))$ where

$$
\begin{equation*}
\gamma(t, u, \tau)=u+\tau f(t+\tau, \gamma(t, u, \tau)) \tag{1}
\end{equation*}
$$

Tayler series expansion of the local error at $\tau=0$:

$$
\begin{aligned}
d_{\tau}(t+\tau)= & u(t+\tau)-[u(t)+\tau \phi(t, u(t), \tau)] \\
= & u(t)+\tau u^{\prime}(t)+\frac{\tau^{2}}{2} u^{\prime \prime}(t)+\mathcal{O}\left(\tau^{3}\right)- \\
& -\left[u(t)+\tau\left(\phi(t, u(t), 0)+\tau \phi_{\tau}(t, u(t), 0)+\mathcal{O}\left(\tau^{2}\right)\right)\right]
\end{aligned}
$$

We need the partial derivative

$$
\phi_{\tau}(t, u(t), 0)=f_{t}(t, \gamma(t, u(t), 0)) \cdot 1+f_{u}(t, \gamma(t, u(t), 0)) \gamma_{\tau}(t, u(t), 0)
$$

Value given via implicit equation:

$$
\gamma(t, u, 0)=u
$$

For the derivative, first differentiate (1) w.r.t. τ :
$\gamma_{\tau}(t, u, \tau)=f(t+\tau, \gamma(t, u, \tau))+\tau\left[f_{t}(t+\tau, \gamma(t, u, \tau)) \cdot 1+f_{u}(t, \gamma(t, u, \tau)) \gamma_{\tau}(t, u, \tau)\right]$ for $\tau=0$ this implies

$$
\gamma_{\tau}(t, u, 0)=f(t, \gamma(t, u, 0))=f(t, u)
$$

Hence,

$$
\begin{aligned}
\phi(t, u(t), 0) & =f(t, \gamma(t, u(t), 0))=f(t, u(t))=u^{\prime}(t) \\
\phi_{\tau}(t, u(t), 0) & =f_{t}(t, \gamma(t, u(t), 0))+f_{u}(t, \gamma(t, u(t), 0)) \gamma_{\tau}(t, u(t), 0) \\
& =f_{t}(t, u(t))+f_{u}(t, u(t)) f(t, u(t))=u^{\prime \prime}(t)
\end{aligned}
$$

and so

$$
\begin{aligned}
d_{\tau}(t+\tau)= & u(t)+\tau u^{\prime}(t)+\frac{\tau^{2}}{2} u^{\prime \prime}(t)+\mathcal{O}\left(\tau^{3}\right)- \\
& -\left[u(t)+\tau\left(u^{\prime}(t)+\tau u^{\prime \prime}(t)+\mathcal{O}\left(\tau^{2}\right)\right)\right]=-\frac{\tau^{2}}{2} u^{\prime \prime}(t)+\mathcal{O}\left(\tau^{3}\right)
\end{aligned}
$$

Leading error term of the consistency error $\psi_{\tau}(u)(t)$ is $-(\tau / 2) u^{\prime \prime}(t)$.
A detailled analysis shows consistency order 1.

2. θ-method

$$
\psi_{\tau}(u)(t)=\left(\frac{1}{2}-\theta\right) \tau u^{\prime \prime}(t)+\mathcal{O}\left(\tau^{2}\right)
$$

For $\theta \neq 1 / 2$: Consistency order 1
For $\theta=1 / 2$ (implicit trapezoidal rule): Consistency order 2

3. Implicit midpoint rule

$$
\psi_{\tau}(u)(z)=\mathcal{O}\left(\tau^{2}\right)
$$

Consistency order 2 (1-stage method!)

In general:

An s-stage implicit Runge-Kutta method has maximal consistency order $2 s$. Such methods are called Runge-Kutta methods of Gauss type, they are based on Gaussian quadrature rules.

Example: The implicit midpoint rule is of Gauss type.

